Qian Feng 
  
Sing Kiong Nguang 
email: nguang@auckland.ac.nz.
  
Alexandre Seuret 
email: aseuret@laas.fr.
  
  
  
Stability analysis of linear coupled differential-difference systems with general distributed delays

Keywords: Distributed Delay, Integral Inequality, Coupled differential-difference systems, Approximations. I. INTRODUCTION

We present a new approach for the stability analysis of linear coupled differential-difference systems (CDDS) with a general distributed delay. The distributed delay term in this note can contain any L 2 function which is approximated via a class of elementary functions including polynomial, trigonometric and exponential functions etc. Through the application of a new proposed integral inequality, sufficient condition for the stability of the system is derived in terms of linear matrix inequalities based on the construction of a Liapunov Krasovskii functional. The methods proposed in this note can handle problems which cannot be deal with by existing approaches. Two numerical examples are presented to show the effectiveness of our proposed stability condition.

specific class of elementary functions. This motives us to develop a more efficient and robust approach to handle the presence of general distributed delay terms in a system.

In this paper, we propose a new approach to handle the problem of the stability analysis of a linear CDDS with a general distributed delay term. Specifically, the distributed delay kernels can be any L 2 function over an interval. Moreover, the models of many existing delay systems, such as the ones in [START_REF] Gu | Lyapunov Krasovskii functional for uniform stability of coupled differential-functional equations[END_REF], [START_REF] Seuret | Complete quadratic Lyapunov functionals for distributed delay systems[END_REF], [START_REF] Feng | Stabilization of uncertain linear distributed delay systems with dissipativity constraints[END_REF], [START_REF] Münz | Robust stabilization and H ∞ control of uncertain distributed delay systems[END_REF], are generalized by the model we considered. The distributed delay kernels are handled by a new approximation scheme in this paper based on a class of elementary functions which includes the Legendre polynomials approximation scheme proposed in [START_REF] Seuret | Complete quadratic Lyapunov functionals for distributed delay systems[END_REF]. Moreover, our approximation scenario also provides a unified matrix framework which can easily handle the situation of a CDDS having multiple distributed delay kernels. It shows that, if orthogonal functions {ϑ i (•)} d i=1 are chosen as the approximator, then the resulting approximation-error-vector converges to zeros in a L 2 sense as d → ∞. Meanwhile, a new general integral inequality is derived which has an approximation-error-related term at its lower bound. By constructing a Liapunov-Krasovskii functional via the application of this inequality, sufficient conditions for the asymptotic (exponential) stability of the linear CDDS can be derived in terms of LMIs where the corresponding approximation error is expressed by a positive definite matrix. Our stability condition is further proved to have a hierarchical feasibility enhancement under the framework of orthogonal functions, which generalizes the results in [START_REF] Seuret | Hierarchy of LMI conditions for the stability analysis of time-delay systems[END_REF]. Finally, two numerical examples are given to demonstrate the effectiveness and capacity of the proposed methodologies.

The novelties in this paper are summarized as follows:

• We proposed a much wider class of functions for the approximation of delay kernel functions compared to polynomials approximation. The idea behind the proposed approximation is based on the application of the Hilbert projection theorem (least square approximation in Hilbert space) [START_REF] Muscat | Functional Analysis: An Introduction to Metric Spaces, Hilbert Spaces, and Banach Algebras[END_REF]. Moreover, this also allows one to construct a Liapunov-Krasovskii functional with non-polynomials kernels when distributed delay terms are handled via approximations. • A very general inequality is derived in this paper where the approximator functions belong to a weighted L 2 space. This means that the proposed integral inequality has tremendously general structure and it has very good potential to be used for the situations where a general approximator is employed to deal with distributed delay kernels. Thus many future works might be done based on the proposed inequality. Notations and rules: Empty matrices [], which follows the rules in Matlab environment, is applied in this paper. N stands for the set of natural numbers and N 0 := N ∪ {0}. We also define R ≥a := {x ∈ R :

x ≥ a} and S n = {X ∈ R n×n : X = X ⊤ }. M (L (X ) /B(R)) := f (•) ∈ R X : ∀Y ∈ B(R), f -1 (Y) ∈ L(X )
denotes the space of all L (X ) /B(R) measurable functions from X onto R, where L (X ) contains all the subsets of X which are Lebesgue measurable with X ∈ L (R), and B(R) is the Borel σ-algebra on R. For any X ∈ R n×n , we define Sy(X) := X + X ⊤ . A column vector containing a sequence of mathematical objects (scalars, matrices, functions etc) is defined as

Col n i=1 x i := Row n i=1 x ⊤ i ⊤ = x ⊤ 1 • • • x ⊤ i • • • x ⊤ n ⊤ . In addition, it is defined that Col n i=1 = [] with n < 1, where [] is an empty matrix with appropriate column dimensions. The symbol * is used to indicate [ * ]Y X = X ⊤ Y X or X ⊤ Y [ * ] = X ⊤ Y X or A B * C = A B B ⊤ C .
O n×m stands for a n × m zero matrix and the notation O n×n is abbreviated as O n , whereas 0 n denotes a n × 1 column vector. The diagonal sum of two matrices is defined as X ⊕ Y = X O * Y . ⊗ denotes the Kronecker product. Finally, we assume the operator precedence of matrices to be matrix (scalars) multiplications > ⊗ > ⊕ > +.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this paper, we consider the stability analysis of a CDDS

ẋ(t) = A 1 x(t) + A 2 y(t -r) + 0 -r A 3 (τ )y(t + τ )dτ y(t) = A 4 x(t) + A 5 y(t -r) x(t 0 ) = ξ ∈ R n , y(t 0 + θ) = ϕ(θ), ∀θ ∈ [-r, 0] (1) 
with a general distributed delay, where t 0 ∈ R and r > 0 is given and

ϕ(•) ∈ C ([-r, 0) R ν ). C([-r, 0) R n )
here stands for the space of the functions which are bounded, right-continuous and piecewise continuous functions, endowed with the norm ∥ϕ(•)∥ ∞ = sup τ ∈X ∥ϕ(τ )∥ 2 . Furthermore, x(t) ∈ R n ; y(t) ∈ R ν are the solution of (1) with n; ν ∈ N which determine the size of A 1 ; A 2 ; A 3 (τ ) and A 4 ; A 5 , where

