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Abstract

This paper presents an observer-based event-triggered strategy for linear systems subject to input cone-
bounded nonlinearities. Both the emulation and co-design problems are addressed. Considering a Lyapunov
approach and the cone-bound property of the input nonlinearity, sufficient conditions based on linear matrix
inequalities are derived to ensure regional or global asymptotic stability of the origin of the closed-loop
system. These conditions are incorporated into convex optimization problems to optimally determine the
event generator parameters and the controller gain (in the co-design case) aiming at reducing the number of
control updates with respect to periodic implementations for a prescribed observer gain. The event-triggering
strategy considers a dwell time to cope with Zeno behaviors. Numerical examples, considering systems with
quantized logarithmic inputs and saturating inputs, illustrate the potentialities of the approach.

Keywords: Event-triggered control, cone-bounded nonlinearities, observer-based control, stability, LMI.

1. Introduction

In the context of networked control systems, i.e. control systems where at least part of the communica-
tion takes place over a generic digital communication network, event-triggered control strategies have been
proposed as means of dealing with communication, energy consumption and computation constraints (see,
for example, [1–4] and the references therein). Considering the event-triggered control framework, there
are basically two approaches. The first one is the so-called emulation design, where one considers that the
controller is given a priori (e.g. [2, 4–7] and the references therein). In this case, the task is to synthesize
an event generator that leads to a stable closed-loop system and avoids the occurrence of Zeno behavior
(see, e.g. [3, 4] for an explanation of Zeno behavior). The second approach, referred in the literature as
co-design, consisting in designing the control law and the event-triggering rule simultaneously, is addressed
in a few papers (see [8–13]).

Many papers addressing asymptotic stability of event-triggered control systems consider state-feedback
laws (e.g. [3–5, 14–17]). However, in most practical applications, only part of the system state is available
or possible to be measured. Using only the available information (measured or local signals) to define the
triggering mechanism and/or the control law, both for emulation and co-design approaches, is a challenging
problem: see, for example, [2, 4, 7, 18–23] and [24], which also addresses the use of alternative sampling and
holding functions. Moreover, most of the available literature concentrates on linear plants, even if there are
a few papers dealing with generic results for nonlinear systems such as [2, 3, 6, 7].

In the recent work [25], the event-triggered control problem for the class of nonlinear systems that
can be represented by a linear plant subject to cone-bounded input nonlinearities has been addressed in
an emulation context. That paper considers a given observer-based feedback control law that stabilizes a
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continuous-time implementation of the control system. The state observer allows using only local information
or measurable signals in the event-triggering rule. From these assumptions, sufficient conditions in the form
of linear matrix inequalities (LMIs) are proposed to ensure global asymptotic stability of the origin of the
nonlinear closed-loop system under the event-triggered control strategy. These conditions are then cast into
a convex optimization problem to compute the trigger parameters aiming at a reduction of the number of
events, i.e. reducing the number of control updates. Addressing a similar problem, we can cite [26], which
considers the absolute stabilization of event-triggered Lur’e systems in a co-design context. In that work,
it is assumed that the event generator and the controller have access to the entire system state and that
the nonlinearity satisfies a sector condition globally. The nonlinearity can be unknown, as long as it is
ensured that it satisfies the sector condition. Also addressing the absolute stabilization of event-triggered
Lur’e systems, [27] considers the emulation design and the use of only output signals in the event generator
and in the controller. Only the global case is considered and a dwell time is used to avoid Zeno behavior. A
variable time-delayed input approach [28] is employed to derive stability conditions in the presence of this
dwell time.

In the current paper, we present a comprehensive version of our work [25] in the sense that we address
also the regional stabilization and the co-design of the parameters of the event generator and the control law.
We consider an approach based solely on Lyapunov methods as proposed in [3, 25, 29], without the use of the
hybrid systems framework defined by [30] and used e.g. in [7, 9, 10, 12], to obtain the stability conditions. We
also keep the ideas of using a dwell time to avoid Zeno behavior (see [31]) and of computing the parameters
by means of solving convex optimization problems. Differently from [25], besides the extensions already
mentioned, we consider a triggering function with more degrees of freedom by the use of the observed state
in the event-trigger condition. In the co-design case, we consider that the observer has been previously
designed and we derive conditions to simultaneously compute the state feedback matrix and the triggering
function parameters. The main differences with respect to [26, 27] reside in the facts that we do not address
the absolute stabilization problem, in the sense that we consider that the nonlinearity is known, we do not
impose access to the entire state and we cover the co-design problem. Moreover, differently from [27], the
technique employed here to cope with the dwell time does not consider a time-delay approach but an exact
discretization of the closed-loop system behavior.

For both emulation and co-design cases, convex optimization problems are proposed to design the event
generator parameters (and the state feedback matrix in the co-design) aiming at a reduction of the con-
trol updates (trigger activity) with respect to periodic implementations with a period equal to the dwell
time chosen for the event-triggered implementation, while ensuring the regional (or global, when possible)
asymptotic stability of the closed-loop system.

The present paper is organized as follows. In Section 2, the system to be considered is described as well
as the problem we intend to solve. The proposed event-triggering strategy is introduced in Section 3, where
suitable stability conditions in a general form are also presented. In Sections 4 and 5, stability conditions
in the form of linear matrix inequalities (LMIs) along with convex optimization problems are presented to
address the problem both in emulation and co-design contexts. Section 6 illustrates the potentialities of
the proposed approach in the context of regional and global stabilization through two numerical examples.
Finally, Section 7 presents some concluding remarks and directions for future research.

Notation. N, Rn and Rn×m denote, respectively, the sets of integers, n-dimensional vectors and n×m
real matrices. For any matrix A, A′ denotes its transpose. For any square matrix A, trace(A) denotes its
trace and He {A} = A + A′. For two symmetric matrices of the same dimensions, A and B, A > B means
that A−B is symmetric positive definite. I and 0 stand respectively for the identity and the null matrix of
appropriate dimensions. For a partitioned matrix, the symbol ∗ stands for symmetric blocks. λmin(A) and
λmax(A) denote, respectively, the smallest and the largest eigenvalues of a square matrix A. ‖ · ‖ stands for
the Euclidean norm.
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2. Problem statement

Consider the following continuous-time plant:{
ẋp(t) = Apxp(t) +Bpu(t) +Bpff(u(t))

yp(t) = Cpxp(t)
(1)

where xp(t) ∈ Rn, u(t) ∈ Rm, yp(t) ∈ Rp are the state, the input and the output of the plant, respectively.
Matrices Ap, Bp, Bpf and Cp are constant and of appropriate dimensions. Pairs (Ap, Bp) and (Cp, Ap) are
supposed to be stabilizable and detectable, respectively.

