L G Moreira 
  
S Tarbouriech 
  
A Seuret 
email: aseuret@laas.fr
  
J M Gomes Da Silva 
  
Observer-based event-triggered control in the presence of cone-bounded nonlinear inputs

Keywords: Event-triggered control, cone-bounded nonlinearities, observer-based control, stability, LMI

This paper presents an observer-based event-triggered strategy for linear systems subject to input conebounded nonlinearities. Both the emulation and co-design problems are addressed. Considering a Lyapunov approach and the cone-bound property of the input nonlinearity, sufficient conditions based on linear matrix inequalities are derived to ensure regional or global asymptotic stability of the origin of the closed-loop system. These conditions are incorporated into convex optimization problems to optimally determine the event generator parameters and the controller gain (in the co-design case) aiming at reducing the number of control updates with respect to periodic implementations for a prescribed observer gain. The event-triggering strategy considers a dwell time to cope with Zeno behaviors. Numerical examples, considering systems with quantized logarithmic inputs and saturating inputs, illustrate the potentialities of the approach.

Introduction

In the context of networked control systems, i.e. control systems where at least part of the communication takes place over a generic digital communication network, event-triggered control strategies have been proposed as means of dealing with communication, energy consumption and computation constraints (see, for example, [START_REF] Postoyan | Triggering mechanism using freely selected sensors for linear time-invariant systems[END_REF][START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF][START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF][START_REF] Heemels | An introduction to event-triggered and self-triggered control[END_REF] and the references therein). Considering the event-triggered control framework, there are basically two approaches. The first one is the so-called emulation design, where one considers that the controller is given a priori (e.g. [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF][START_REF] Heemels | An introduction to event-triggered and self-triggered control[END_REF][START_REF] Wang | Event design in event-triggered feedback control systems[END_REF][START_REF] Seuret | Event-triggered sampling algorithms based on a Lyapunov function[END_REF][START_REF] Abdelrahim | Stabilization of nonlinear systems using event-triggered output feedback controllers[END_REF] and the references therein). In this case, the task is to synthesize an event generator that leads to a stable closed-loop system and avoids the occurrence of Zeno behavior (see, e.g. [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF][START_REF] Heemels | An introduction to event-triggered and self-triggered control[END_REF] for an explanation of Zeno behavior). The second approach, referred in the literature as co-design, consisting in designing the control law and the event-triggering rule simultaneously, is addressed in a few papers (see [START_REF] Aström | Event based control, in: Analysis and design of nonlinear control systems[END_REF][START_REF] Seuret | Event-triggered sampling for linear closed-loop systems with plant input saturation[END_REF][START_REF] Seuret | LQ-based event-triggered controller co-design for saturated linear systems[END_REF][START_REF] Heemels | Periodic event-triggered control for linear systems[END_REF][START_REF] Abdelrahim | Co-design of output feedback laws and event-triggering conditions for linear systems[END_REF][START_REF] Antunes | Dynamic programming formulation of periodic event-triggered control: Performance guarantees and co-design[END_REF]).

Many papers addressing asymptotic stability of event-triggered control systems consider state-feedback laws (e.g. [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF][START_REF] Heemels | An introduction to event-triggered and self-triggered control[END_REF][START_REF] Wang | Event design in event-triggered feedback control systems[END_REF][START_REF] Lehmann | Extension and experimental evaluation of an event-based state-feedback approach[END_REF][START_REF] Wu | Event-triggered control for linear systems subject to actuator saturation[END_REF][START_REF] Aranda-Escolastico | A novel approach for periodic event-triggering based on general quadratic functions[END_REF][START_REF] Moreira | Event-triggered state-feedback control for continuous-time plants subject to input saturation[END_REF]). However, in most practical applications, only part of the system state is available or possible to be measured. Using only the available information (measured or local signals) to define the triggering mechanism and/or the control law, both for emulation and co-design approaches, is a challenging problem: see, for example, [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF][START_REF] Heemels | An introduction to event-triggered and self-triggered control[END_REF][START_REF] Abdelrahim | Stabilization of nonlinear systems using event-triggered output feedback controllers[END_REF][START_REF] Lehmann | Event-based output feedback control[END_REF][START_REF] Almeida | Observer based self-triggered control of linear plants with unknown disturbances[END_REF][START_REF] Donkers | Output-based event-triggered control with guaranteed L∞-gain and improved and decentralized event-triggering[END_REF][START_REF] Tallapragada | Event-triggered dynamic output feedback control for LTI systems[END_REF][START_REF] Wang | Event-triggering in distributed networked control systems[END_REF][START_REF] Xia | Observer based event-triggered control for certain and uncertain linear systems[END_REF] and [START_REF] Braksmayer | H 2 optimization under intermittent sampling and its application to event-triggered control[END_REF], which also addresses the use of alternative sampling and holding functions. Moreover, most of the available literature concentrates on linear plants, even if there are a few papers dealing with generic results for nonlinear systems such as [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF][START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF][START_REF] Seuret | Event-triggered sampling algorithms based on a Lyapunov function[END_REF][START_REF] Abdelrahim | Stabilization of nonlinear systems using event-triggered output feedback controllers[END_REF].

In the recent work [START_REF] Tarbouriech | Observer-based event-triggered control for linear systems subject to cone-bounded nonlinearities[END_REF], the event-triggered control problem for the class of nonlinear systems that can be represented by a linear plant subject to cone-bounded input nonlinearities has been addressed in an emulation context. That paper considers a given observer-based feedback control law that stabilizes a continuous-time implementation of the control system. The state observer allows using only local information or measurable signals in the event-triggering rule. From these assumptions, sufficient conditions in the form of linear matrix inequalities (LMIs) are proposed to ensure global asymptotic stability of the origin of the nonlinear closed-loop system under the event-triggered control strategy. These conditions are then cast into a convex optimization problem to compute the trigger parameters aiming at a reduction of the number of events, i.e. reducing the number of control updates. Addressing a similar problem, we can cite [START_REF] Zhang | Absolute stabilization of Lur'e systems under event-triggered feedback[END_REF], which considers the absolute stabilization of event-triggered Lur'e systems in a co-design context. In that work, it is assumed that the event generator and the controller have access to the entire system state and that the nonlinearity satisfies a sector condition globally. The nonlinearity can be unknown, as long as it is ensured that it satisfies the sector condition. Also addressing the absolute stabilization of event-triggered Lur'e systems, [START_REF] Seifullaev | Event-triggered control of sampled-data nonlinear systems[END_REF] considers the emulation design and the use of only output signals in the event generator and in the controller. Only the global case is considered and a dwell time is used to avoid Zeno behavior. A variable time-delayed input approach [START_REF] Fridman | Robust sampled-data stabilization of linear systems: an input delay approach[END_REF] is employed to derive stability conditions in the presence of this dwell time.