A 3 (•) ∈ L 2 ([-r, 0] R n×ν ). Meanwhile, we define f (•) := Col d i=1 f i (•) ∈ C R R d with d ∈ N 0 and we assume f (•) satisfies the property ∃M ∈ R d×d , df (τ ) dτ = M f (τ ). (2) 
It is obvious that given a

f (•) ∈ C R R d satisfying (2), then for any A 3 (•) ∈ L 2 ([-r, 0] R n×ν ) in (1) there exist A 3 ∈ R n×ρν with ρ = d + δ, and φ(•) ∈ L 2 [-r, 0] R δ with δ ∈ N 0 such that ∀τ ∈ [-r, 0], A 3 (τ ) = A 3 φ(τ ) f (τ ) ⊗ I ν (3) 0 -r φ(τ ) f (τ ) ⊤ φ ⊤ (τ ) f ⊤ (τ ) dτ ≻ 0 (4)
Remark 1. The condition in [START_REF] Rsvan | Functional differential equations of lossless propagation and almost linear behavior[END_REF] indicates that the functions in f (•) are the solutions of linear homogeneous equations with constant coefficients, such as polynomials, trigonometric and exponential functions etc. Moreover, the matrix inequality in (4) indicates that the functions in φ ⊤ (τ ) f ⊤ (τ ) ⊤ are linearly independent in a Lebesgue sense. (See Theorem 7.2.10 in [START_REF] Horn | Matrix Analysis[END_REF]) Finally, we stress here that the decomposition in (3) with ( 4) is always achievable since φ(

•) ∈ L 2 [-r, 0] R δ can cover any function in A 3 (•) ∈ L 2 ([-r, 0] R n×ν ) if such function is not covered by f (•).
Remark 2. The distributed delay A 3 (•) in ( 1) can be equivalently denoted by the decomposition in (3) which is employed in this paper so that well-posed stability condition can be derived. This will be illustrated later in light of the results in Lemma 3 and Theorem 1. Note that φ(•) can be a 0 × 1 empty vector if δ = 0. Finally, [START_REF] Briat | Linear Parameter Varying and Time-Delay Systems[END_REF] generalizes almost all the models of linear distributed delay (neutral) systems in the literature [START_REF] Fridman | H ∞ control of distributed and discrete delay systems via discretized Lyapunov functional[END_REF], [START_REF] Seuret | Complete quadratic Lyapunov functionals for distributed delay systems[END_REF], [START_REF] Feng | Stabilization of uncertain linear distributed delay systems with dissipativity constraints[END_REF] without considering uncertainties or disturbances or inputs or outputs.

To tackle the function φ(•) ∈ L 2 [-r, 0] R δ in (3), which may not satisfy (2), we use f (τ ) to approximate φ(τ ) over [-r, 0]. This is denoted mathematically as

∀τ ∈ [-r, 0], φ(τ ) = Γ d f (τ ) + ε d (τ ) (5) 
where

Γ d := 0 -r φ(τ )f ⊤ (τ )dτ F d , F -1 d := 0 -r f (τ )f ⊤ (τ )dτ (6) 
and ε d (τ ) := φ(τ ) -Γ d f (τ ) defines the error of approximations which gives

E d := 0 -r ε d (τ )ε ⊤ d (τ )dτ ∈ S δ (7)
to measure the error residual of (5).

Remark 3. Note that using the approximation scheme in [START_REF]Reducing the complexity of the sum-of-squares test for stability of delayed linear systems[END_REF] does not put extra constraints to f (•) in ( 2)-(4) and f (•) can be any function as long as (2)-( 4) are satisfied. To obtain non-conservative results, we suggest that one can choose f (•) to be in line with the functions in A 3 (•) considering the structures of φ(τ ). Namely, f (•) should be "easy" to approximate φ(•) over [-r, 0] if δ ̸ = 0.

Remark 4. If f (•) contains only Legendre polynomials, then (5)-( 6) generalizes the polynomials approximation scenario in [START_REF] Seuret | Complete quadratic Lyapunov functionals for distributed delay systems[END_REF] via a matrix framework. The mathematical structure of (6) can be interpreted as a vector form of the Hilbert projection Theorem (Least square approximation) [START_REF] Muscat | Functional Analysis: An Introduction to Metric Spaces, Hilbert Spaces, and Banach Algebras[END_REF] via f (•) in (3). In addition, the approximator f (•) in ( 6) belongs to a class of elementary functions, not approximation by a specific type of functions such as polynomials. Thus the proposed approximation scheme in ( 5) is both conceptually and mathematically more general than the polynomials approximation in [START_REF] Seuret | Complete quadratic Lyapunov functionals for distributed delay systems[END_REF] as f (•) in [START_REF] Gu | Lyapunov Krasovskii functional for uniform stability of coupled differential-functional equations[END_REF] can contain functions which are not orthogonal polynomials or even mutually orthogonal.

The following lemma of the properties of the Kronecker product will be used throughout the rest of our paper. Lemma 1. For all X ∈ R n×m and Y ∈ R m×p and Z ∈ R q×r ,

(X ⊗ I q )(Y ⊗ Z) = (XY ) ⊗ (I q Z) = (XY ) ⊗ Z = (XY ) ⊗ (ZI r ) = (X ⊗ Z)(Y ⊗ I r ). (8) 
Moreover, for all X ∈ R n×m , we have

A B C D ⊗ X = A ⊗ X B ⊗ X C ⊗ X D ⊗ X (9)
for any A, B, C, D with appropriate dimensions which make the block matrix at the left hand of the equality in [START_REF] Li | Discretized LKF method for stability of coupled differential-difference equations with multiple discrete and distributed delays[END_REF] to be compatible.

Considering ( 3) and ( 5), now (1) can be re-expressed as

ẋ(t) = Aϑ(t), y(t) = Ξϑ(t), Ξ = A 4 A 5 O ν×ρν x(t 0 ) = ξ ∈ R n , y(t 0 + θ) = ϕ(θ), ∀θ ∈ [-r, 0] (10) 
where

A := A 1 A 2 A 3 Γ d I d ⊗ I ν A 3 E d O d×δ ⊗ I ν (11) ϑ(t) := Col x(t) y(t -r) , 0 -r F d (τ )y(t + τ )dτ 0 -r E d (τ )y(t + τ )dτ ∈ R κ (12) 
with

κ := n + ν + ρν and E d (τ ) := E -1 d ε d (τ ) ⊗ I ν with ε d (τ
) and E d are defined in [START_REF] Pepe | On the asymptotic stability of coupled delay differential and continuous time difference equations[END_REF]. Note that E -1 d is well defined and we will explain it in Remark 6 in the next section. Note that also the matrix in [START_REF] Breda | Stability of linear delay differential equations: A numerical approach with MATLAB[END_REF] associated with the distributed delay terms are derived based on the identity

φ(τ ) f (τ ) ⊗ I ν y(t + τ ) = Γ d I d ⊗ I ν F d (τ )y(t + τ ) + E d O d×δ ⊗ I ν E d (τ )y(t + τ )
which itself is obtained via the property in [START_REF] Pepe | On the Liapunov-Krasovskii methodology for the ISS of systems described by coupled delay differential and difference equations[END_REF].