Function f : Rm → Rm is a known, continuous, decentralized cone-bounded nonlinearity (see [32, 33],
for example) affecting the input u. Therefore, it satisfies the following property:

f(u)′S(f(u) +Ru) ≤ 0 (2)

where S ∈ Rm×m is any diagonal positive definite matrix. Matrix R ∈ Rm×m is supposed to be a diagonal
positive definite matrix, with diagonal elements R(i,i) ∈ R defining the sector [0,−R(i,i)] in which the i-th
component of f , i.e. f(i), lies. In other words, f(i)(u(i)) is supposed to satisfy f(i)(u(i))(f(i)(u(i))+R(i,i)u(i)

) <
0, ∀i = 1, . . . ,m. Hence, in the following, matrix R is supposed to be given according to the non-linearity
function f . Property (2) can be satisfied either globally (i.e. it is valid for any u ∈ Rm) or regionally (i.e.
it is valid for all u in a given set Su ⊂ Rm containing the origin). In the present work, for the regional
stabilization case, we consider that Su is a polyhedral set, symmetric around the origin, generically defined
as follows:

Su = {u ∈ Rm : |h′iu| ≤ 1; hi ∈ Rm, i = 1, ..., nf} (3)

where nf is half the number of faces. Such f(u) functions can represent, for instance, nonlinearities induced
by the actuators, such as dead-zones and saturations [33–35] as well as input quantization effects [25, 36, 37].
Note that depending on the case, these nonlinearities will satisfy a sector condition regionally or globally.

We consider the following observer-based feedback controller to asymptotically stabilize system (1):
˙̂x(t) = Apx̂(t) +Bpu(t) +Bpff(u(t))− Ley(t)

ŷ(t) = Cpx̂(t)

ey(t) = yp(t)− ŷ(t)

u(t) = Kx̂(t)

(4)

where x̂(t) ∈ Rn and ŷ(t) ∈ Rp are the state and the output of the observer, respectively, and ey(t) is the
output error. L ∈ Rn×p and K ∈ Rm×n are the observer and controller gains, respectively. Note that
the design of the observer assumes that the nonlinearity f(u) is known. This is the case in many practical
control problems, e.g. systems subject to input saturation and/or quantization.

Since we are interested in an event-triggered implementation, the control signal applied to the plant is
updated only at certain instants {tk}k∈N, defined by the event-triggering algorithm. The control action
is held constant between two successive events by means of a zero-order-holder. Differently from classical
periodic sampling techniques, the intersampling time tk+1 − tk is not assumed to be constant.

Thus, for all t in [tk , tk+1), the closed-loop system can be represented by the following equations:

ẋp(t) = Apxp(t) +Bpu(tk) +Bpff(u(tk))

˙̂x(t) = Apx̂(t) +Bpu(tk) +Bpff(u(tk))− Ley(t)

u(tk) = Kx̂(tk)

yp(t) = Cpxp(t)

ŷ(t) = Cpx̂(t)

ey(t) = yp(t)− ŷ(t)

(5)
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In the context of a networked control implementation, system (5) represents the case in which sensors,
event generator and controller are co-located, while the actuators are in a separate node of a (e.g. wireless)
network. Under these circumstances, the measurement activities do not impact the network bandwidth
and energy consumption as much as the control updates do. Note that for wireless networks, the sensor
node can be geographically separated from the actuator node and fed by batteries. In this case, the energy
consumption in data transmission is considerably higher than in the local measurement activities. Therefore,
we consider the case where the outputs of the system are continuously measured.

Hence, considering system (5), we address the following problems.
Emulation design: in this case, we consider that the observer and the state feedback have been designed

to ensure the asymptotic regional (or global) stability of the continuous closed-loop system. From this
assumption, the goal is to devise an event-triggering strategy, i.e. to design an event-triggering function, in
order to guarantee the regional (or global) asymptotic stability of the origin of the closed-loop system (5),
while implicitly reducing the number of control updates (i.e. the number of events) compared to a periodic
implementation with period small enough to emulate the continuous-time behavior.

Co-design: assuming that only the observer is given, the goal in this case is the joint design of the event-
triggering function and the state feedback matrix to ensure the asymptotic regional (or global) stability
of the closed-loop system origin and further reduce the control updates when compared to the emulation
solution.

When the regional stability is concerned, the design of the event-triggered control strategy, both in
emulation and co-design, should explicitly consider a given set of admissible initial conditions for which the
asymptotic stability of the origin of the nonlinear closed-loop system should be ensured.

3. Event-trigger strategy

We start by providing a general formulation to the event-trigger strategy, inspired by [21, 25, 37]. Let us
introduce the error vector between the value of the observed state at the last trigger instant and the current
one, which is given by:

δ(t) = x̂(tk)− x̂(t) (6)

and the following generic rule to determine the event instants:

tk+1 = min{t ≥ tk + T, s.t. g(δ(t), ya(t)) ≥ 0} (7)

where ya represents the vector of available information to the event generator, which corresponds, in our case,
to ya(t) =

[
x̂(t)′ ey(t)′

]′
, and T is the (minimum) dwell time, during which the function g is not evaluated

and thus the control action is not updated. Note that we are implicitly assuming in the definition of ya(t)
that yp(t) is continuously measured, i.e. it is available at each t ≥ 0. The function g : Rn × Rn+p → R
and the dwell time T > 0 have to be efficiently defined such that the asymptotic stability of the origin of
the closed-loop system (5) under the event-triggering rule described in (7) is ensured. Typically, the dwell
time T is chosen as small as allowed by the network and computational constraints of the system. In this
case, the event-triggering mechanism is responsible for delaying the occurrence of control updates, reducing
its number with respect to a periodic implementation, whose sampling period is equal to the dwell time
chosen. Observe also that the triggering condition considers g(δ(t), ya(t)) ≥ 0 instead of the more usual test
criterion g(δ(t), ya(t)) = 0 (as in [3]). This is because when a dwell time T is considered, g(δ(t), ya(t)) is
not evaluated during the interval t ∈ [tk, tk +T ). Therefore, it can become greater than zero in this interval
and thus stay greater than zero when it is evaluated, at the instant tk + T .

Note that rule (7) ensures a minimum inter-event time of T , which prevents Zeno behavior. It also uses
only available information since δ(t) only depends on the observed state x̂(t), its sampled value at the instant
tk and the system output (recall that ey(t) = yp(t)− Cx̂(t)).