In the current paper, we present a comprehensive version of our work [START_REF] Tarbouriech | Observer-based event-triggered control for linear systems subject to cone-bounded nonlinearities[END_REF] in the sense that we address also the regional stabilization and the co-design of the parameters of the event generator and the control law. We consider an approach based solely on Lyapunov methods as proposed in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF][START_REF] Tarbouriech | Observer-based event-triggered control for linear systems subject to cone-bounded nonlinearities[END_REF][START_REF] Tarbouriech | Observer-based event-triggered control co-design for linear systems[END_REF], without the use of the hybrid systems framework defined by [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF] and used e.g. in [START_REF] Abdelrahim | Stabilization of nonlinear systems using event-triggered output feedback controllers[END_REF][START_REF] Seuret | Event-triggered sampling for linear closed-loop systems with plant input saturation[END_REF][START_REF] Seuret | LQ-based event-triggered controller co-design for saturated linear systems[END_REF][START_REF] Abdelrahim | Co-design of output feedback laws and event-triggering conditions for linear systems[END_REF], to obtain the stability conditions. We also keep the ideas of using a dwell time to avoid Zeno behavior (see [START_REF] Mazo | An ISS self-triggered implementation of linear controllers[END_REF]) and of computing the parameters by means of solving convex optimization problems. Differently from [START_REF] Tarbouriech | Observer-based event-triggered control for linear systems subject to cone-bounded nonlinearities[END_REF], besides the extensions already mentioned, we consider a triggering function with more degrees of freedom by the use of the observed state in the event-trigger condition. In the co-design case, we consider that the observer has been previously designed and we derive conditions to simultaneously compute the state feedback matrix and the triggering function parameters. The main differences with respect to [START_REF] Zhang | Absolute stabilization of Lur'e systems under event-triggered feedback[END_REF][START_REF] Seifullaev | Event-triggered control of sampled-data nonlinear systems[END_REF] reside in the facts that we do not address the absolute stabilization problem, in the sense that we consider that the nonlinearity is known, we do not impose access to the entire state and we cover the co-design problem. Moreover, differently from [START_REF] Seifullaev | Event-triggered control of sampled-data nonlinear systems[END_REF], the technique employed here to cope with the dwell time does not consider a time-delay approach but an exact discretization of the closed-loop system behavior.

For both emulation and co-design cases, convex optimization problems are proposed to design the event generator parameters (and the state feedback matrix in the co-design) aiming at a reduction of the control updates (trigger activity) with respect to periodic implementations with a period equal to the dwell time chosen for the event-triggered implementation, while ensuring the regional (or global, when possible) asymptotic stability of the closed-loop system.

The present paper is organized as follows. In Section 2, the system to be considered is described as well as the problem we intend to solve. The proposed event-triggering strategy is introduced in Section 3, where suitable stability conditions in a general form are also presented. In Sections 4 and 5, stability conditions in the form of linear matrix inequalities (LMIs) along with convex optimization problems are presented to address the problem both in emulation and co-design contexts. Section 6 illustrates the potentialities of the proposed approach in the context of regional and global stabilization through two numerical examples. Finally, Section 7 presents some concluding remarks and directions for future research.

Notation. N, R n and R n×m denote, respectively, the sets of integers, n-dimensional vectors and n × m real matrices. For any matrix A, A denotes its transpose. For any square matrix A, trace(A) denotes its trace and He {A} = A + A . For two symmetric matrices of the same dimensions, A and B, A > B means that A -B is symmetric positive definite. I and 0 stand respectively for the identity and the null matrix of appropriate dimensions. For a partitioned matrix, the symbol * stands for symmetric blocks. λ min (A) and λ max (A) denote, respectively, the smallest and the largest eigenvalues of a square matrix A. • stands for the Euclidean norm.

Problem statement

Consider the following continuous-time plant:

ẋp (t) = A p x p (t) + B p u(t) + B pf f (u(t)) y p (t) = C p x p (t) (1) 
where x p (t) ∈ R n , u(t) ∈ R m , y p (t) ∈ R p are the state, the input and the output of the plant, respectively. Matrices A p , B p , B pf and C p are constant and of appropriate dimensions. Pairs (A p , B p ) and (C p , A p ) are supposed to be stabilizable and detectable, respectively. Function f : R m → R m is a known, continuous, decentralized cone-bounded nonlinearity (see [START_REF] Khalil | Nonlinear systems, 2nd Edition[END_REF][START_REF] Castelan | Control design for a class of nonlinear continuous-time systems[END_REF], for example) affecting the input u. Therefore, it satisfies the following property:

f (u) S(f (u) + Ru) ≤ 0 (2)
where S ∈ R m×m is any diagonal positive definite matrix. Matrix R ∈ R m×m is supposed to be a diagonal positive definite matrix, with diagonal elements R (i,i) ∈ R defining the sector [0, -R (i,i) ] in which the i-th component of f , i.e. f (i) , lies. In other words,

f (i) (u (i) ) is supposed to satisfy f (i) (u (i) )(f (i) (u (i) )+R (i,i)u (i) ) < 0, ∀i = 1, . . . , m.
Hence, in the following, matrix R is supposed to be given according to the non-linearity function f . Property (2) can be satisfied either globally (i.e. it is valid for any u ∈ R m ) or regionally (i.e. it is valid for all u in a given set S u ⊂ R m containing the origin). In the present work, for the regional stabilization case, we consider that S u is a polyhedral set, symmetric around the origin, generically defined as follows:

S u = {u ∈ R m : |h i u| ≤ 1; h i ∈ R m , i = 1, ..., n f } (3) 
where n f is half the number of faces. Such f (u) functions can represent, for instance, nonlinearities induced by the actuators, such as dead-zones and saturations [START_REF] Castelan | Control design for a class of nonlinear continuous-time systems[END_REF][START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF][START_REF] Zaccarian | Modern anti-windup synthesis[END_REF] as well as input quantization effects [START_REF] Tarbouriech | Observer-based event-triggered control for linear systems subject to cone-bounded nonlinearities[END_REF][START_REF] Fu | The sector bound approach to quantized feedback control[END_REF][START_REF] Tallapragada | On event triggered tracking for nonlinear systems[END_REF]. Note that depending on the case, these nonlinearities will satisfy a sector condition regionally or globally. We consider the following observer-based feedback controller to asymptotically stabilize system (1):

         ẋ(t) = A p x(t) + B p u(t) + B pf f (u(t)) -Le y (t) ŷ(t) = C p x(t)
e y (t) = y p (t) -ŷ(t)

u(t) = K x(t) (4) 
where x(t) ∈ R n and ŷ(t) ∈ R p are the state and the output of the observer, respectively, and e y (t) is the output error. L ∈ R n×p and K ∈ R m×n are the observer and controller gains, respectively. Note that the design of the observer assumes that the nonlinearity f (u) is known. This is the case in many practical control problems, e.g. systems subject to input saturation and/or quantization. Since we are interested in an event-triggered implementation, the control signal applied to the plant is updated only at certain instants {t k } k∈N , defined by the event-triggering algorithm. The control action is held constant between two successive events by means of a zero-order-holder. Differently from classical periodic sampling techniques, the intersampling time t k+1 -t k is not assumed to be constant.