III. MAIN RESULTS ON STABILITY ANALYSIS

In this section, the main results on the stability analysis of (1) are presented in subsection III-B preceded by the presentation of some important Lemmas in Subsection III-A where we present a novel integral inequality and the Liapunov-Krasovskii stability criteria for [START_REF] Briat | Linear Parameter Varying and Time-Delay Systems[END_REF].

A. Mathematical prelimitaries

Lemma 2. Given r > 0, the trivial solution x(t) ≡ 0 n , y(t) ≡ 0 ν of (1) is globally uniformly asymptotically stable if there exist ϵ 1 ; ϵ 2 ; ϵ 3 > 0 and a differentiable functional v :

R n × C([-r, 0) R ν ) → R such that v(0 n , 0 ν (•)) = 0 and ϵ 1 ∥ξ∥ 2 2 ≤ v(ξ, ϕ(•)) ≤ ϵ 2 [max(∥ξ∥ 2 , ∥ϕ(•)∥ ∞ )] 2 (13) v(ξ, ϕ(•)) = d + dt v(x(t), y t (•)) t=t0,x(t0)=ξ,yt 0 (•)=ϕ(•) ≤ -ϵ 3 ∥ξ∥ 2 2 ( 14 
)
for any ξ ∈ R n and ϕ(•) ∈ C([-r, 0) R ν ) in (1), where t 0 ∈ R and d + dx f (x) = limsup η↓0 f (x+η)-f (x) η
. Furthermore, y t (•) in ( 14) is defined by ∀t ≥ t 0 , ∀θ ∈ [-r, 0), y t (θ) = y(t + θ) where x(t) and y(t) satisfying [START_REF] Briat | Linear Parameter Varying and Time-Delay Systems[END_REF]. [START_REF] Gu | Lyapunov Krasovskii functional for uniform stability of coupled differential-functional equations[END_REF] be quadratic functions with the multiplier factors ϵ 1 ; ϵ 2 ; ϵ 3 > 0. Since (1) is a particular case of the general system considered in Theorem 3 of [START_REF] Gu | Lyapunov Krasovskii functional for uniform stability of coupled differential-functional equations[END_REF], then Lemma 2 is obtained. Now we derive the following new integral inequality which will be employed later in deriving our stability condition. First of all, we define the weighted Lebesgue function space

Proof: Let u(•), v(•), w(•) in Theorem 3 of
L 2 ϖ K R d := ϕ(•) ∈ M L (K) /B(R d ) : ∥ϕ(•)∥ 2,ϖ < ∞ (15) with d ∈ N 0 and ∥ϕ(•)∥ 2,ϖ := K ϖ(τ )ϕ ⊤ (τ )ϕ(τ )dτ where ϖ(•) ∈ M (L (K) /B(R ≥0
)) and the function ϖ(•) has only countably infinite or finite numbers of zero values. Furthermore, K ⊆ R and the Lebesgue measure of K is non-zero.

Lemma 3. Given K and ϖ(•) in [START_REF] Münz | Robust stabilization and H ∞ control of uncertain distributed delay systems[END_REF] and

U ∈ S n ⪰0 := {X ∈ S n : X ⪰ 0} with n ∈ N. Let f(•) := Col d i=1 f i (•) ∈ L 2 ϖ K R d and g(•) := Col δ i=1 g i (•) ∈ L 2 ϖ K R δ with d ∈ N and δ ∈ N 0 , in which the functions f(•) and g(•) satisfy K ϖ(τ ) g(τ ) f(τ ) g ⊤ (τ ) f ⊤ (τ ) dτ ≻ 0. ( 16 
)
Then the inequality

K ϖ(τ )x ⊤ (τ )U x(τ )dτ ≥ [ * ] (F d ⊗ U ) K ϖ(τ )F(τ )x(τ )dτ + [ * ] E -1 d ⊗ U K ϖ(τ )E(τ )x(τ )dτ ( 17 
)
holds for all x(•) ∈ L 2 ϖ (K R n ), where F(τ ) = f(τ ) ⊗ I n ∈ R dn×n and F -1 d = K ϖ(τ )f(τ )f ⊤ (τ )dτ ∈ S d ≻0 . In addition, E(τ ) = e(τ ) ⊗ I n ∈ R δn×n where e(τ ) = g(τ ) -Af(τ ) ∈ R δ and A = K ϖ(τ )g(τ )f ⊤ (τ )dτ F d ∈ R δ×d and E d := K ϖ(τ )e(τ )e ⊤ (τ )dτ ∈ S δ .
Proof: The proof of Lemma 3 is inspired by the proofs of Lemma 2 in [START_REF] Seuret | Complete quadratic Lyapunov functionals for distributed delay systems[END_REF] and the proof of Lemma 5 in [START_REF] Feng | Stabilization of uncertain linear distributed delay systems with dissipativity constraints[END_REF]. Firstly, we have

E d := K ϖ(τ )e(τ )e ⊤ (τ )dτ = I δ -A K ϖ(τ ) g(τ ) f(τ ) g ⊤ (τ ) f ⊤ (τ ) dτ I δ -A ⊤ ≻ 0, (18) 
where the positive definiteness in ( 18) can be established based on [START_REF] Seuret | Hierarchy of LMI conditions for the stability analysis of time-delay systems[END_REF] and the property of congruence transformations with the fact that rank

I δ -A = δ. Consequently, E -1 d is well defined. Let y(τ ) := x(τ ) -F ⊤ (τ )(F d ⊗ I n ) K ϖ(θ)F(θ)x(θ)dθ -E ⊤ (τ ) E -1 d ⊗ I n K ϖ(θ)E(θ)x(θ)dθ,
where the definitions of F(•) and E(•) have been given in Lemma 3.