At this point, it is convenient to re-write system (5) in terms of the observer state x̂(t) and the observer
error e(t) = xp(t)−x̂(t). Considering this change of variables and the definition of δ(t) in (6), the closed-loop
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system can be represented as follows:{
˙̂x(t) = (Ap +BpK)x̂(t) +BpKδ(t) +Bpff(u(tk))− LCpe(t)
ė(t) = (Ap + LCp)e(t).

(8)

Defining the augmented state vector

x(t) =
[
x̂(t)′ e(t)′

]′ ∈ R2n (9)

and matrices

Aa =

[
Ap −LCp
0 Ap + LCp

]
, Ba =

[
Bp
0

]
, Baf =

[
Bpf

0

]
, Ca =

[
I 0
0 Cp

]
, (10)

system (8) can be rewritten as:

ẋ(t) =
(
Aa +Ba

[
K 0

])
x(t) +BaKδ(t) +Baff(u(tk)). (11)

Then the following general theorem provides sufficient conditions for the regional asymptotic stability of
the origin of (11), or, equivalently, of (5).

Theorem 1. Consider system (11) with x(t) ∈ R2n as defined in (9) and f(u) satisfying (2), ∀u ∈ Su, with
Su defined in (3). Consider also a scalar T > 0, a function g : Rn×Rn+p → R and the triggering rule given
by (7). If there exist a function V : R2n → R, diagonal positive definite matrices S1 ∈ Rm×m, S2 ∈ Rm×m
and positive scalars ε1, ε2 and ε3 such that the following relations are verified:

(i) ε1||x||2 ≤ V (x) ≤ ε2||x||2

(ii) V̇ (x(t))− g(δ(t), ya(t))− 2f(u(tk))′S1(f(u(tk)) +Ru(tk)) < 0, ∀t ∈ [tk + T , tk+1), ∀k ∈ N, x(t) 6= 0

(iii) V (x(tk + T ))− V (x(tk))− 2f(u(tk))′S2(f(u(tk)) +Ru(tk)) < −ε3‖x(tk)‖2, ∀k ∈ N, x(tk) 6= 0

(iv) V (x(tk))− u(tk)′hih
′
iu(tk) > 0, ∀k ∈ N, i = 1, ..., nf

then, the origin of system (11) with the triggering rule (7) is regionally asymptotically stable, the set Lv =
{x ∈ R2n : V (x) ≤ 1} is included in the region of attraction of the origin and the inter-event intervals are
lower bounded by T .

Proof. The stability analysis is carried out considering the time intervals [tk , tk + T ) and [tk + T, tk+1).
Let us first analyze the interval [tk , tk + T ). From (iii) and property (2), the function V (x) satisfies

V (x(tk + T )) < V (x(tk))− ε3‖x(tk)‖2 (12)

as long as u(tk) ∈ Su.
Moreover, from (11), the definition of δ and the fact that u(tk) =

[
K 0

]
x(tk), it follows that

ẋ(t) = Aax(t) +Bau(tk) +Baff(u(tk)) (13)

and thus

x(tk + τ) = eAaτx(tk) +

∫ tk+τ

tk

eAa(tk+τ−s)ds
(
Bau(tk) +Baff(u(tk))

)
. (14)

Taking into account that ‖f(v)‖ ≤ γ‖v‖ for any vector v ∈ Su, where γ is a positive constant depending
on the norm of matrix R, one obtains that

‖x(tk + τ)‖ ≤
(
‖eAaτ‖+

∥∥∥∥∫ tk+τ

tk

eAa(tk+τ−s)ds

∥∥∥∥ (‖Ba‖+ γ‖Baf‖)
∥∥[K 0

]∥∥) ‖x(tk)‖ (15)

5



and thus, since the trajectories of (11) are continuous, there exists β > 0 such that

‖x(tk + τ)‖ ≤ β‖x(tk)‖ ∀τ ∈ [0, T ]. (16)

This means that during the dwell time T , i.e. for t ∈ [tk, tk + T ], the trajectories of the system are
uniformly bounded, provided that u(tk) ∈ Su. Therefore, during the dwell time T , the Lyapunov function is
not necessarily strictly decreasing. From (i) and (16) we can only ensure that its value is bounded ∀τ ∈ [0, T ]
and, from (12), that V (x(tk + T )) < V (x(tk)).

Consider now the interval [tk + T, tk+1). If (ii) is satisfied, then we have:

V̇ (x(t)) < g(δ(t), ya(t)) + 2f(u(tk))′S1(f(u(tk)) +Ru(tk)) (17)

and it follows from (2) and (7) that g(δ(t), ya(t)) + 2f(u(tk))′S1(f(u(tk)) +Ru(tk)) ≤ 0. We conclude that
condition (ii) implies that V̇ (x(t)) < 0 in the interval [tk + T, tk+1) and therefore

V (x(t)) < V (x(tk + T )), ∀t ∈ [tk + T, tk+1), ∀k ∈ N (18)

provided that u(tk) ∈ Su.
Hence, from (12) and (18), we conclude that

V (x(tk+1)) < V (x(tk))− ε3‖x(tk)‖2 (19)

provided that u(tk) ∈ Su.
Now, recalling that u(tk) ∈ Su ⇐⇒ |h′iu(tk)| ≤ 1; i = 1, ..., nf , the satisfaction of (iv) actually ensures

that u(tk) ∈ Su as long as x(tk) ∈ Lv. This in conjunction with (19) implies that x(tk) ∈ Lv and therefore
u(tk) ∈ Su, ∀k ∈ N, provided that x(t0) = x(0) ∈ Lv. From (19), it follows that limk→∞ V (x(tk)) = 0.
Hence, from (i), we have ‖x(tk)‖2 ≤ ε−1

1 V (x(tk)) and it follows that limk→∞ x(tk) = 0, provided that
x(0) ∈ Lv. This fact, along with (16), ensures that limt→∞ x(t) = 0, which means that system (11) is
asymptotically stable and Lv is included in its region of attraction.

In addition, note that T is a lower bound on the inter-sampling times by using Lemma 1 in [21], preventing
Zeno behavior. �

It should be noticed that the conditions of Theorem 1 are implicitly locally verified due to statement
(iv). In fact, (ii) and (iii) should be verified only if x(tk) and u(tk) satisfy (iv). Assuming that u(tk) =[
K 0

]
x(tk), this means the conditions are verified only if x(tk) belongs to the level set Lv of the function

V , which is included in the set Sx = {x ∈ R2n :
∣∣h′i [K 0

]
x
∣∣ ≤ 1, i = 1, ..., nf}.