Thus, for all t in [t k , t k+1 ), the closed-loop system can be represented by the following equations:

                   ẋp (t) = A p x p (t) + B p u(t k ) + B pf f (u(t k )) ẋ(t) = A p x(t) + B p u(t k ) + B pf f (u(t k )) -Le y (t) u(t k ) = K x(t k ) y p (t) = C p x p (t) ŷ(t) = C p x(t) e y (t) = y p (t) -ŷ(t) (5) 
In the context of a networked control implementation, system (5) represents the case in which sensors, event generator and controller are co-located, while the actuators are in a separate node of a (e.g. wireless) network. Under these circumstances, the measurement activities do not impact the network bandwidth and energy consumption as much as the control updates do. Note that for wireless networks, the sensor node can be geographically separated from the actuator node and fed by batteries. In this case, the energy consumption in data transmission is considerably higher than in the local measurement activities. Therefore, we consider the case where the outputs of the system are continuously measured. Hence, considering system (5), we address the following problems. Emulation design: in this case, we consider that the observer and the state feedback have been designed to ensure the asymptotic regional (or global) stability of the continuous closed-loop system. From this assumption, the goal is to devise an event-triggering strategy, i.e. to design an event-triggering function, in order to guarantee the regional (or global) asymptotic stability of the origin of the closed-loop system (5), while implicitly reducing the number of control updates (i.e. the number of events) compared to a periodic implementation with period small enough to emulate the continuous-time behavior.

Co-design: assuming that only the observer is given, the goal in this case is the joint design of the eventtriggering function and the state feedback matrix to ensure the asymptotic regional (or global) stability of the closed-loop system origin and further reduce the control updates when compared to the emulation solution.

When the regional stability is concerned, the design of the event-triggered control strategy, both in emulation and co-design, should explicitly consider a given set of admissible initial conditions for which the asymptotic stability of the origin of the nonlinear closed-loop system should be ensured.

Event-trigger strategy

We start by providing a general formulation to the event-trigger strategy, inspired by [START_REF] Tallapragada | Event-triggered dynamic output feedback control for LTI systems[END_REF][START_REF] Tarbouriech | Observer-based event-triggered control for linear systems subject to cone-bounded nonlinearities[END_REF][START_REF] Tallapragada | On event triggered tracking for nonlinear systems[END_REF]. Let us introduce the error vector between the value of the observed state at the last trigger instant and the current one, which is given by:

δ(t) = x(t k ) -x(t) (6) 
and the following generic rule to determine the event instants:

t k+1 = min{t ≥ t k + T, s.t. g(δ(t), y a (t)) ≥ 0} (7) 
where y a represents the vector of available information to the event generator, which corresponds, in our case, to y a (t) = x(t) e y (t) , and T is the (minimum) dwell time, during which the function g is not evaluated and thus the control action is not updated. Note that we are implicitly assuming in the definition of y a (t) that y p (t) is continuously measured, i.e. it is available at each t ≥ 0. The function g : R n × R n+p → R and the dwell time T > 0 have to be efficiently defined such that the asymptotic stability of the origin of the closed-loop system (5) under the event-triggering rule described in ( 7) is ensured. Typically, the dwell time T is chosen as small as allowed by the network and computational constraints of the system. In this case, the event-triggering mechanism is responsible for delaying the occurrence of control updates, reducing its number with respect to a periodic implementation, whose sampling period is equal to the dwell time chosen. Observe also that the triggering condition considers g(δ(t), y a (t)) ≥ 0 instead of the more usual test criterion g(δ(t), y a (t)) = 0 (as in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF]). This is because when a dwell time T is considered, g(δ(t), y a (t)) is not evaluated during the interval t ∈ [t k , t k + T ). Therefore, it can become greater than zero in this interval and thus stay greater than zero when it is evaluated, at the instant t k + T . Note that rule (7) ensures a minimum inter-event time of T , which prevents Zeno behavior. It also uses only available information since δ(t) only depends on the observed state x(t), its sampled value at the instant t k and the system output (recall that e y (t) = y p (t) -C x(t)).

At this point, it is convenient to re-write system (5) in terms of the observer state x(t) and the observer error e(t) = x p (t)-x(t). Considering this change of variables and the definition of δ(t) in ( 6), the closed-loop system can be represented as follows:

ẋ(t) = (A p + B p K)x(t) + B p Kδ(t) + B pf f (u(t k )) -LC p e(t) ė(t) = (A p + LC p )e(t). ( 8 
)
Defining the augmented state vector

x(t) = x(t) e(t) ∈ R 2n (9) 
and matrices

A a = A p -LC p 0 A p + LC p , B a = B p 0 , B af = B pf 0 , C a = I 0 0 C p , (10) 
system ( 8) can be rewritten as:

ẋ(t) = A a + B a K 0 x(t) + B a Kδ(t) + B af f (u(t k )). ( 11 
)
Then the following general theorem provides sufficient conditions for the regional asymptotic stability of the origin of ( 11), or, equivalently, of (5).

Theorem 1. Consider system (11) with x(t) ∈ R 2n as defined in (9) and f (u) satisfying (2), ∀u ∈ S u , with S u defined in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF]. Consider also a scalar T > 0, a function g : R n × R n+p → R and the triggering rule given by [START_REF] Abdelrahim | Stabilization of nonlinear systems using event-triggered output feedback controllers[END_REF]. If there exist a function V : R 2n → R, diagonal positive definite matrices S 1 ∈ R m×m , S 2 ∈ R m×m and positive scalars 1 , 2 and 3 such that the following relations are verified:

(i) 1 ||x|| 2 ≤ V (x) ≤ 2 ||x|| 2 (ii) V (x(t)) -g(δ(t), y a (t)) -2f (u(t k )) S 1 (f (u(t k )) + Ru(t k )) < 0, ∀t ∈ [t k + T , t k+1 ), ∀k ∈ N, x(t) = 0 (iii) V (x(t k + T )) -V (x(t k )) -2f (u(t k )) S 2 (f (u(t k )) + Ru(t k )) < -3 x(t k ) 2 , ∀k ∈ N, x(t k ) = 0 (iv) V (x(t k )) -u(t k ) h i h i u(t k ) > 0, ∀k ∈ N, i = 1, ..., n f
then, the origin of system [START_REF] Heemels | Periodic event-triggered control for linear systems[END_REF] with the triggering rule (7) is regionally asymptotically stable, the set

L v = {x ∈ R 2n : V (x) ≤ 1}
is included in the region of attraction of the origin and the inter-event intervals are lower bounded by T .

Proof. The stability analysis is carried out considering the time intervals [t k , t k + T ) and [t k + T, t k+1 ). Let us first analyze the interval [t k , t k + T ). From (iii) and property (2), the function V (x) satisfies

V (x(t k + T )) < V (x(t k )) -3 x(t k ) 2 (12) 
as long as u(t k ) ∈ S u . Moreover, from [START_REF] Heemels | Periodic event-triggered control for linear systems[END_REF], the definition of δ and the fact that

u(t k ) = K 0 x(t k ), it follows that ẋ(t) = A a x(t) + B a u(t k ) + B af f (u(t k )) (13) 
and thus

x(t k + τ ) = e Aaτ x(t k ) + t k +τ t k e Aa(t k +τ -s) ds B a u(t k ) + B af f (u(t k )) . (14) 
Taking into account that f (v) ≤ γ v for any vector v ∈ S u , where γ is a positive constant depending on the norm of matrix R, one obtains that

x(t k + τ ) ≤ e Aaτ + t k +τ t k e Aa(t k +τ -s) ds ( B a + γ B af ) K 0 x(t k ) (15) 
and thus, since the trajectories of ( 11) are continuous, there exists β > 0 such that

x(t k + τ ) ≤ β x(t k ) ∀τ ∈ [0, T ]. ( 16 
)
This means that during the dwell time T , i.e. for t ∈ [t k , t k + T ], the trajectories of the system are uniformly bounded, provided that u(t k ) ∈ S u . Therefore, during the dwell time T , the Lyapunov function is not necessarily strictly decreasing. From (i) and ( 16) we can only ensure that its value is bounded ∀τ ∈ [0, T ] and, from [START_REF] Abdelrahim | Co-design of output feedback laws and event-triggering conditions for linear systems[END_REF], that V (x(t k + T )) < V (x(t k )).