By A = K ϖ(τ )g(τ )f ⊤ (τ )dτ F d and e(τ ) = g(τ ) -Af(τ ) ∈ R δ , we have K ϖ(τ )e(τ )f ⊤ (τ )dτ = K ϖ(τ ) [g(τ ) -Af(τ )] f ⊤ (τ )dτ = K ϖ(τ )g(τ )f ⊤ (τ )dτ -A K ϖ(τ )f(τ )f ⊤ (τ )dτ = K ϖ(τ )g(τ )f ⊤ (τ )dτ - K ϖ(τ )g(τ )f ⊤ (τ )dτ F d F -1 d = O δ×d . ( 19 
)
Substituting the expression of y(•) into K ϖ(τ )y ⊤ (τ )U y(τ )dτ and considering [START_REF] Park | Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems[END_REF] yields

K ϖ(τ )y ⊤ (τ )U y(τ )dτ = K ϖ(τ )x ⊤ (τ )U x(τ )dτ -2 K ϖ(τ )x ⊤ (τ )U F ⊤ (τ )dτ (F d ⊗ I n )ζ + ζ ⊤ K ϖ(τ )(F d ⊗ I n ) ⊤ F(τ )U F ⊤ (τ )(F d ⊗ I n )dτ ζ -2 K ϖ(τ )x ⊤ (τ )U E ⊤ (τ )dτ (E -1 d ⊗ I n )ω + ω ⊤ K ϖ(τ )(E -1 d ⊗ I n ) ⊤ E(τ )U E ⊤ (τ )(E -1 d ⊗ I n )dτ ω ( 20 
)
where ζ := K ϖ(θ)F(θ)x(θ)dθ and ω := K ϖ(θ)E(θ)x(θ)dθ. Now apply [START_REF] Pepe | On the Liapunov-Krasovskii methodology for the ISS of systems described by coupled delay differential and difference equations[END_REF] to the term U F ⊤ (τ ) and U E ⊤ (τ ) and consider F(τ ) = f(τ ) ⊗ I n and E(τ ) = e(τ ) ⊗ I n . Then we have

U F ⊤ (τ ) = F ⊤ (τ )(I d ⊗ U ), U E ⊤ (τ ) = E ⊤ (τ )(I δ ⊗ U ) (21) 
given [START_REF] Chen | Two general integral inequalities and their applications to stability analysis for systems with time-varying delay[END_REF] with [START_REF] Pepe | On the Liapunov-Krasovskii methodology for the ISS of systems described by coupled delay differential and difference equations[END_REF] to the integral terms in (20) related to [START_REF] Chen | Two general integral inequalities and their applications to stability analysis for systems with time-varying delay[END_REF] yields

(X ⊗ Y ) ⊤ = X ⊤ ⊗ Y ⊤ . Now applying
K ϖ(τ )x ⊤ (τ )U F ⊤ (τ )dτ (F d ⊗ I n )ζ = ζ ⊤ (F d ⊗ U )ζ K ϖ(τ )x ⊤ (τ )U E ⊤ (τ )dτ (E -1 d ⊗ I n )ω = ω ⊤ (E -1 d ⊗ U )ω, (22) 
K (F d ⊗ I n ) ⊤ ϖ(τ )F(τ )U F ⊤ (τ )(F d ⊗ I n )dτ = (F d ⊗ I n ) K ϖ(τ )F(τ )F ⊤ (τ )dτ (F d ⊗ U ) (23) 
K (E -1 d ⊗ I n ) ⊤ ϖ(τ )E(τ )U E ⊤ (τ )(E -1 d ⊗ I n )dτ = (E -1 d ⊗ I n ) K ϖ(τ )E(τ )E ⊤ (τ )dτ E -1 d ⊗ U . ( 24 
)
Meanwhile, since F(τ ) = f(τ ) ⊗ I n and E(τ ) = e(τ ) ⊗ I n , we have

K ϖ(τ )F(τ )F ⊤ (τ )dτ = K ϖ(τ )f(τ )f ⊤ (τ )dτ ⊗ I n = F -1 d ⊗ I n ( 25 
) K ϖ(τ )E(τ )E ⊤ (τ )dτ = K ϖ(τ )e(τ )e ⊤ (τ )dτ ⊗ I n = E d ⊗ I n . ( 26 
)
Moreover, ( 23)-( 24) can be reformulated into

K (F d ⊗ I n ) ⊤ ϖ(τ )F(τ )U F ⊤ (τ )(F d ⊗ I n )dτ = (F d ⊗ I n ) K ϖ(τ )F(τ )F ⊤ (τ )dτ (F d ⊗ U ) = F d ⊗ U, K (E -1 d ⊗ I n ) ⊤ ϖ(τ )E(τ )U E ⊤ (τ )(E -1 d ⊗ I n )dτ = (E -1 d ⊗ I n ) K ϖ(τ )E(τ )E ⊤ (τ )dτ E -1 d ⊗ U = E -1 d ⊗ U (27)
by ( 25) and ( 26). Now by ( 27) and ( 22), ( 20) can be simplified into

K ϖ(τ )y ⊤ (τ )U y(τ )dτ = K ϖ(τ )x ⊤ (τ )U x(τ )dτ -[ * ] (F d ⊗ U ) K ϖ(τ )F(τ )x(τ )dτ -[ * ] E -1 d ⊗ U K ϖ(τ )E(τ )x(τ )dτ . ( 28 
)
Given U ⪰ 0, one can obtain ( 17) via (28).

Remark 5. By Theorem 7.2.10 in [START_REF] Horn | Matrix Analysis[END_REF], we know [START_REF] Seuret | Hierarchy of LMI conditions for the stability analysis of time-delay systems[END_REF] indicates that the functions in f(•) and g(•) are linearly independent in a Lebesgue sense. Since

f(•) ∈ L 2 ϖ K R d and g(•) ∈ L 2 ϖ K R δ with plenty options for ϖ(•) ∈ L ∫ (K R ≥0
), then it is certain that the structure of the inequality ( 17) is tremendously general. If f(•) contains only Legendre polynomials, then the result of Lemma 1 in [START_REF] Seuret | Complete quadratic Lyapunov functionals for distributed delay systems[END_REF] is covered by [START_REF] Muscat | Functional Analysis: An Introduction to Metric Spaces, Hilbert Spaces, and Banach Algebras[END_REF]. With δ = 0, then one can conclude that the inequalities in [START_REF] Park | Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems[END_REF], [START_REF] Gyurkovics | Multiple integral inequalities and stability analysis of time delay systems[END_REF], [START_REF] Chen | Two general integral inequalities and their applications to stability analysis for systems with time-varying delay[END_REF], [START_REF] Liu | Generalized Jensen inequalities with application to stability analysis of systems with distributed delays over infinite time-horizons[END_REF], [START_REF] Feng | Stabilization of uncertain linear distributed delay systems with dissipativity constraints[END_REF] are generalized by [START_REF] Muscat | Functional Analysis: An Introduction to Metric Spaces, Hilbert Spaces, and Banach Algebras[END_REF] with appropriate ϖ(•), f(•) and x(•). Note that we assume the inverse of a 0 × 0 matrix is still a 0 × 0 matrix which implies that E -1 d becomes a 0 × 0 matrix with δ = 0. Remark 6. In [START_REF] Muscat | Functional Analysis: An Introduction to Metric Spaces, Hilbert Spaces, and Banach Algebras[END_REF], f(•) can be interpreted as to approximate g(•). By letting f(τ ) = f (τ ) and g(τ ) = φ(τ ) with ϖ(τ ) = 1 in Lemma 3, then we have E d = E d where E d is given in [START_REF] Pepe | On the asymptotic stability of coupled delay differential and continuous time difference equations[END_REF]. This also indicates that E d is invertible. Furthermore, if f(•) contains only orthogonal functions, then the behavior of E d can be quantitatively characterized by the following corollary. Finally, since f(•) and g(•) in [START_REF] Muscat | Functional Analysis: An Introduction to Metric Spaces, Hilbert Spaces, and Banach Algebras[END_REF] belong to very general function space and ϖ(•) can be adjusted based on specific requirements, thus the results in Lemma 3 is much more superior both conceptually and mathematically than the result of Lemma 1 in [START_REF] Seuret | Complete quadratic Lyapunov functionals for distributed delay systems[END_REF].