In the global case (i.e. when relation (2) is satisfied ∀u ∈ Rm), one retrieves Theorem 1 of [25], in which
case relation (iv) is no longer necessary. This is recalled here in the following corollary.

Corollary 1. Consider a scalar T > 0, a function g : Rn × Rn+p → R and the triggering rule given by
(7). Assume that the property (2) is globally satisfied and the conditions (i), (ii) and (iii) of Theorem 1 are
verified. Then, the origin of system (11) with the triggering rule (7) is globally asymptotically stable and the
inter-event intervals are lower bounded by T .

Proof. The proof mimics that of Theorem 1 without the need of using the constraint (iv) since property
(2) is globally satisfied, i.e. it is valid ∀u(tk) ∈ Rm. �

Remark 1. Notice that satisfaction of conditions (i), (iii) and (iv) of Theorem 1 ensures that a periodic
implementation of the control system with period T is asymptotically stable in the regional case. In the global
case, satisfaction of (i) and (iii) are enough to ensure asymptotic stability since property (2) is globally
satisfied.
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4. Emulation case

In this section, Theorem 1 is considered to extend the emulation design method presented in [25] to
the regional stabilization case. In other words, we want to propose a way to design the event-triggering
rule using only the available signals (i.e. x̂(t) and ey(t)), when the controller and observer gains, K and L
respectively, are given a priori and the nonlinearity f satisfies property (2) regionally. Results for the global
case are presented as a corollary.

We consider a triggering function similar to the one proposed in [25], i.e. g(δ(t), ya(t)) defined as follows:

g(δ(t), ya(t)) = δ(t)′Qδδ(t)−
[
x̂(t)
ey(t)

]′
Q−1
ε

[
x̂(t)
ey(t)

]
. (20)

It should be noticed that, differently from [25], δ(t) does not depend on K here. Hence, the following
theorem establishes conditions for the regional asymptotic stability of system (11) under the event-triggered
control strategy given in (7).

Theorem 2. Consider f(u) verifying (2) for all u ∈ Su, with Su as defined in (3). Given controller and
observer gains K and L and a scalar T > 0, if there exist symmetric positive definite matrices Q̄δ, Qε,
W =

[
W1 W2

∗ W3

]
and diagonal positive definite matrices U1 and U2 of appropriate dimensions such that the

following LMIs

Φ1 =

M1

WC ′a
0
0


∗ −Qε

 < 0 (21)

Φ2 =

−W −W
[
K ′

0

]
R W

(
Aad(T )′ +

[
K ′

0

]
B′aBad(T )′

)
∗ −2U2 U2B

′
afBad(T )′

∗ ∗ −W

 < 0 (22)

Φ3 =

W W

[
K ′

0

]
hi

∗ 1

 > 0 i = 1, ..., nf (23)

are verified with Aa, Ba, Baf , Ca as defined in (10) and

M1 = He


I0

0

(Aa +Ba
[
K 0

]
)W BaKW1 BafU1

−
0
I
0

 Q̄δ [0 I 0
]

−He


0

0
I

R [K 0
]
W RKW1 U1

 ,

Aad(T ) = eAaT , Bad(T ) =

∫ T

0

eAasds,

(24)

then, the event-triggering rule (7) with g as defined in (20) and Qδ = W−1
1 Q̄δW

−1
1 is such that the origin

of system (11) is regionally asymptotically stable and the set Lv =
{
x ∈ R2n : x′W−1x ≤ 1

}
, is included in

its region of attraction. Furthermore, the inter-sampling times are lower bounded by T .

Proof. Consider the quadratic Lyapunov candidate function for system (11) given by

V (x(t)) = x(t)′W−1x(t), (25)
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where the matrix W−1 is positive definite thanks to the satisfaction of (22) and (23), implying that condition
(i) of Theorem 1 is satisfied. We show next that the LMIs (21)–(23) are sufficient conditions for inequalities
(ii)–(iv) of Theorem 1 to hold.

Considering the time-derivative of V along the trajectories of system (11) for any t ∈ [tk + T, tk+1), the
following expression is obtained:

Ψc(t) := V̇ (x(t))− δ(t)′Qδδ(t) +

[
x̂(t)
ey(t)

]′
Q−1
ε

[
x̂(t)
ey(t)

]
− 2f(u(tk))′S1(f(u(tk)) +Ru(tk))

=

 x(t)
δ(t)

f(u(tk))

′ Γ
 x(t)

δ(t)
f(u(tk))

 ,
with

Γ = He


I0

0

W−1

(Aa +Ba
[
K 0

])
BaK Baf

−
0
I
0

Qδ [0 I 0
]

+

C ′a0
0

Q−1
ε

[
Ca 0 0

]

−He


0

0
I

S1R
[
K 0

]
S1RK S1

 ,

where we used the facts that u(tk) = Kx̂(tk) = Kx̂(t) +Kδ(t) and ey(t) = Cpe(t) for the last equality.
Hence, imposing Γ < 0 guarantees that Ψc(t) < 0. Now, pre- and post-multiplying Γ by diag(W,W1, U1)

with U1 = S−1
1 , making the change of variables Q̄δ = W1QδW1 and considering the Schur complement,

it follows that inequality Φ1 < 0 in (21) implies Γ < 0 and, therefore, Ψc(t) < 0. This also implies that

condition (ii) of Theorem 1 is verified when considering g
(
δ(t),

[
x̂(t)′ ey(t)′

]′)
as defined in (20) with

Qδ = W−1
1 Q̄δW

−1
1 .

Now pre- and post-multiplying (23) by diag(W−1, 1) and applying the Schur complement, one obtains:

W−1 −
[
K ′hi

0

] [
h′iK 0

]
> 0. (26)

Pre- and post-multiplying (26) by x(tk)′ and x(tk), respectively, the satisfaction of (23) implies that the
following condition is fulfilled:

x(tk)′W−1x(tk)− x̂(tk)′K ′hih
′
iKx̂(tk) > 0. (27)

Thus, recalling the definition of V (x) in (25) and that u(tk) = Kx̂(tk), the satisfaction of (27) (or,
equivalently, (23)) implies that condition (iv) of Theorem 1 is verified.