Consider now the interval [t k + T, t k+1 ). If (ii) is satisfied, then we have:

V (x(t)) < g(δ(t), y a (t)) + 2f (u(t k )) S 1 (f (u(t k )) + Ru(t k )) (17) 
and it follows from ( 2) and ( 7) that g(δ(t), y a (t

)) + 2f (u(t k )) S 1 (f (u(t k )) + Ru(t k )) ≤ 0. We conclude that condition (ii) implies that V (x(t)) < 0 in the interval [t k + T, t k+1
) and therefore

V (x(t)) < V (x(t k + T )), ∀t ∈ [t k + T, t k+1 ), ∀k ∈ N (18) 
provided that u(t k ) ∈ S u . Hence, from ( 12) and ( 18), we conclude that

V (x(t k+1 )) < V (x(t k )) -3 x(t k ) 2 (19) provided that u(t k ) ∈ S u . Now, recalling that u(t k ) ∈ S u ⇐⇒ |h i u(t k )| ≤ 1; i = 1, .
.., n f , the satisfaction of (iv) actually ensures that u(t k ) ∈ S u as long as x(t k ) ∈ L v . This in conjunction with [START_REF] Almeida | Observer based self-triggered control of linear plants with unknown disturbances[END_REF] 

implies that x(t k ) ∈ L v and therefore u(t k ) ∈ S u , ∀k ∈ N, provided that x(t 0 ) = x(0) ∈ L v . From (19), it follows that lim k→∞ V (x(t k )) = 0. Hence, from (i), we have x(t k ) 2 ≤ -1 1 V (x(t k ))
and it follows that lim k→∞ x(t k ) = 0, provided that x(0) ∈ L v . This fact, along with [START_REF] Aranda-Escolastico | A novel approach for periodic event-triggering based on general quadratic functions[END_REF], ensures that lim t→∞ x(t) = 0, which means that system [START_REF] Heemels | Periodic event-triggered control for linear systems[END_REF] is asymptotically stable and L v is included in its region of attraction.

In addition, note that T is a lower bound on the inter-sampling times by using Lemma 1 in [START_REF] Tallapragada | Event-triggered dynamic output feedback control for LTI systems[END_REF], preventing Zeno behavior.

It should be noticed that the conditions of Theorem 1 are implicitly locally verified due to statement (iv). In fact, (ii) and (iii) should be verified only if x(t k ) and u(t k ) satisfy (iv). Assuming that u(t k ) = K 0 x(t k ), this means the conditions are verified only if x(t k ) belongs to the level set L v of the function V , which is included in the set

S x = {x ∈ R 2n : h i K 0 x ≤ 1, i = 1, ..., n f }.
In the global case (i.e. when relation ( 2) is satisfied ∀u ∈ R m ), one retrieves Theorem 1 of [START_REF] Tarbouriech | Observer-based event-triggered control for linear systems subject to cone-bounded nonlinearities[END_REF], in which case relation (iv) is no longer necessary. This is recalled here in the following corollary.

Corollary 1. Consider a scalar T > 0, a function g : R n × R n+p → R and the triggering rule given by [START_REF] Abdelrahim | Stabilization of nonlinear systems using event-triggered output feedback controllers[END_REF]. Assume that the property (2) is globally satisfied and the conditions (i), (ii) and (iii) of Theorem 1 are verified. Then, the origin of system [START_REF] Heemels | Periodic event-triggered control for linear systems[END_REF] with the triggering rule (7) is globally asymptotically stable and the inter-event intervals are lower bounded by T .

Proof. The proof mimics that of Theorem 1 without the need of using the constraint (iv) since property (2) is globally satisfied, i.e. it is valid ∀u(t k ) ∈ R m . Remark 1. Notice that satisfaction of conditions (i), (iii) and (iv) of Theorem 1 ensures that a periodic implementation of the control system with period T is asymptotically stable in the regional case. In the global case, satisfaction of (i) and (iii) are enough to ensure asymptotic stability since property (2) is globally satisfied.

Emulation case

In this section, Theorem 1 is considered to extend the emulation design method presented in [START_REF] Tarbouriech | Observer-based event-triggered control for linear systems subject to cone-bounded nonlinearities[END_REF] to the regional stabilization case. In other words, we want to propose a way to design the event-triggering rule using only the available signals (i.e. x(t) and e y (t)), when the controller and observer gains, K and L respectively, are given a priori and the nonlinearity f satisfies property (2) regionally. Results for the global case are presented as a corollary.

We consider a triggering function similar to the one proposed in [START_REF] Tarbouriech | Observer-based event-triggered control for linear systems subject to cone-bounded nonlinearities[END_REF], i.e. g(δ(t), y a (t)) defined as follows:

g(δ(t), y a (t)) = δ(t) Q δ δ(t) - x(t) e y (t) Q -1 x(t) e y (t) . ( 20 
)
It should be noticed that, differently from [START_REF] Tarbouriech | Observer-based event-triggered control for linear systems subject to cone-bounded nonlinearities[END_REF], δ(t) does not depend on K here. Hence, the following theorem establishes conditions for the regional asymptotic stability of system [START_REF] Heemels | Periodic event-triggered control for linear systems[END_REF] under the event-triggered control strategy given in [START_REF] Abdelrahim | Stabilization of nonlinear systems using event-triggered output feedback controllers[END_REF].

Theorem 2. Consider f (u) verifying (2) for all u ∈ S u , with S u as defined in (3). Given controller and observer gains K and L and a scalar T > 0, if there exist symmetric positive definite matrices Qδ , Q , W = W1 W2 * W3 and diagonal positive definite matrices U 1 and U 2 of appropriate dimensions such that the following LMIs

Φ 1 =     M 1   W C a 0 0   * -Q     < 0 (21) Φ 2 =     -W -W K 0 R W A ad (T ) + K 0 B a B ad (T ) * -2U 2 U 2 B af B ad (T ) * * -W     < 0 (22) 
Φ 3 =   W W K 0 h i * 1   > 0 i = 1, ..., n f (23) 
are verified with A a , B a , B af , C a as defined in [START_REF] Seuret | LQ-based event-triggered controller co-design for saturated linear systems[END_REF] and

M 1 = He      I 0 0     (A a + B a K 0 )W B a KW 1 B af U 1      -   0 I 0   Qδ 0 I 0 -He      0 0 I     R K 0 W RKW 1 U 1      , A ad (T ) = e AaT , B ad (T ) = T 0 e Aas ds, (24) 
then, the event-triggering rule (7) with g as defined in [START_REF] Donkers | Output-based event-triggered control with guaranteed L∞-gain and improved and decentralized event-triggering[END_REF] and

Q δ = W -1 1 Qδ W -1 1
is such that the origin of system (11) is regionally asymptotically stable and the set L v = x ∈ R 2n : x W -1 x ≤ 1 , is included in its region of attraction. Furthermore, the inter-sampling times are lower bounded by T .