Corollary 1. Given all the parameters defined in Lemma 3 and assume that

f(•) = Col d i=1 f i (•) where {f i (•)} ∞ i=1
contains only orthogonal functions. Then we have that for all d ∈ N 0

0 ≺ E d+1 = E d - K ϖ(τ )f 2 d+1 (τ )dτ a d+1 a ⊤ d+1 ⪯ E d ( 29 
)
where

a d+1 := K ϖ(τ )g(τ )f d+1 (τ )dτ K ϖ(τ )f 2 d+1 (τ )dτ -1 ∈ R δ and f d+1 (•) ∈ L 2 ϖ (K R)
. Proof: Note that only the dimension of f(•) is related to d, whereas δ as the dimension of g(•) is independent from d. Since f(•) contains only orthogonal functions, it is obvious that

F d+1 = F d ⊕ K ϖ(τ )f 2
d+1 (τ )dτ -1 (See the Definition 1 in [START_REF] Feng | Orthogonal functions based integral inequalities and their applications to time delay systems[END_REF]). By using this property considering the definition of e(τ ) in Lemma 3, it follows that

e d+1 (τ ) = g(τ ) - K ϖ(τ )g(τ ) f ⊤ (τ ) f d+1 (τ ) dτ F d ⊕ K ϖ(τ )f 2 d+1 (τ )dτ -1 f(τ ) f d+1 (τ ) = g(τ ) -A d a d+1 f(τ ) f d+1 (τ ) = e d (τ ) -f d+1 (τ )a d+1 (30)
for all d ∈ N 0 , where a d+1 has been defined in ( 29) and e d (τ ) = g(τ ) -A d f(τ ). Note that the index d is added to the symbols A and e(τ ) in Lemma 3 without causing ambiguity. Considering (30) and ( 18), we have

0 ≺ E d+1 = K ϖ(τ )e d+1 (τ )e ⊤ d+1 (τ )dτ = E d -Sy a d+1 K ϖ(τ )f d+1 (τ )e ⊤ d (τ )dτ + K ϖ(τ )f 2 d+1 (τ )dτ a d+1 a ⊤ d+1 . (31)
By [START_REF] Park | Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems[END_REF] and the fact that K ϖ(τ )f d+1 (τ )f(τ )dτ = 0 d due to the orthogonality among {f i (•)} ∞ i=1 , we have

O δ×(d+1) = K ϖ(τ )e d+1 (τ ) f ⊤ (τ ) f d+1 (τ ) dτ = K ϖ(τ ) (e d (τ ) -a d+1 f d+1 (τ )) f ⊤ (τ ) f d+1 (τ ) dτ = K ϖ(τ ) e d (τ )f ⊤ (τ ) f d+1 (τ )e d (τ ) dτ -a d+1 K ϖ(τ ) f d+1 (τ )f ⊤ (τ ) f 2 d+1 (τ ) dτ = O δ×d K ϖ(τ )f d+1 (τ )e d (τ )dτ -O δ×d K ϖ(τ )f 2 d+1 (τ )dτ a d+1 = O δ×(d+1) . (32) which leads to the conclusion that K ϖ(τ )f d+1 (τ )e d (τ )dτ = K ϖ(τ )f 2 d+1 (τ )dτ a d+1 .
Substituting this equality into (31) yields (29) given K ϖ(τ )f 2 d+1 (τ )dτ > 0 and a d+1 a ⊤ d+1 ⪰ 0. Remark 7. The conclusion of Lemma 1 in [START_REF] Seuret | Complete quadratic Lyapunov functionals for distributed delay systems[END_REF] is generalized by Corollary 1 as f(•) can have Legendre polynomials.

B. Stability Analysis

The main result on the stability analysis of (1) is presented in the following theorem.

Theorem 1. Given (1) with r > 0 and f

(•) ∈ C R R d ,A 3 ∈ R n×ρν , φ(•) ∈ L 2 [-r, 0] R δ in (3) with d ∈ N
and δ ∈ N 0 and the matrices Γ d and E d in (5)- [START_REF] Pepe | On the asymptotic stability of coupled delay differential and continuous time difference equations[END_REF], then the trivial solution of (1) is globally asymptotically stable if there exist P ∈ S n+dν and Q; R ∈ S ν such that

P := P + O n ⊕ F d ⊗ Q ≻ 0 (33) Q ≻ 0, R ≻ 0, Φ ≺ 0 ( 34 
)
where

F -1 d = 0 -r f (τ )f ⊤ (τ )dτ and Φ := Sy Θ ⊤ 2 P Θ 1 -O n ⊕ Q ⊕ F d ⊗ R ⊕ E d ⊗ R + Ξ ⊤ (Q + rR)Ξ (35) Θ 1 := Col A, (H ⊗ I ν ) Π , Θ 2 = Υ O (n+dν)×δν (36) 
H = f (0) -f (-r) -M O d×δ (37) Υ := I n O n×ν O n×dν O dν×n O dν×ν I dν (38) Π = Col Ξ, O (ν+dν+δν)×n I ν+dν+δν (39)
with A in [START_REF] Breda | Stability of linear delay differential equations: A numerical approach with MATLAB[END_REF] and Ξ in [START_REF] Vyhlídal | QPmR -Quasi-Polynomial Root-Finder: Algorithm Update and Examples[END_REF] and M in [START_REF] Rsvan | Functional differential equations of lossless propagation and almost linear behavior[END_REF].