Now, in order to prove that condition (iii) of Theorem 1 holds if (22) is satisfied, note that solving the
linear differential equation (11) over the interval [tk, tk + T ] yields

x(tk + T ) = Λ1(T )x(tk) + Λ2(T )f(u(tk)) (28)

where
Λ1(T ) , Aad(T ) +Bad(T )Ba

[
K 0

]
, Λ2(T ) , Bad(T )Baf .

with Aad(T ) and Bad(T ) as defined in (24).
Hence, from (28), condition (iii) in Theorem 1 can be written as

ΨT (tk) := ∆VT (x)− 2f(u(tk))′S2(f(u(tk)) +Ru(tk))

=
(

Λ1(T )x(tk) + Λ2(T )f(u(tk))
)′
W−1

(
Λ1(T )x(tk) + Λ2(T )f(u(tk))

)
− x(tk)′W−1x(tk)

− 2f(u(tk))′S2

(
f(u(tk)) +Ru(tk)

)
< −ε3‖x(tk)‖
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with ∆VT (x) = V (x(tk +T ))−V (x(tk)). Applying the Schur complement and a congruence transformation
with diag(W,U2,W ), where U2 = S−1

2 , it can be seen that condition Φ2 < 0 in (22) ensures that there
exists ε3 > 0 such that condition (iii) in Theorem 1 is satisfied. The proof is then concluded by invoking
Theorem 1. We can conclude that the solutions to system (11) converge asymptotically to the origin if they
start in Lv. Furthermore, the event-triggering strategy defined by (7) and (20) implicitly ensures that the
inter-event times are lower bounded by T . �

The following corollary addresses the global case in an emulation design context.

Corollary 2. Consider f(u) verifying (2) ∀u ∈ Rm. Given controller and observer gains K and L and a
scalar T > 0, if there exist symmetric positive definite matrices Q̄δ, Qε and W =

[
W1 W2

∗ W3

]
and diagonal

positive definite matrices U1 and U2 of appropriate dimensions such that LMIs (21) and (22) are verified,
then the event-triggered sampling rule (7) with (20) and Qδ = W−1

1 Q̄δW
−1
1 is such that the origin of system

(11) is globally asymptotically stable. Furthermore, the inter-sampling times are lower bounded by T .

Proof. The proof mimics that of Theorem 2 without the need of using constraint (23) since property (2)
is globally satisfied. �

4.1. Tuning – Emulation case

Conditions in Theorem 2 are LMIs, provided that K, L and T are fixed, corresponding to the emulation
problem. The gains K and L can be designed, for instance, disregarding the input nonlinearity, by classical
methods of linear control or by applying more sophisticated nonlinear techniques based on sector bound
conditions for continuous-time systems (see, for instance [33]). In this case, the conditions in Theorem 2
allow assessing the stability under an aperiodic sampled-data control law driven by the event-triggering
strategy while taking explicitly into account the system input nonlinearity.

Let us point out that differently from [21], in Theorem 2 the inter-event times are directly obtained via
the satisfaction of (22) without the need of additional a posteriori calculations. Furthermore, if conditions
(21) and (23) hold, it is always possible to find a small enough T such that the set of conditions (21), (22)
and (23) is verified. Then, T appears as a tuning parameter of the event-triggered problem. If T is too
large, the conditions may be unfeasible. Since a large T can lead to a performance degradation with respect
to the continuous-time implementation, a classical trade-off has to be considered when choosing T .

Hence, assuming previously determined gains K and L and an appropriately chosen T , the idea is to
optimally compute matrices Qε and Qδ, aiming at postponing the events with respect to the dwell time
T , thus reducing the control updates when compared to a periodic implementation with period T , while
ensuring the closed-loop stability in a given set X0 of admissible initial conditions. With this goal, we can
consider X0 as an ellipsoidal set described as follows:

X0 =
{
x ∈ R2n : x′P0x ≤ 1

}
, (29)

where P0 is a given symmetric positive definite matrix. Then the selection of the triggering function param-
eters can be systematically performed through the following convex optimization problem:

min
W,Q̄δ,Qε,U1,U2

trace(Q̄δ) + trace(Qε)

subject to (21), (22), (23), W > P−1
0 .

(30)

The motivation behind the optimization criterion in (30) is to get Q̄δ and Qε as “small” as possible.
From the definition of the triggering function (20) and the fact that Q̄δ = W1QδW1, this optimization means
that matrix Qδ > 0 is implicitly minimized by minimizing Q̄δ > 0 while matrix Q−1

ε > 0 is maximized.
Since an event is generated and the control input is updated only when the function g is positive, this
optimization procedure aims at reducing the impact of the first positive contribution in g (Qδ > 0) over the
second negative contribution (−Qε < 0). In other words, it implicitly implies more time before a new event
occurs. Inequality W > P−1

0 ensures X0 ⊂ Lv, guaranteeing that all trajectories starting in X0 converge
asymptotically to the origin.

9



For the case of global stabilization, one uses the conditions of Corollary 2 and there is no need to ensure
X0 ⊂ Lv. Hence, optimization problem (30), without (23) and W > P−1

0 , can be considered.

Remark 2. Considering the parameters K, L, Qδ, Qε and T given, Theorem 2 can also be used to provide
an estimate of the region of attraction of the origin of the closed-loop system under the triggered control law.

In this case, one needs to pre- and post-multiply Φ1 by diag(I,W−1
1 , I) in order to get Qδ explicitly

(instead of Q̄δ) in the LMI, which leads to:M2

WC ′a
0
0


∗ −Qε

 < 0, (31)

with

M2 = He


I0

0

(Aa +Ba
[
K 0

]
)W BaK BafU1

−
0
I
0

Qδ [0 I 0
]

−He


0

0
I

R [K 0
]
W RK U1

 .

Then it suffices to define and solve a new optimization problem where the objective function maximizes
the set Lv in some sense (e.g. maximizing the trace of W , maximizing the lowest eigenvalue of W , etc).
For instance, we can consider:

max
W,U1,U2

trace(W )

subject to (22), (23), (31).
(32)

5. Co-design

In this section, we address the co-design problem stated in Section 2. The idea here is to jointly design
the matrix K and the event-triggering function parameters, i.e. matrices Qε and Qδ, for a given observer
gain L. Hence, taking as a starting point the emulation design, the problem can therefore be seen as re-
computing the gain K in order to further reduce the trigger activity or possibly to enlarge the region of
stability.

It is worth noticing that, if K, Qε and Q̄δ are free variables, the conditions in Theorem 2 are no longer
LMIs. To obtain tractable LMI stabilization conditions, one solution is to impose some additional constraints
on the structure of matrix W . This is formalized in the next theorem.