Proof. Consider the quadratic Lyapunov candidate function for system [START_REF] Heemels | Periodic event-triggered control for linear systems[END_REF] given by

V (x(t)) = x(t) W -1 x(t), (25) 
where the matrix W -1 is positive definite thanks to the satisfaction of ( 22) and ( 23), implying that condition (i) of Theorem 1 is satisfied. We show next that the LMIs ( 21)-( 23) are sufficient conditions for inequalities (ii)-(iv) of Theorem 1 to hold.

Considering the time-derivative of V along the trajectories of system [START_REF] Heemels | Periodic event-triggered control for linear systems[END_REF] for any t ∈ [t k + T, t k+1 ), the following expression is obtained:

Ψ c (t) := V (x(t)) -δ(t) Q δ δ(t) + x(t) e y (t) Q -1 x(t) e y (t) -2f (u(t k )) S 1 (f (u(t k )) + Ru(t k )) =   x(t) δ(t) f (u(t k ))   Γ   x(t) δ(t) f (u(t k ))   , with Γ = He      I 0 0   W -1   A a + B a K 0 B a K B af      -   0 I 0   Q δ 0 I 0 +   C a 0 0   Q -1 C a 0 0 -He      0 0 I     S 1 R K 0 S 1 RK S 1      ,
where we used the facts that u(t k ) = K x(t k ) = K x(t) + Kδ(t) and e y (t) = C p e(t) for the last equality. Hence, imposing Γ < 0 guarantees that Ψ c (t) < 0. Now, pre-and post-multiplying Γ by diag(W, W 1 , U 1 ) with U 1 = S -1 1 , making the change of variables Qδ = W 1 Q δ W 1 and considering the Schur complement, it follows that inequality Φ 1 < 0 in [START_REF] Tallapragada | Event-triggered dynamic output feedback control for LTI systems[END_REF] implies Γ < 0 and, therefore, Ψ c (t) < 0. This also implies that condition (ii) of Theorem 1 is verified when considering g δ(t), x(t) e y (t) as defined in [START_REF] Donkers | Output-based event-triggered control with guaranteed L∞-gain and improved and decentralized event-triggering[END_REF] with

Q δ = W -1 1 Qδ W -1
1 . Now pre-and post-multiplying [START_REF] Xia | Observer based event-triggered control for certain and uncertain linear systems[END_REF] by diag(W -1 , 1) and applying the Schur complement, one obtains:

W -1 - K h i 0 h i K 0 > 0. ( 26 
)
Pre-and post-multiplying (26) by x(t k ) and x(t k ), respectively, the satisfaction of [START_REF] Xia | Observer based event-triggered control for certain and uncertain linear systems[END_REF] implies that the following condition is fulfilled:

x(t k ) W -1 x(t k ) -x(t k ) K h i h i K x(t k ) > 0. ( 27 
)
Thus, recalling the definition of V (x) in [START_REF] Tarbouriech | Observer-based event-triggered control for linear systems subject to cone-bounded nonlinearities[END_REF] and that u(t k ) = K x(t k ), the satisfaction of (27) (or, equivalently, ( 23)) implies that condition (iv) of Theorem 1 is verified. Now, in order to prove that condition (iii) of Theorem 1 holds if ( 22) is satisfied, note that solving the linear differential equation ( 11) over the interval [t k , t k + T ] yields

x(t k + T ) = Λ 1 (T )x(t k ) + Λ 2 (T )f (u(t k )) (28) 
where

Λ 1 (T ) A ad (T ) + B ad (T )B a K 0 , Λ 2 (T ) B ad (T )B af .
with A ad (T ) and B ad (T ) as defined in [START_REF] Braksmayer | H 2 optimization under intermittent sampling and its application to event-triggered control[END_REF]. Hence, from [START_REF] Fridman | Robust sampled-data stabilization of linear systems: an input delay approach[END_REF], condition (iii) in Theorem 1 can be written as

Ψ T (t k ) := ∆V T (x) -2f (u(t k )) S 2 (f (u(t k )) + Ru(t k )) = Λ 1 (T )x(t k ) + Λ 2 (T )f (u(t k )) W -1 Λ 1 (T )x(t k ) + Λ 2 (T )f (u(t k )) -x(t k ) W -1 x(t k ) -2f (u(t k )) S 2 f (u(t k )) + Ru(t k ) < -3 x(t k ) with ∆V T (x) = V (x(t k + T )) -V (x(t k )).
Applying the Schur complement and a congruence transformation with diag(W, U 2 , W ), where U 2 = S -1 2 , it can be seen that condition Φ 2 < 0 in [START_REF] Wang | Event-triggering in distributed networked control systems[END_REF] ensures that there exists 3 > 0 such that condition (iii) in Theorem 1 is satisfied. The proof is then concluded by invoking Theorem 1. We can conclude that the solutions to system (11) converge asymptotically to the origin if they start in L v . Furthermore, the event-triggering strategy defined by ( 7) and [START_REF] Donkers | Output-based event-triggered control with guaranteed L∞-gain and improved and decentralized event-triggering[END_REF] implicitly ensures that the inter-event times are lower bounded by T .

The following corollary addresses the global case in an emulation design context. Corollary 2. Consider f (u) verifying (2) ∀u ∈ R m . Given controller and observer gains K and L and a scalar T > 0, if there exist symmetric positive definite matrices Qδ , Q and W = W1 W2 * W3 and diagonal positive definite matrices U 1 and U 2 of appropriate dimensions such that LMIs (21) and ( 22) are verified, then the event-triggered sampling rule [START_REF] Abdelrahim | Stabilization of nonlinear systems using event-triggered output feedback controllers[END_REF] with [START_REF] Donkers | Output-based event-triggered control with guaranteed L∞-gain and improved and decentralized event-triggering[END_REF] and

Q δ = W -1 1 Qδ W -1 1
is such that the origin of system (11) is globally asymptotically stable. Furthermore, the inter-sampling times are lower bounded by T .

Proof. The proof mimics that of Theorem 2 without the need of using constraint (23) since property ( 2) is globally satisfied.

Tuning -Emulation case

Conditions in Theorem 2 are LMIs, provided that K, L and T are fixed, corresponding to the emulation problem. The gains K and L can be designed, for instance, disregarding the input nonlinearity, by classical methods of linear control or by applying more sophisticated nonlinear techniques based on sector bound conditions for continuous-time systems (see, for instance [START_REF] Castelan | Control design for a class of nonlinear continuous-time systems[END_REF]). In this case, the conditions in Theorem 2 allow assessing the stability under an aperiodic sampled-data control law driven by the event-triggering strategy while taking explicitly into account the system input nonlinearity.