Proof: To analyze the stability of (1), we consider the Krasovskii functional

v(ξ, ϕ(•)) = η ⊤ P η + 0 -r ϕ ⊤ (τ ) Q + (τ + r)R ϕ(τ )dτ (40) 
to be constructed, where P ∈ S n+dν and Q, R ∈ S ν and

η := Col ξ, 0 -r F d (τ )ϕ(τ )dτ (41) with F d (τ ) = f (τ ) ⊗ I ν ∈ R dν×ν .
Since (1) can be equivalently denoted by [START_REF] Vyhlídal | QPmR -Quasi-Polynomial Root-Finder: Algorithm Update and Examples[END_REF] via f (•), A 3 , φ(•), differentiate v(x(t), y t (•)) with x(t), y t (•) in Lemma 2 at t = t 0 in light of [START_REF] Vyhlídal | QPmR -Quasi-Polynomial Root-Finder: Algorithm Update and Examples[END_REF], it produces

d + dt v(x(t), y t (•)) t=t0,x(t0)=ξ,yt 0 (•)=ϕ(•) = ϑ ⊤ (t 0 ) Sy Θ ⊤ 2 P Θ 1 ϑ(t 0 ) -ϕ ⊤ (-r)Qϕ(-r) + ϕ ⊤ (0) (Q + rR) ϕ(0) - 0 -r ϕ ⊤ (τ )Rϕ(τ )dτ (42)
where ϑ(t) and Θ 1 ;Θ 2 have been defined in ( 12) and (36), respectively, and

ϑ(t 0 ) := Col ξ ϕ(-r) , 0 -r F d (τ )ϕ(τ )dτ 0 -r E d (τ )ϕ(τ )dτ ∈ R κ ( 43 
)
given the initial conditions in [START_REF] Vyhlídal | QPmR -Quasi-Polynomial Root-Finder: Algorithm Update and Examples[END_REF]. Note that the relation

0 -r F d (τ ) ẏ(t + τ )dτ t=t0 = F d (0)ϕ(0) -F d (-r)ϕ(-r) -[M ⊗ I ν ] 0 -r F d (τ )ϕ(τ )dτ = (H ⊗ I ν ) Πϑ(t 0 ), (44) 
has been applied to derive H in (37), where (44) itself can be derived via ( 1)-( 2) with ( 8)-( 9). To obtain a upper bound for (42

), let R ≻ 0, ϖ(τ ) = 1, f(τ ) = f (•) and g(τ ) = φ(τ ), then one can derive 0 -r ϕ ⊤ (τ )Rϕ(τ )dτ ≥ [ * ] (F d ⊗ R) 0 -r F d (τ )ϕ(τ )dτ + [ * ] (E d ⊗ R) 0 -r E d (τ )ϕ(τ )dτ (45) 
via [START_REF] Muscat | Functional Analysis: An Introduction to Metric Spaces, Hilbert Spaces, and Banach Algebras[END_REF] given ( 4) and the forms in ( 5)- [START_REF] Pepe | On the asymptotic stability of coupled delay differential and continuous time difference equations[END_REF], where F d (τ ) and E d (τ ) are given in [START_REF] Fridman | H ∞ control of distributed and discrete delay systems via discretized Lyapunov functional[END_REF]. Now applying (45) with R ≻ 0 to (42) yields

d + dt v(x(t), y t (•)) t=t0,x(t0)=ξ,yt 0 (•)=ϕ(•) ≤ ϑ ⊤ (t 0 )Φϑ(t 0 ) (46) 
for all t 0 ∈ R where Φ is given in (35). It is obvious that there exists ϵ 3 > 0 such that

d + dt v(x(t), y t (•)) t=t0,x(t0)=ξ,yt 0 (•)=ϕ(•) ≤ -ϵ 3 ∥ξ∥ 2 (47) if Φ ≺ 0.
Thus it follows that if Φ ≺ 0 and R ≻ 0 are satisfied then (40) satisfies [START_REF] Feng | Stabilization of uncertain linear distributed delay systems with dissipativity constraints[END_REF]. Hence the feasible solutions of (34) infers the existence of (40) satisfying ( 14). Now we start to prove that (33) with Q ≻ 0 and R ≻ 0 in (34) infers that (40) satisfies [START_REF] Seuret | Complete quadratic Lyapunov functionals for distributed delay systems[END_REF]. First of all, given the structure of (40), it follows that ∃λ; η > 0 :

v(ξ, ϕ(•)) ≤ ξ 0 -r F (τ )ϕ(τ )dτ ⊤ λ ξ 0 -r F (τ )ϕ(τ )dτ + 0 -r ϕ ⊤ (τ )λϕ(τ )dτ ≤ λ∥ξ∥ 2 2 + 0 -r ϕ ⊤ (τ )F ⊤ (τ )dτ λ 0 -r F (τ )ϕ(τ )dτ + λr∥ϕ(•)∥ 2 ∞ ≤ λ∥ξ∥ 2 2 + λr∥ϕ(•)∥ 2 ∞ + 0 -r F (τ )ϕ(τ )dτ ⊤ (ηF ⊗ I n ) 0 -r F (τ )ϕ(τ )dτ ≤ λ∥ξ∥ 2 2 + λr∥ϕ(•)∥ 2 ∞ + 0 -r ϕ ⊤ (τ )ηϕ(τ )dτ ≤ λ∥ξ∥ 2 2 + (λr + ηr) ∥ϕ(•)∥ 2 ∞ ≤ (λ + λr + ηr) ∥ξ∥ 2 2 + ∥ϕ(•)∥ 2 ∞ ≤ 2 (λ + λr + ηr) [max (∥ξ∥ 2 , ∥ϕ(•)∥ ∞ )] 2 (48)
which is derived via the property of quadratic forms: ∀X ∈ S n , ∃λ > 0 : ∀x ∈ R n \ {0}, x ⊤ (λI n -X) x > 0 with [START_REF] Muscat | Functional Analysis: An Introduction to Metric Spaces, Hilbert Spaces, and Banach Algebras[END_REF] with f(τ ) = f (τ ) and δ = 0. This shows that (40) satisfies the upper bound property in [START_REF] Seuret | Complete quadratic Lyapunov functionals for distributed delay systems[END_REF]. Now to construct a lower bound for v(ξ, ϕ(•)), apply ( 17) to (40) with ϖ(τ ) = 1, δ = 0 and f(τ ) = f (τ ) matching the term F d (τ ) in (40), which gives

0 -r ϕ ⊤ (τ )Qϕ(τ )dτ ≥ [ * ] F d ⊗ Q 0 -r F d (τ )ϕ(τ )dτ. ( 49 
)
Considering the conclusion in (48) and by further applying (49) to (40) with Q ≻ 0 and R ≻ 0 in (34), it yields that ( 13) is satisfied if (33) and Q ≻ 0 and R ≻ 0 hold. This shows that feasible solutions of (33)-(34) infers the existence of (40) satisfying all the conditions in ( 13) and ( 14).

Remark 8. If one wants to increase the dimension of f (•) in (40), then extra zeros need to be added to A 3 in (3) to ensure compatibility. Note that there is no upper bound imposed on the dimension of f (•). Furthermore, if (1) is a retarded system, then the functional in (40) generalizes the Krasovskii functional in [START_REF] Seuret | Complete quadratic Lyapunov functionals for distributed delay systems[END_REF] where f (•) contains only Legendre polynomials. Finally, the use of f (•) in ( 2) to approximate φ(•) allows one to construct functional with more sophisticated kernels in (40) other than only the option of polynomials for (40).