Theorem 3. Consider f(u) verifying (2) for all u ∈ Su, with Su as defined in (3). Given an observer gain
matrix L and a scalar T > 0, assume there exist symmetric positive definite matrices Q̄δ, Qε, W =

[
W1 0
0 W3

]
,

diagonal positive definite matrices U1 and U2 and a matrix Y1 of appropriate dimensions such that the
following LMIs are satisfied:

Ω1 =

M3

WC ′a
0
0


∗ −Qε

 < 0, (33)

Ω2 =

−W −
[
Y ′1
0

]
R WAad(T )′ +

[
Y ′1
0

]
B′aBad(T )′

∗ −2U2 U2B
′
afBad(T )′

∗ ∗ −W

 < 0, (34)

Ω3 =

W [
Y ′1
0

]
hi

∗ 1

 > 0, (35)
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with

M3 = He


I0

0

AaW +Ba
[
Y1 0

]
BaY1 BafU1

−
0
I
0

 Q̄δ [0 I 0
]

−He


0

0
I

R [Y1 0
]

RY1 U1

 ,

and the matrices Aa, Ba, Baf , Ca, Aad(T ), Bad(T ) as defined in (10) and in (24). Then, the event-triggered
sampling rule defined by (7) and (20) with Qδ = W−1

1 Q̄δW
−1
1 is such that the origin of system (11) with

K = Y1W
−1
1 is regionally asymptotically stable and the set Lv =

{
x ∈ R2n : x′W−1x ≤ 1

}
is included in its

region of attraction. Furthermore, the inter-sampling times are lower bounded by T .

Proof. The proof follows the same steps taken in the proof of Theorem 2 except that we impose the
following structure to matrix W =

[
W1 0
0 W3

]
, implying that

[
K 0

]
W =

[
KW1 0

]
and then the change of

variables Y1 = KW1 is done to linearize the conditions. �

The following corollary addresses the global case in the co-design context.

Corollary 3. Consider f(u) verifying (2) ∀u ∈ Rm. Given an observer gain matrix L and a scalar T > 0,
assume there exist symmetric positive definite matrices Q̄δ, Qε, W =

[
W1 0
0 W3

]
, diagonal positive definite

matrices U1 and U2 and a matrix Y1 of appropriate dimensions such that the LMIs (33) and (34) are satisfied.
Then, the event-triggered sampling rule defined by (7) and (20) with Qδ = W−1

1 Q̄δW
−1
1 is such that the

origin of system (11) with K = Y1W
−1
1 is globally asymptotically stable. Furthermore, the inter-sampling

times are lower bounded by T .

Proof. It mimics the proof of Theorem 3 without the need of constraint (35) because property (2) is
globally satisfied. �

5.1. Tuning – Co-design

Conditions in Theorem 3 are LMIs provided L and T are fixed. The parameters of the triggering
function Qδ, Qε and the controller gain matrix K are simultaneously computed by solving the following
convex optimization problem:

min
W,Y1,Q̄δ,Qε,U1,U2

trace(Q̄δ) + trace(Qε)

subject to (33), (34), (35), W > P−1
0 .

(36)

The reasoning behind the optimization problem (36) is the same as the one behind (30).
In the case of global stabilization, i.e. when the relation (2) is satisfied ∀u ∈ Rm, the conditions

of Corollary 3 should be used. In this case, the optimization problem (36) without conditions (35) and
W > P−1

0 should be considered.

Remark 3. The emulation design employs conditions that are less conservative than the co-design, as it
uses an unconstrained (i.e., without an imposed structure) Lyapunov matrix W . Thus, after solving the
co-design optimization problem (36) to obtain a new suitable gain K, one can use this value of K as an
input to the emulation optimization problem (30), aiming at a further reduction in the number of events
while guaranteeing that the given set of initial conditions can be stabilized. The process, referred as co-design
refinement, is illustrated in Section 6. It is worth noticing that once K is obtained from the co-design
problem (36), the solution obtained is also a feasible solution of the emulation problem (30). In this case,
the value of the objective function, in terms of matrices Q̄δ and Qε, will always be less than or equal to the
one obtained in the co-design problem, leading to a potential reduction in the number of generated events.
Although this events reduction cannot be formally guaranteed, this is quite likely to happen, as illustrated in
the numerical examples.
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Remark 4. The simultaneous design of Qδ, Qε, K, L and T is a challenging co-design problem. Unfortu-
nately, if one considers L as a decision variable, it is not possible to linearize the conditions of Theorem 3.
Note that, due to the method used to integrate the trajectories of the system in the interval [tk, tk + T ], L
and T appear as part of exponential terms. On the other hand, it should be noticed that the simultaneous
synthesis of the control and observer gains considering the augmented system and a quadratic Lyapunov
function is a non-convex problem even when continuous-time controllers and linear systems are considered.
Hence, it remains an open problem not only in the event-triggered control context.

6. Numerical examples

6.1. Example 1 – Regional stabilization

System data:

Let us consider the following plant: ẋp(t) =

[
0 1
4 0

]
xp(t) +

[
0
1

]
q(u(t))

yp(t) =
[
1 0

]
xp(t)

(37)

where q(u) is a logarithmic quantization function defined as follows [36]:

q(u) =



µq if u ≥ µq
1+δq

ρjqµq if
ρjqµq
1+δq

≤ u < ρjqµq
1−δq , j ∈ {1, 2, ...}

0 if u = 0

−ρjqµq if − ρjqµq
1+δq

≥ u > − ρjqµq
1−δq , j ∈ {1, 2, ...}

−µq if u ≤ − µq
1+δq

with the quantization parameters:

0 < ρq < 1, δq =
1− ρq
1 + ρq

, µq > 0.

ρq specifies the density of quantization and µq defines the maximum absolute level of quantization, which
can be seen as an implicit saturation of the control signal. Figure 1 shows a graphical representation of the
positive branch of this logarithmic quantization function.

It should be noticed that the quantization error q̃(u) = q(u) − u is regionally restricted to the cone
defined by ±δqu (i.e. it satisfies the relation (q̃(u) − δqu)(q̃(u) + δqu) ≤ 0) for all values of u satisfying
|u| ≤ µq

1−δq (see [38]). In order to cast the system in the form (1), with a function f(u) satisfying (2), it

suffices to consider:

f(u) = q̃(u)− δqu, Ap =

[
0 1
4 0

]
, Bpf =

[
0
1

]
, Bp = (1 + δq)Bpf , Cp =

[
1 0

]
.