Let us point out that differently from [START_REF] Tallapragada | Event-triggered dynamic output feedback control for LTI systems[END_REF], in Theorem 2 the inter-event times are directly obtained via the satisfaction of ( 22) without the need of additional a posteriori calculations. Furthermore, if conditions ( 21) and ( 23) hold, it is always possible to find a small enough T such that the set of conditions ( 21), ( 22) and ( 23) is verified. Then, T appears as a tuning parameter of the event-triggered problem. If T is too large, the conditions may be unfeasible. Since a large T can lead to a performance degradation with respect to the continuous-time implementation, a classical trade-off has to be considered when choosing T .

Hence, assuming previously determined gains K and L and an appropriately chosen T , the idea is to optimally compute matrices Q and Q δ , aiming at postponing the events with respect to the dwell time T , thus reducing the control updates when compared to a periodic implementation with period T , while ensuring the closed-loop stability in a given set X 0 of admissible initial conditions. With this goal, we can consider X 0 as an ellipsoidal set described as follows:

X 0 = x ∈ R 2n : x P 0 x ≤ 1 , (29) 
where P 0 is a given symmetric positive definite matrix. Then the selection of the triggering function parameters can be systematically performed through the following convex optimization problem:

min W, Qδ ,Q ,U1,U2 trace( Qδ ) + trace(Q )
subject to ( 21), ( 22), ( 23), W > P -1 0 .

(
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The motivation behind the optimization criterion in [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF] is to get Qδ and Q as "small" as possible. From the definition of the triggering function [START_REF] Donkers | Output-based event-triggered control with guaranteed L∞-gain and improved and decentralized event-triggering[END_REF] and the fact that Qδ = W 1 Q δ W 1 , this optimization means that matrix Q δ > 0 is implicitly minimized by minimizing Qδ > 0 while matrix Q -1 > 0 is maximized. Since an event is generated and the control input is updated only when the function g is positive, this optimization procedure aims at reducing the impact of the first positive contribution in g (Q δ > 0) over the second negative contribution (-Q < 0). In other words, it implicitly implies more time before a new event occurs. Inequality W > P -1 0 ensures X 0 ⊂ L v , guaranteeing that all trajectories starting in X 0 converge asymptotically to the origin.

For the case of global stabilization, one uses the conditions of Corollary 2 and there is no need to ensure X 0 ⊂ L v . Hence, optimization problem [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF], without [START_REF] Xia | Observer based event-triggered control for certain and uncertain linear systems[END_REF] and W > P -1 0 , can be considered. Remark 2. Considering the parameters K, L, Q δ , Q and T given, Theorem 2 can also be used to provide an estimate of the region of attraction of the origin of the closed-loop system under the triggered control law.

In this case, one needs to pre-and post-multiply Φ 1 by diag(I, W -1 1 , I) in order to get Q δ explicitly (instead of Qδ ) in the LMI, which leads to:

    M 2   W C a 0 0   * -Q     < 0, ( 31 
)
with

M 2 = He      I 0 0     (A a + B a K 0 )W B a K B af U 1      -   0 I 0   Q δ 0 I 0 -He      0 0 I     R K 0 W RK U 1      .
Then it suffices to define and solve a new optimization problem where the objective function maximizes the set L v in some sense (e.g. maximizing the trace of W , maximizing the lowest eigenvalue of W , etc). For instance, we can consider: max

W,U1,U2 trace(W )
subject to ( 22), ( 23), ( 31).

(32)

Co-design

In this section, we address the co-design problem stated in Section 2. The idea here is to jointly design the matrix K and the event-triggering function parameters, i.e. matrices Q and Q δ , for a given observer gain L. Hence, taking as a starting point the emulation design, the problem can therefore be seen as recomputing the gain K in order to further reduce the trigger activity or possibly to enlarge the region of stability.

It is worth noticing that, if K, Q and Qδ are free variables, the conditions in Theorem 2 are no longer LMIs. To obtain tractable LMI stabilization conditions, one solution is to impose some additional constraints on the structure of matrix W . This is formalized in the next theorem. Theorem 3. Consider f (u) verifying (2) for all u ∈ S u , with S u as defined in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF]. Given an observer gain matrix L and a scalar T > 0, assume there exist symmetric positive definite matrices Qδ , Q , W = W1 0 0 W3 , diagonal positive definite matrices U 1 and U 2 and a matrix Y 1 of appropriate dimensions such that the following LMIs are satisfied:

Ω 1 =     M 3   W C a 0 0   * -Q     < 0, ( 33 
) Ω 2 =     -W - Y 1 0 R W A ad (T ) + Y 1 0 B a B ad (T ) * -2U 2 U 2 B af B ad (T ) * * -W     < 0, (34) 
Ω 3 =   W Y 1 0 h i * 1   > 0, ( 35 
)
with

M 3 = He      I 0 0     A a W + B a Y 1 0 B a Y 1 B af U 1      -   0 I 0   Qδ 0 I 0 -He      0 0 I     R Y 1 0 RY 1 U 1      ,
and the matrices A a , B a , B af , C a , A ad (T ), B ad (T ) as defined in [START_REF] Seuret | LQ-based event-triggered controller co-design for saturated linear systems[END_REF] and in [START_REF] Braksmayer | H 2 optimization under intermittent sampling and its application to event-triggered control[END_REF]. Then, the event-triggered sampling rule defined by [START_REF] Abdelrahim | Stabilization of nonlinear systems using event-triggered output feedback controllers[END_REF] and [START_REF] Donkers | Output-based event-triggered control with guaranteed L∞-gain and improved and decentralized event-triggering[END_REF] with

Q δ = W -1 1 Qδ W -1 1
is such that the origin of system [START_REF] Heemels | Periodic event-triggered control for linear systems[END_REF] with

K = Y 1 W -1 1
is regionally asymptotically stable and the set L v = x ∈ R 2n : x W -1 x ≤ 1 is included in its region of attraction. Furthermore, the inter-sampling times are lower bounded by T .

Proof. The proof follows the same steps taken in the proof of Theorem 2 except that we impose the following structure to matrix W = W1 0 0 W3 , implying that K 0 W = KW 1 0 and then the change of variables Y 1 = KW 1 is done to linearize the conditions.

The following corollary addresses the global case in the co-design context. Corollary 3. Consider f (u) verifying (2) ∀u ∈ R m . Given an observer gain matrix L and a scalar T > 0, assume there exist symmetric positive definite matrices Qδ , Q , W = W1 0 0 W3 , diagonal positive definite matrices U 1 and U 2 and a matrix Y 1 of appropriate dimensions such that the LMIs (33) and (34) are satisfied. Then, the event-triggered sampling rule defined by [START_REF] Abdelrahim | Stabilization of nonlinear systems using event-triggered output feedback controllers[END_REF] and [START_REF] Donkers | Output-based event-triggered control with guaranteed L∞-gain and improved and decentralized event-triggering[END_REF] 

with Q δ = W -1 1 Qδ W -1 1
is such that the origin of system [START_REF] Heemels | Periodic event-triggered control for linear systems[END_REF] 

with K = Y 1 W -1 1
is globally asymptotically stable. Furthermore, the inter-sampling times are lower bounded by T .

Proof. It mimics the proof of Theorem 3 without the need of constraint [START_REF] Zaccarian | Modern anti-windup synthesis[END_REF] because property ( 2) is globally satisfied.