Remark 9. To apply ( 17) at (45) with ϖ(τ ) = 1 and f(τ ) = f (τ ) and g(τ ) = φ(τ ), the linear independent condition (4) must be satisfied which guarantees an invertible E d . Moreover, the absence of φ(•) in (40) enables us to avoid dealing with φ(•). These are the major motivations for using the structure of the decomposition in (3) to handle distributed delay terms in this paper. 3) and (40) contains only Legendre polynomials, then Theorem 1 with the approximation scheme in (6) cover the stability results in Theorem 4 of [START_REF] Seuret | Complete quadratic Lyapunov functionals for distributed delay systems[END_REF]. Note that one can apply congruence transformations to Φ to avoid potential numerical problems caused by the position of the error matrix E d in (34) if some of its eigenvalues are too small. Namely, the matrix inequality

Remark 10. If f (•) in (
Φ = I n+ν+ϱ ⊕ ηE -1 2 d ⊗ I ν ⊤ Φ I n+ν+ϱ ⊕ ηE -1 2 d ⊗ I ν ≺ 0 (50) 
is equivalent to (34), where η ∈ R and the block-diagonals of Φ are no longer related to E d .

The following theorem shows that the LMI conditions in Theorem 1 exhibit a hierarchy with respect to d when f (•) contains only orthogonal functions.

Theorem 2. Let f (•) := Col d i=1 f i (•) ∈ C R R d in (2)
where {f i (•)} ∞ i=1 contains only functions which are mutually orthogonal over [-r, 0]. (See the Definition in [START_REF] Feng | Orthogonal functions based integral inequalities and their applications to time delay systems[END_REF] ). Given Γ d , E d (5)-( 7), we have

∀d ∈ N 0 , F d ⊆ F d+1 ( 51 
)
where

F d := r > 0 | (33)-(34) hold & P ∈ S n+dν , Q; R ∈ S ν .
Proof: The proof here is inspired by the proof of Theorem 8 in [START_REF] Seuret | Complete quadratic Lyapunov functionals for distributed delay systems[END_REF]. Note that P ≻ 0 in (33) and Φ ≻ 0 in (34) are indexed by the value of d. Hence d might be automatically attached to the related variables throughout the entire proof. Let r ∈ F d with F d ̸ = ∅ which infers that there exist feasible solutions for (33) and (34) at d. Moreover, let P d ∈ S n+dν and Q; R ∈ S ν to be a feasible solution of (33)-(34). We will show that the feasible solutions of (33)-(34) exist at d + 1 if the feasible solutions of (33) and (34) at d exist.

Assume that

P d+1 := P d ⊕ O ν , η d+1 (t) := η d (t) 0 -r f d+1 (τ )y(t + τ )dτ . ( 52 
)
with reference to the structures in (40). Since {f i (•)} ∞ i=1 contains functions which are orthogonal over [-r, 0], we have

F d+1 = F d ⊕ f d+1 with f -1 d+1 = 0 -r f 2 d+1 (τ )
dτ . Now by ( 52) and ( 9) with F d+1 = F d ⊕ f d+1 , it follows that P d+1 = P d ⊕ f d+1 Q with Q ≻ 0 and f d+1 > 0. Thus the feasible solutions of P d ≻ 0 infer the existence of the feasible solutions of P d+1 ≻ 0. Now we start to prove the hierarchical results for Φ d ≺ 0 in (34) with respect to d. Note that Φ d ≺ 0 can be written as

Φ d = Φd T d E d ⊗ I ν * -E d ⊗ R ≺ 0 (53)
where Φd can be easily obtained based on the structure of Φ d , and

T d = Υ ⊤ d P d I n O (ν+dν)×n A 3 I δ O d×δ ⊗ I ν ( 54 
)
with Υ d = Υ given in (38) at d. Now apply Schur complement to (53) considering the fact that E d ≻ 0 and R ≻ 0. Then it yields

Φd + T d E d+1 + f -1 d+1 γ d+1 γ ⊤ d+1 ⊗ R -1 T ⊤ d = Φd + T d [ * ] f -1 d+1 R -1 O ν×νδ * E -1 d+1 ⊗ R -1 γ ⊤ d+1 ⊗ I ν E d+1 ⊗ I ν T ⊤ d ≺ 0 (55)
based on ( 29) and ( 8), where γ d+1 = 0 -r φ(τ )f d+1 (τ )dτ f d+1 . Apply Schur complement again to (55) yields that given R ≻ 0, (55) holds if and only if

Θ =   Φd T d γ d+1 ⊗ I ν T d E d+1 ⊗ I ν * -f d+1 R O ν×νδ * * -E d+1 ⊗ R   ≺ 0. ( 56 
)
Now the fact is

Φ d+1 = Θ = Φd+1 T d+1 E d+1 ⊗ I ν * -E d+1 ⊗ R ≺ 0 (57) 
given the structure of Φ d at d in (53) and the relations

A 3 O n×ν Γ d+1 I d+1 ⊗ I ν = A 3 O n×ν     Γ d+1 ⊗ I ν γ d+1 ⊗ I ν I dν O dν×ν O ν×dν I ν     = A 3 Γ d ⊗ I ν I dν A 3 γ d+1 ⊗ I ν O dν×ν = A 3 Γ d ⊗ I ν I dν A 3 I δν O dν×δν (γ d+1 ⊗ I ν ) , ( 58 
)
T d+1 = (Υ d ⊕ I ν ) ⊤ (P d ⊕ O ν ) I n O (2ν+dν)×n A 3 O n×ν I δ O (d+1)×δ ⊗ I ν = T d O ν×δν (59)
in view of (54), and the coefficient A 5 O n×ν is obtained based on the relation

A 3 (τ ) = A 3 O n×ν φ ⊤ (τ ) f ⊤ (τ ) f d+1 (τ ) ⊗ I ν . ( 60 
)
Hence we have proved that given Q ≻ 0 and R ≻ 0 in (34), the feasible solutions of Φ d ≺ 0 infers the existence of the feasible solutions of Φ d+1 ≺ 0.

Remark 11. Theorem 2 generalizes the result of Theorem 8 in [START_REF] Seuret | Complete quadratic Lyapunov functionals for distributed delay systems[END_REF] as the latter one only considers f (•) to contain Legendre polynomials. [START_REF] Briat | Linear Parameter Varying and Time-Delay Systems[END_REF] IV. NUMERICAL SIMULATION In this section, two numerical examples are presented to show the effectiveness of our proposed method. Numerical calculations are conducted in Matlab environment with Yalmip [START_REF] Löfberg | YALMIP: A toolbox for modeling and optimization in MATLAB[END_REF] and SDPT3 [START_REF] Toh | On the implementation and usage of SDPT3-a Matlab software package for semidefinite-quadratic-linear programming, version 4.0[END_REF].