Note that in this case the relation (q̃(u) + δqu)(q̃(u)− δqu) ≤ 0 becomes f(u)(f(u) + 2δqu) ≤ 0, i.e. (2)

is verified with R = 2δq. Moreover, this relation is satisfied as long as |u| ≤ µq
1−δq , that is,

∣∣∣ 1−δqµq
u
∣∣∣ ≤ 1, i.e.

h1 =
1−δq
µq

in (3).

We consider the quantization with ρq = 0.9 (which leads to R = 2δq = 0.105263) and µq = 35.
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u

v
v = (1 + δq)u

v = u

v = (1− δq)u
µq

µq
1−δq

v = q(u)

Figure 1: Logarithmic quantization function (positive branch).

Optimization results:

Considering the feedback gain matrix K =
[
−4.8 −1.9

]
, the observer gain matrix L =

[
−3.5 −7

]′
,

X0 defined as in (29) with P0 = diag(106, 106, 0.1, 0.1) and the dwell time T = 0.02, we solve the emulation
design optimization problem (30) with additional conditions λmin(Qδ) > 10−4 and λmax(Qε) < 103λmin(Qε)
to prevent Qδ and Qε from becoming ill-conditioned, obtaining the following results:

Qε =

848.8 188.2 98.71
188.2 101.4 18.31
98.71 18.31 27.89

 , Qδ =

[
1.162 0.4599
0.4599 0.1822

]
.

Using the same values L =
[
−3.5 −7

]′
, P0 = diag(106, 106, 0.1, 0.1) and T = 0.02, the co-design

optimization problem (36) with the same additional conditions to prevent Qδ and Qε from becoming ill-
conditioned yields:

K =
[
−9.299 −4.598

]
, Qε =

 201.9 −7.784 122.3
−7.784 44.37 11.15
122.3 11.15 81.26

 , Qδ =

[
4.309 2.131
2.131 1.054

]
.

As mentioned in Remark 3, we can refine these results by solving the emulation optimization problem
(30) with the gain K =

[
−9.299 −4.598

]
obtained in the co-design. This yields the following matrices for

the triggering function:

Qε =

63.14 1.518 37.73
1.518 52.2 25.8
37.73 25.8 36.2

 , Qδ =

[
1.929 0.9537
0.9537 0.4716

]
.

The ellipses defined by the intersection between the plane x̂ = 0 and the sets Lv = {x ∈ R2n : x′W−1x ≤
1} for each W obtained with the optimization problems above are shown in Figure 2 (in dashed red line),
along with the intersection between the same plane and the border of X0 (in solid black lines). This figure
also depicts phase portraits of the systems, with blue circle marks showing initial conditions for which the
trajectories converge to the origin and magenta plus signs showing initial conditions that lead to divergent
trajectories. One can see that, in all cases, the ellipses contain X0, as required by the optimization problems.
It is also visible that the sets Lv are contained in the region of attraction of the origin in each case and,
therefore, can be used as estimates for it.
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Figure 2: Example 1 – Phase portraits, Lv and X0 sets

Table 1: Example 1 – Average number of control updates for 100 different initial conditions

T Emulation Co-design Co-design refinement Periodic

0.01 65.56 50.33 35.00 1000
0.02 65.47 50.13 34.47 500
0.03 65.67 48.48 34.72 333.3
0.04 65.05 43.48 32.45 250
0.043 64.60 40.38 30.86 232.6
0.044 64.09 40.55 29.64 227.3
0.045 64.24 unfeasible – 222.2
0.05 63.31 unfeasible – 200
0.10 64.25 unfeasible – 100
0.11 unfeasible unfeasible – –

Influence of T :

Table 1 shows the influence of T in the results. It depicts the average number of control updates for
simulations within the time interval [0, 10] considering 100 different initial plant states, distributed along the
boundary of the respective Lv set, for various values of T , for each of the proposed design methods and for
a periodic controller 1 with period T . The initial state of the observer is set as zero in all simulations. One
can see that T has an expressive impact on the number of events generated in the co-design and refinement
cases, but not in the emulation case. In the emulation context, the impact of T is highly dependent on
the system characteristics and the chosen value of K. Different behaviors can occur for different choices of
K. Moreover, notice that the co-design problem is not feasible for some values of T where the emulation
problem is. This can be expected since the co-design conditions are more restrictive than the emulation ones
due to the structure imposed to W . It is also shown that the co-design problem leads to less events and that
the refinement procedure described in Remark 3 reduces even more their number. A comparison with the
periodic controllers considering a period T (i.e., equals to the dwell time) shows that all the event-triggered
controllers resulted in less control updates.

Simulations:

Here we present simulations of the closed-loop systems designed from optimization problems (30) and
(36) and also with the co-design refinements proposed in Remark 3, considering two different values of T .

1For the periodic controller, the numbers of events are exact and independent of the initial conditions.

14



In all simulations, the initial conditions for the plant and the observer are, respectively:

xp(0) =

[
−3
0

]
, x̂(0) =

[
0
0

]
.

Figures 3 and 4 depict the plant and observer states in the top plots. It can be noticed that the observer
states converge to the plant states, as expected, and also the convergence of the plant states to the origin.
The middle plots show the control action. Note that it is indeed held constant between two events. Moreover,
the value of the control is subject to a logarithmic quantization. The bottom plot depicts the event instants,
with the sizes of the bars representing the inter-event times, i.e. the difference between the time of that
event and the previous one. It can be seen that the trigger strategy effectively delays the event instants,
yielding inter-event times larger than the dwell time while ensuring the asymptotic stability of the closed-
loop system. The figures also highlight that the co-design and refinement processes result in less events than
the emulation. The figures depict the simulation for t in the interval [0, 10]. If we extend the simulation
time, no appreciable changes occur: Inter-event times keep similar to the pattern shown just before t = 10
and the trajectories continue to converge to the origin. It should be pointed out that matrix Ap is unstable
in the example at hand.

6.2. Example 2 – Global stabilization

System data:

Here we consider the following stable plant: ẋp(t) =

[
−1 2
−2 0

]
xp(t) +

[
0
1

]
sat(u(t))

yp(t) =
[
1 0

]
xp(t)

(38)

where sat(·) is a saturation function with saturation levels at ±5. Note that (38) can be re-written in the

form (1) with Bp =

[
0
1

]
by assuming f(u) = sat(u)−u to be a dead-zone function, which satisfies condition

(2) with R = 1 globally, i.e. ∀u ∈ Rm. Moreover, since Ap in this case is Hurwitz, the global stabilization
under saturating inputs can be achieved [39].