Tuning -Co-design

Conditions in Theorem 3 are LMIs provided L and T are fixed. The parameters of the triggering function Q δ , Q and the controller gain matrix K are simultaneously computed by solving the following convex optimization problem: min W,Y1, Qδ ,Q ,U1,U2 trace( Qδ ) + trace(Q ) subject to [START_REF] Castelan | Control design for a class of nonlinear continuous-time systems[END_REF], [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF], [START_REF] Zaccarian | Modern anti-windup synthesis[END_REF], W > P -1 0 .

(
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The reasoning behind the optimization problem [START_REF] Fu | The sector bound approach to quantized feedback control[END_REF] is the same as the one behind [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF].

In the case of global stabilization, i.e. when the relation ( 2) is satisfied ∀u ∈ R m , the conditions of Corollary 3 should be used. In this case, the optimization problem [START_REF] Fu | The sector bound approach to quantized feedback control[END_REF] without conditions [START_REF] Zaccarian | Modern anti-windup synthesis[END_REF] and W > P -1 0 should be considered.

Remark 3. The emulation design employs conditions that are less conservative than the co-design, as it uses an unconstrained (i.e., without an imposed structure) Lyapunov matrix W . Thus, after solving the co-design optimization problem [START_REF] Fu | The sector bound approach to quantized feedback control[END_REF] to obtain a new suitable gain K, one can use this value of K as an input to the emulation optimization problem [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF], aiming at a further reduction in the number of events while guaranteeing that the given set of initial conditions can be stabilized. The process, referred as co-design refinement, is illustrated in Section 6. It is worth noticing that once K is obtained from the co-design problem [START_REF] Fu | The sector bound approach to quantized feedback control[END_REF], the solution obtained is also a feasible solution of the emulation problem [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF]. In this case, the value of the objective function, in terms of matrices Qδ and Q , will always be less than or equal to the one obtained in the co-design problem, leading to a potential reduction in the number of generated events. Although this events reduction cannot be formally guaranteed, this is quite likely to happen, as illustrated in the numerical examples. 

u v v = (1 + δ q )u v = u v = (1 -δ q )u µ q µq 1-δq v = q(u)

Optimization results:

Considering the feedback gain matrix K = -4.8 -1.9 , the observer gain matrix L = -3.5 -7 , X 0 defined as in [START_REF] Tarbouriech | Observer-based event-triggered control co-design for linear systems[END_REF] with P 0 = diag(10 6 , 10 6 , 0.1, 0.1) and the dwell time T = 0.02, we solve the emulation design optimization problem [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF] with additional conditions λ min (Q δ ) > 10 -4 and λ max (Q ) < 10 3 λ min (Q ) to prevent Q δ and Q from becoming ill-conditioned, obtaining the following results: Using the same values L = -3.5 -7 , P 0 = diag(10 6 , 10 6 , 0.1, 0.1) and T = 0.02, the co-design optimization problem [START_REF] Fu | The sector bound approach to quantized feedback control[END_REF] with the same additional conditions to prevent Q δ and Q from becoming illconditioned yields: As mentioned in Remark 3, we can refine these results by solving the emulation optimization problem [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF] with the gain K = -9.299 -4.598 obtained in the co-design. This yields the following matrices for the triggering function: The ellipses defined by the intersection between the plane x = 0 and the sets L v = {x ∈ R 2n : x W -1 x ≤ 1} for each W obtained with the optimization problems above are shown in Figure 2 (in dashed red line), along with the intersection between the same plane and the border of X 0 (in solid black lines). This figure also depicts phase portraits of the systems, with blue circle marks showing initial conditions for which the trajectories converge to the origin and magenta plus signs showing initial conditions that lead to divergent trajectories. One can see that, in all cases, the ellipses contain X 0 , as required by the optimization problems. It is also visible that the sets L v are contained in the region of attraction of the origin in each case and, therefore, can be used as estimates for it. 

Q =   848.
K = -9.299 -4.598 , Q =   201.
Q =   63.

Influence of T :

Table 1 shows the influence of T in the results. It depicts the average number of control updates for simulations within the time interval [0, 10] considering 100 different initial plant states, distributed along the boundary of the respective L v set, for various values of T , for each of the proposed design methods and for a periodic controller1 with period T . The initial state of the observer is set as zero in all simulations. One can see that T has an expressive impact on the number of events generated in the co-design and refinement cases, but not in the emulation case. In the emulation context, the impact of T is highly dependent on the system characteristics and the chosen value of K. Different behaviors can occur for different choices of K. Moreover, notice that the co-design problem is not feasible for some values of T where the emulation problem is. This can be expected since the co-design conditions are more restrictive than the emulation ones due to the structure imposed to W . It is also shown that the co-design problem leads to less events and that the refinement procedure described in Remark 3 reduces even more their number. A comparison with the periodic controllers considering a period T (i.e., equals to the dwell time) shows that all the event-triggered controllers resulted in less control updates.

Simulations:

Here we present simulations of the closed-loop systems designed from optimization problems [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF] and [START_REF] Fu | The sector bound approach to quantized feedback control[END_REF] and also with the co-design refinements proposed in Remark 3, considering two different values of T .

In all simulations, the initial conditions for the plant and the observer are, respectively:

x p (0) = -3 0 , x(0) = 0 0 .
Figures 3 and4 depict the plant and observer states in the top plots. It can be noticed that the observer states converge to the plant states, as expected, and also the convergence of the plant states to the origin. The middle plots show the control action. Note that it is indeed held constant between two events. Moreover, the value of the control is subject to a logarithmic quantization. The bottom plot depicts the event instants, with the sizes of the bars representing the inter-event times, i.e. the difference between the time of that event and the previous one. It can be seen that the trigger strategy effectively delays the event instants, yielding inter-event times larger than the dwell time while ensuring the asymptotic stability of the closedloop system. The figures also highlight that the co-design and refinement processes result in less events than the emulation. The figures depict the simulation for t in the interval [0, 10]. If we extend the simulation time, no appreciable changes occur: Inter-event times keep similar to the pattern shown just before t = 10 and the trajectories continue to converge to the origin. It should be pointed out that matrix A p is unstable in the example at hand.

Example 2 -Global stabilization

System data:

Here we consider the following stable plant:

     ẋp (t) = -1 2 -2 0 x p (t) + 0 1 sat(u(t)) y p (t) = 1 0 x p (t) (38) 
where sat(•) is a saturation function with saturation levels at ±5. Note that (38) can be re-written in the form (1) with B p = 0 1 by assuming f (u) = sat(u) -u to be a dead-zone function, which satisfies condition

(2) with R = 1 globally, i.e. ∀u ∈ R m . Moreover, since A p in this case is Hurwitz, the global stabilization under saturating inputs can be achieved [START_REF] Sussmann | A general result on the stabilization of linear systems using bounded controls[END_REF].