Consider the parameters in the following table for the CDDS system in (1). To the best of our knowledge, no existing methods may analyze the stability of (1) with the parameters in Example 1 and 2. This is even true for the frequency domain approaches in [START_REF] Vyhlídal | QPmR -Quasi-Polynomial Root-Finder: Algorithm Update and Examples[END_REF], [START_REF] Breda | Stability of linear delay differential equations: A numerical approach with MATLAB[END_REF] due to the CDDS structures and non-trivial distributed delay terms in Table I.

In order to demonstrate the impact of having different f (•) for Theorem 1, we consider the following functions: 

ℓ d (τ ) = Col d i=0 ℓ i (τ ) ∈ R d+1 and h d (τ ) = Col 1, Col d/2 i=1 sin 12iτ, Col d/2 i=1 cos 12iτ ∈ R d+1
= 0 ⊕ Od/2 ⊕ d/2 i=1 12i - ⊕ d/2 i=1 12i Od/2
in (2) for f (τ ) = h d (τ ), and d must be a positive even number for h d (τ ). Note that also the functions in h d (τ ) are not orthogonal over [-r, 0]. Now apply Theorem 1 with (50) and η = 1 and a testing vector r = (500 : 2500)/1000 to (1) with the parameters in Table I and Remark 12. Note that when one applies Theorem 1, the numerical results produced by f (τ ) = h d (τ ) and f (τ ) = ℓ d (τ ) are not mutually exclusive. Namely, users can choose the best results considering both side (and potentially even more if one wants to use more options for f (τ )) as the final conclusion produced by Theorem 1. This clearly shows one of the advantages of the proposed method in this paper.

A 3 = -5 0 ⊤ d+1 (62) A 3 = 0 0.02 0 0 -4 0 0 0 0 0 0.01 0 0 0 0 -10 O 2×(2d+2) , ( 63 
For Example 1 and 2 in Table I, we did not run our program with higher d > 24 for f (τ ) = ℓ d (τ ) via the testing vector r = (500 : 2500)/1000. This is because the expected computing time becomes too long due to the calculation of Γ d , E d in ( 5)-( 7) via the function vpaintegral with variable precision in Matlab. On the other hand, the numerical integration function integral in Matlab is not an alternative option in this case to calculate Γ d and E d because of its limited numerical accuracy. The results in Tables II-V can be explained by the fact that the functions in φ(τ ) over [-r, 0] is not "easy" to be approximated by polynomials if r becomes relatively large. Thus the numerical results in this section give examples demonstrating the advantage of our proposed approximation scheme over the existing polynomials only approximation approach [START_REF] Seuret | Complete quadratic Lyapunov functionals for distributed delay systems[END_REF].

V. CONCLUSION

In this paper, a new method for the stability analysis of a linear CDDS (1) with a general distributed delay has been proposed. The kernel of A 3 (•) can be any L 2 function over the delay interval, which has been handled by the decomposition (3) with a general form of approximation (5) using a class of elementary functions. The structure of the proposed approximation in ( 5)-( 7) is based on the idea of least square approximation in Hilbert Space. Thanks to the newly proposed inequality, the approximation error has been included in the proposed stability condition. It is also proved that the stability condition possesses a hierarchy when ( 6) is utilized with a f (•) containing functions which are mutually orthogonal. Two numerical examples have been presented which have shown the strength and effectiveness of our proposed methodology.

  , where ℓ d(τ ) contains Legendre polynomials ℓ i (τ )ℓ d (τ ) := F d = r -1 d i=0 2i +1 and the corresponding M in (2) for f (τ ) = ℓ d (τ ) can be easily determined. Note that h d (τ ) corresponds to M

  ) respectively, where (62) corresponds to both f (τ ) = h d (τ ) and f (τ ) = ℓ d (τ ) for Example 1 with φ(τ ) = sin(cos(12τ )), and (63) corresponds to both f (τ ) = h d (τ ) and f (τ ) = ℓ d (τ ) with φ(τ ) = e sin(12τ ) e cos(12τ ) sin(sin(12τ )) sin(cos(12τ )) ⊤ for Example 2, respectively. The computing results of detectable delay margins are summarized in

TABLE I PARAMETERS

 I OF NUMERICAL EXAMPLES FOR

Table II -

 II V where NoV denotes the number of decision variables required by each optimization program for a pointwise value of r.

	f (τ )	First interval Second interval NoV
	h d (τ ), d = 6	[0.599, 0.71]	[1.123, 1.233]	38
	h d (τ ), d = 10	[0.599, 0.71]	[1.122, 1.234]	80
	ℓ d (τ ), d = 10	[0.599, 0.71]	[1.126, 1.237]	80
	ℓ d (τ ), d = 23	[0.599, 0.71]	[1.122, 1.234]	327
				TABLE II	
	DETECTABLE STABLE DELAY MARGINS OF EXAMPLE 1
	f (τ )	Third Interval Fourth Interval NoV
	h d (τ ), d = 6	[1.647, 1.757]	[2.171, 2.28]	38
	h d (τ ), d = 10	[1.646, 1.758]	[2.168, 2.281]	80
	ℓ d (τ ), d = 10 not detectable	not detectable	80
	ℓ d (τ ), d = 23	[1.661, 1.739]	not detectable	327
				TABLE III	
	DETECTABLE STABLE DELAY MARGINS OF EXAMPLE 1
	f (τ )	First interval Second interval NoV
	h d (τ ), d = 6	[0.535, 0.774]	[1.059, 1.297]	142
	h d (τ ), d = 10 [0.535, 0.774]	[1.059, 1.297]	306
	ℓ d (τ ), d = 10 [0.535, 0.773]	[1.062, 1.287]	306
	ℓ d (τ ), d = 24 [0.535, 0.774]	[1.058, 1.298]	1384
				TABLE IV	
	DETECTABLE STABLE DELAY MARGINS OF EXAMPLE 2
	f (τ )	Third Interval Fourth Interval	Fifth Interval	NoV
	h d (τ ), d = 6	[1.583, 1.82]	[2.107, 2.168]	[2.283, 2.344]	142
	h d (τ ), d = 10	[1.582, 1.821]	[2.106, 2.168]	[2.283, 2.344]	306
	ℓ d (τ ), d = 10 not detectable	not detectable	not detectable	306
	ℓ d (τ ), d = 24	[1.59, 1.69] ∪ [1.717, 1.809]	not detectable	not detectable 1384

TABLE V DETECTABLE

 V STABLE DELAY MARGINS OF EXAMPLE 2
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