Optimization results:

Consider first the emulation case with K =
[
2 −4

]
and L =

[
−20 −53

]′
. In this case, the eigenvalues

of Ap + BpK are −1 and −4 and the eigenvalues of Ap + LCp are −10 and −11. Choosing a dwell time
T = 0.1, and solving the version of optimization problem (30) suitable for the global case (i.e. with conditions
given by Corollary 2), with modifications to impose a minimum exponential decay rate of 0.75 so that the
closed-loop solution does not degenerate into the open-loop one, i.e. imposing V̇ (x(t)) < −0.75V (x(t)) and
V (x(tk + T ))− V (x(tk)) < (e−0.75T − 1)V (x(tk)), one obtains the following results:

Qε =

 3.581 0.5562 −0.001386
0.5562 2.715 0.008729
−0.001386 0.008729 0.7225

 , Qδ =

[
9.922 −9.883
−9.883 17.38

]
.

For the co-design case, considering the same values of L =
[
−20 −53

]′
, T = 0.1 and the same additional

conditions related to the conditioning of matrices and exponential decay rate, the solution to the version of
optimization problem (36) suitable for the global case leads to:

K =
[
1.232 −4.6503

]
, Qε =

 1.067 0.1554 0.0005847
0.1554 1.058 0.002162

0.0005847 0.002162 0.1619

 , Qδ =

[
6.266 −5.72
−5.72 16.92

]
.
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Table 2: Example 2 – Average number of control updates for 100 different initial conditions

T Emulation Co-design Co-design refinement Periodic

0.01 78.58 53.82 49.23 1000
0.05 73.50 48.88 46.35 200
0.10 60.18 48.74 45.15 100
0.20 50.00 50.00 50.00 50
0.30 34.00 34.00 34.00 33.33
0.40 25.00 25.00 25.00 25
0.50 unfeasible 20.00 20.00 20
0.60 unfeasible 17.00 17.00 16.67

Refining the event-triggering function as mentioned in Remark 3, one obtains:

Qε =

 0.3437 0.04672 0.0003135
0.04672 0.3302 0.001317

0.0003135 0.001317 0.06555

 , Qδ =

[
15.98 −15.15
−15.15 43.56

]
.

Influence of T :

Table 2 shows the influence of T in the results. It depicts the average number of control updates for
simulations considering 100 different initial plant states distributed along the unit circle and within the time
interval [0, 10] for various values of T , for each of the proposed design methods and for a periodic controller
with period T . The initial state of the observer is set as zero in all simulations. One can see that, for
small values of T , the co-design leads again to less events and that the refinements mentioned in Remark 3
allow to further reduce the number of events. Also, the event-triggered controllers generate less events than
the periodic ones. On the other hand, for larger values of T , all three methods give the same results. As
it is going to be shown in the simulations, this is because, in the present example, when T increases, the
event-triggering mechanism becomes less effective and the triggering becomes periodic with period T . Table
2 also shows that, for this system and the particular value of K considered in the emulation design, the
co-design allows choosing a wider range of values for the dwell time T . This illustrates again that, in the
emulation case, the impact of T is highly dependent on the system characteristics and the chosen value of K.
In the example at hand, with the chosen K =

[
2 −4

]
, a periodic controller with a period greater than 0.5

leads to a closed-loop system that is not asymptotically stable. That explains why the emulation problem
becomes unfeasible for T ≥ 0.5. On the other hand, the co-design problem (which computes a different K)
and the co-design refinement (which uses K from the corresponding co-design) are still feasible for T = 0.5
and T = 0.6.

Simulations:

In this section, we present simulations of the closed-loop systems from an emulation and a co-design
point of view for two different values of T . We also include simulations of the systems obtained with the
refinements proposed in Remark 3. In all simulations, the initial conditions for the plant and the observer
are, respectively:

xp(0) =

[
−12

5

]
, x̂(0) =

[
0
0

]
.

Figures 5 and 6 depict the plant and observer states in the top plots. The observer states quickly
converge to the plant states and the state converges to the origin, as expected. The middle plots show the
control action, where one can note that it indeed saturates at the values ±5. The bottom plot depicts the
event instants, with the sizes of the bars representing the inter-event times. One can see that the triggering
strategy effectively delays the event instants for low values of T ; but when T increases, the event-triggering
mechanism becomes less effective and the triggering becomes periodic.

16



7. Conclusion

In this paper we have addressed the design of observer-based event-triggered control for a class of non-
linear systems formed by a linear plant subject to input cone-bounded nonlinearities. Emulation design and
co-design of the event generator parameters and the controller gain have been addressed both for regional
and global stabilization cases. The proposed techniques use only the measurable outputs. An observer is
used to recover the plant state variables that are not available. Sufficient conditions in the form of LMIs
associated to convex optimization problems have been proposed to co-design the feedback gain (K) and
event-trigger parameters (Qδ, Qε) to ensure the regional (or global when possible) asymptotic stability of
the closed-loop system while aiming at reducing the number of events with respect to periodic implemen-
tations. The approach allows to design the event-triggering rule with a parameter T imposing a minimum
inter-event time, which prevents the Zeno behavior occurrence. Numerical examples illustrated the applica-
tion of the methodology and highlighted the superiority of results achievable in the co-design context with
respect to the number of events generated.

The co-design of Qδ, Qε, K, L and T is still an open problem and is subject of ongoing work. Approaches
considering sampled-data systems instead of the exact discretization can be of value to avoid the exponential
terms on T and L, thus allowing the partial co-design case where L, Qδ and Qε are the decision variables.

The extension of the methods to address noise and event-triggered measurements are also interesting
topics for future work. These are challenging topics due to the more complex observation error dynamics
that arises when handling these situations.

8. Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior -
Brazil (CAPES) - Finance Code 001 (PROEX, PDSE 88881.134305/2016-01, SticAmSud 88881.143275/2017-
01); CNPq, Brazil (grants PQ-305979/2015-9 and Univ-422992/2016-0).

[1] R. Postoyan, A. Girard, Triggering mechanism using freely selected sensors for linear time-invariant systems, in: 54th
IEEE Conference on Decision and Control, Osaka, Japan, 2015, pp. 4812–4817.
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Figure 3: Example 1 – Evolution of the state of the plant and the observer, the control input u, and the sampling instants.
T = 0.02
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Figure 4: Example 1 – Evolution of the state of the plant and the observer, the control input u, and the sampling instants.
T = 0.043
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Figure 5: Example 2 – Evolution of the state of the plant and the observer, the control input u, and the sampling instants.
T = 0.1
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Figure 6: Example 2 – Evolution of the state of the plant and the observer, the control input u, and the sampling instants.
T = 0.3
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