Optimization results:

Consider first the emulation case with K = 2 -4 and L = -20 -53 . In this case, the eigenvalues of A p + B p K are -1 and -4 and the eigenvalues of A p + LC p are -10 and -11. Choosing a dwell time T = 0.1, and solving the version of optimization problem [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF] suitable for the global case (i.e. with conditions given by Corollary 2), with modifications to impose a minimum exponential decay rate of 0.75 so that the closed-loop solution does not degenerate into the open-loop one, i.e. imposing V (x(t)) < -0.75V (x(t)) and V (x(t k + T )) -V (x(t k )) < (e -0.75T -1)V (x(t k )), one obtains the following results: For the co-design case, considering the same values of L = -20 -53 , T = 0.1 and the same additional conditions related to the conditioning of matrices and exponential decay rate, the solution to the version of optimization problem [START_REF] Fu | The sector bound approach to quantized feedback control[END_REF] suitable for the global case leads to: 

Q =   3.
K = 1.232 -4.6503 , Q =  

Influence of T :

Table 2 shows the influence of T in the results. It depicts the average number of control updates for simulations considering 100 different initial plant states distributed along the unit circle and within the time interval [0, 10] for various values of T , for each of the proposed design methods and for a periodic controller with period T . The initial state of the observer is set as zero in all simulations. One can see that, for small values of T , the co-design leads again to less events and that the refinements mentioned in Remark 3 allow to further reduce the number of events. Also, the event-triggered controllers generate less events than the periodic ones. On the other hand, for larger values of T , all three methods give the same results. As it is going to be shown in the simulations, this is because, in the present example, when T increases, the event-triggering mechanism becomes less effective and the triggering becomes periodic with period T . Table 2 also shows that, for this system and the particular value of K considered in the emulation design, the co-design allows choosing a wider range of values for the dwell time T . This illustrates again that, in the emulation case, the impact of T is highly dependent on the system characteristics and the chosen value of K.

In the example at hand, with the chosen K = 2 -4 , a periodic controller with a period greater than 0.5 leads to a closed-loop system that is not asymptotically stable. That explains why the emulation problem becomes unfeasible for T ≥ 0.5. On the other hand, the co-design problem (which computes a different K) and the co-design refinement (which uses K from the corresponding co-design) are still feasible for T = 0.5 and T = 0.6.

Simulations:

In this section, we present simulations of the closed-loop systems from an emulation and a co-design point of view for two different values of T . We also include simulations of the systems obtained with the refinements proposed in Remark 3. In all simulations, the initial conditions for the plant and the observer are, respectively:

x p (0) = -12 5 
, x(0) = 0 0 .

Figures 5 and 6 depict the plant and observer states in the top plots. The observer states quickly converge to the plant states and the state converges to the origin, as expected. The middle plots show the control action, where one can note that it indeed saturates at the values ±5. The bottom plot depicts the event instants, with the sizes of the bars representing the inter-event times. One can see that the triggering strategy effectively delays the event instants for low values of T ; but when T increases, the event-triggering mechanism becomes less effective and the triggering becomes periodic.

Conclusion

In this paper we have addressed the design of observer-based event-triggered control for a class of nonlinear systems formed by a linear plant subject to input cone-bounded nonlinearities. Emulation design and co-design of the event generator parameters and the controller gain have been addressed both for regional and global stabilization cases. The proposed techniques use only the measurable outputs. An observer is used to recover the plant state variables that are not available. Sufficient conditions in the form of LMIs associated to convex optimization problems have been proposed to co-design the feedback gain (K) and event-trigger parameters (Q δ , Q ) to ensure the regional (or global when possible) asymptotic stability of the closed-loop system while aiming at reducing the number of events with respect to periodic implementations. The approach allows to design the event-triggering rule with a parameter T imposing a minimum inter-event time, which prevents the Zeno behavior occurrence. Numerical examples illustrated the application of the methodology and highlighted the superiority of results achievable in the co-design context with respect to the number of events generated.

The co-design of Q δ , Q , K, L and T is still an open problem and is subject of ongoing work. Approaches considering sampled-data systems instead of the exact discretization can be of value to avoid the exponential terms on T and L, thus allowing the partial co-design case where L, Q δ and Q are the decision variables.

The extension of the methods to address noise and event-triggered measurements are also interesting topics for future work. These are challenging topics due to the more complex observation error dynamics that arises when handling these situations. 
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 1 Figure 1: Logarithmic quantization function (positive branch).
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 3 Figure 3: Example 1 -Evolution of the state of the plant and the observer, the control input u, and the sampling instants. T = 0.02
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 4 Figure 4: Example 1 -Evolution of the state of the plant and the observer, the control input u, and the sampling instants. T = 0.043
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 5 Figure 5: Example 2 -Evolution of the state of the plant and the observer, the control input u, and the sampling instants. T = 0.1
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 6 Figure 6: Example 2 -Evolution of the state of the plant and the observer, the control input u, and the sampling instants. T = 0.3

Table 1 :

 1 Example 1 -Average number of control updates for 100 different initial conditions

	T	Emulation	Co-design Co-design refinement Periodic
	0.01	65.56	50.33	35.00	1000
	0.02	65.47	50.13	34.47	500
	0.03	65.67	48.48	34.72	333.3
	0.04	65.05	43.48	32.45	250
	0.043	64.60	40.38	30.86	232.6
	0.044	64.09	40.55	29.64	227.3
	0.045	64.24	unfeasible -	222.2
	0.05	63.31	unfeasible -	200
	0.10	64.25	unfeasible -	100
	0.11	unfeasible	unfeasible -	-

Table 2 :

 2 Example 2 -Average number of control updates for 100 different initial conditions

	1.067 0.1554 0.0005847 0.002162 0.1554 0.0005847 1.058 0.002162 0.1619	  , Q δ =	6.266 -5.72 -5.72 16.92	.

For the periodic controller, the numbers of events are exact and independent of the initial conditions.
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Remark 4. The simultaneous design of Q δ , Q , K, L and T is a challenging co-design problem. Unfortunately, if one considers L as a decision variable, it is not possible to linearize the conditions of Theorem 3. Note that, due to the method used to integrate the trajectories of the system in the interval [t k , t k + T ], L and T appear as part of exponential terms. On the other hand, it should be noticed that the simultaneous synthesis of the control and observer gains considering the augmented system and a quadratic Lyapunov function is a non-convex problem even when continuous-time controllers and linear systems are considered. Hence, it remains an open problem not only in the event-triggered control context.

Numerical examples

Example 1 -Regional stabilization

System data:

Let us consider the following plant:

where q(u) is a logarithmic quantization function defined as follows [START_REF] Fu | The sector bound approach to quantized feedback control[END_REF]:

with the quantization parameters: 0 < ρ q < 1, δ q = 1 -ρ q 1 + ρ q , µ q > 0.

ρ q specifies the density of quantization and µ q defines the maximum absolute level of quantization, which can be seen as an implicit saturation of the control signal. Figure 1 shows a graphical representation of the positive branch of this logarithmic quantization function.

It should be noticed that the quantization error q(u) = q(u) -u is regionally restricted to the cone defined by ±δ q u (i.e. it satisfies the relation (q(u) -δ q u)(q(u) + δ q u) ≤ 0) for all values of u satisfying |u| ≤ µq 1-δq (see [START_REF] Souza | Stability analysis of finite-level quantized discrete-time linear control systems[END_REF]). In order to cast the system in the form (1), with a function f (u) satisfying [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF], it suffices to consider:

Note that in this case the relation (q(u) + δ q u)(q(u) -

is verified with R = 2δ q . Moreover, this relation is satisfied as long as |u| ≤ We consider the quantization with ρ q = 0.9 (which leads to R = 2δ q = 0.105263) and µ q = 35.