N
N

N

HAL

open science

Autonomous avatar-based architecture for value-added
services provision

Karima Khadir, Nawal Guermouche, Thierry Monteil

» To cite this version:

Karima Khadir, Nawal Guermouche, Thierry Monteil.
value-added services provision. The 6th IEEE International Conference on Internet of Things: Sys-

tems, Management and Security (IOTSMS 2019), Oct 2019, Grenade, Spain. hal-02337238

HAL Id: hal-02337238
https://laas.hal.science/hal-02337238
Submitted on 29 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Autonomous avatar-based architecture for


https://laas.hal.science/hal-02337238
https://hal.archives-ouvertes.fr

Autonomous avatar-based architecture for
value-added services provision

Karima KHADIR
LAAS-CNRS, Université de
Toulouse, INSA.
Toulouse, France.

kkhadir@laas.fr

Abstract—The Internet of Things (IoT) aims to create a
global infrastructure that provides a variety of value-added
services resulting from the interconnection of a large number
of heterogeneous devices from different domains. Web of Things
(WoT) enables to implement this vision by relying on the Web to
virtualize and interconnect IoT objects in a transparent way. The
IoT systems often operate in dynamic, unpredictable, and mobile
environments with limited resources. Therefore, virtualized IoT
objects on the Web need autonomous reasoning and decision-
making capabilities to adapt their behaviors to their context. In
this paper, we propose to extend virtual objects with reasoning
mechanisms based on semantic models. The goal is to adapt
their actions to the context of their environment. This extension
is called Autonomous Avatar. It provides an artifact of a real-
world entity on the Web while providing multiple features, such
as standalone reasoning, context management, and collaboration
capabilities. Based on the concept of autonomous avatar, we pro-
pose Fog based architecture for IoT Systems. This architecture
is a pillar for defining IoT approaches for services delivery.

Index Terms—Avatar, Web of Things, virtualization, au-
tonomous reasoning, Cloud-Fog-device architecture, Semantic,
SWRL rules.

I. INTRODUCTION

The Internet of Things (IoT) is a new paradigm that has
emerged strongly in recent years thanks to the proliferation
of connected devices and the revolution of Information and
Communication Technologies (ICT) as well as embedded
systems. The main objective of this paradigm is to allow
different heterogeneous objects connected to the Internet to
interact with each other and to exchange their data in order to
cooperate and perform common tasks thus facilitating human
life in its various aspects.

IoT objects essentially include RFID (Radio-Frequency
IDentification) tags and NFC (Near Field Communication)
codes to enable standardized device addressing and identifica-
tion, sensors for environmental perception, and actuators for
actuation. The variety of these objects allows the emergence
of many applications in all areas thus allowing to revolutionize
the user’s lifestyle.

Although the IoT paradigm has been a success, the de-
velopment of IoT applications raises great challenges. The
first is that IoT objects are deployed in highly distributed
and uncertain environments, thus undergoing unpredictable
changes. They are also endowed with limited resources which

Nawal GUERMOUCHE
LAAS-CNRS, Université de
Toulouse, INSA.
Toulouse, France.
guermouche @laas.fr

Thierry MONTEIL
LAAS-CNRS, Université de
Toulouse, INSA.
Toulouse, France.

monteil @laas.fr

considerably impacts the [oT devices performance. Cloud-
based solutions are necessary to collect, store and process
data. IoT also suffers from another serious problem that is the
vertical fragmentation of its market, this problem is due to the
diversity of standards used by the manufacturers of connected
objects, the different data formats as well as the variety of
protocols and communication standards.

The Web of Things (WoT) is a step forward in the IoT. It
relies on the Web to offer a high-level representation of IoT
objects. Such representation constitutes the concept of Virtual
Objects (VO) adopted in several works [1]-[5]. Recently, the
W3C consortium gave it the name of Avatar [6].

The virtualization makes the use of heterogeneous IoT
objects uniform and standardized. This enables interoperabil-
ity and flexibility across IoT systems. In the literature, the
proposed works rely on passive avatars (resp. VO) [2], [3]. In
fact, the goal of avatars is limited to expose on the Web the
supported functionalities so that the represented objects can be
integrated. The management of theses avatars is ensured by a
central entity, usually called Manager.

In this paper, we aim to empower the concept of an avatar
with autonomous capabilities. This makes avatars active and
then able to fulfill intelligent decisions according, for example,
to their context. Moreover, endowing avatars with intelligent
reasoning presents an opportunity to overcome the limitations
of existing works that rely on a central manager that handles
and manages passive avatars. Indeed, central manager-based
approaches are not scalable and in the case of manager
dysfunction, the whole system can be compromised.

This article is organized as follows. Section II analy-
ses the related works. In section III, we present high-level
autonomous-based architecture of IoT systems and we detail
the concept of autonomous avatar. Before concluding, we
expose the reasoning mechanisms based on the semantic
descriptions and logical rules that allow the avatar to adopt
an autonomous behavior IV.

II. RELATED WORKS

Many works related to the concept of virtualization of
connected objects have been proposed in recent years through
scientific research and industrial projects.



The work of Romer and al. in [7] uses the concept of Virtual
Meta Counterparts (VMC) to represent unconnected objects
tagged by RFID tags. This work is limited compared to the
needs of IoT applications since it does not allow automatic
discovery of the services provided by the objects object and
their collaboration,

In [9], a building automation system where its devices are
represented by the DPWS concept (Device Profile for Web
Service) is proposed. This work is based on SOA (Service-
Oriented Architecture) paradigm to fulfill dynamic service
composition according to the context information collected
and processed. In this architecture, all DPWSs are orchestrated
and managed by a central Building Application Server (BApS)
and the DPWS are passive.

The work presented in [10] relies on the concept of avatar
to represent physical objects on the Web. As described, in this
architecture the avatars are passive and the authors tackle the
problem of dynamic deployment of avatars. The underlying
architecture is suitable for centralized management of avatars.

The european project SENSEI [11], [12] aims to create an
open architecture that embodies the vision of the real-world
Internet (RWI). This architecture is based on the abstraction
of the heterogeneous Wireless Sensor and Actuator Network
(WSAN) of the various companies belonging to the consor-
tium in a global framework via entities called resources. A
SENSEI resource can represent one or more objects. It exposes
their features via universal interfaces. Their solution is limited
to the passive representation of IoT objects.

IoT-A (Internet of Things-Architecture) [1], [13] is an
European project that also aims to provide a reference ar-
chitecture and a basic set of building blocks to facilitate the
implementation of IoT applications. This project extends the
models proposed in the SENSEI project [11], [12] by enriching
the description models of the data produced or used by the
physical objects by semantic annotations via OWL-DL. These
semantic descriptions include contextual information about the
device environment, which gives meaning to the raw data of
the sensors. A VO, in this project, is designated by a Virtual
Entity (VE) rather than Resource as in SENSEI. A physical
object can provide one or more services and each service
is associated with an VE which. The basic building blocks
provided are high-level services ready for use. They are the
result of the orchestration of several VEs. The model proposed
in this project is very interesting thanks to the use of semantic
ontologies but VEs are passive.

iCore [14]-[16] is a framework that leverages the IoT-A
project’s advanced semantic modeling capabilities to represent
real-world devices. The specificity of the defined architecture
is that it relies on a cognitive framework to automate the
processing of the collected information and the making of the
corresponding decisions to the detected changes. The iCore
architecture consists of three layers: i) The lower layer is
called Virtual Object Level (VOL) which provides virtual
representations of real-world objects that can be dynamically
created and destroyed. The capabilities of objects are uni-
versally exposed to upper layers and other architectures. A

VO can abstract several real objects and a real object can be
represented by several VOs as in IoT-A. VOs are stored in a
common VO register that provides polling functions to find
the VO that best matches a request. ii) Virtual Object Level
Composite (CVOL) is the layer that provides the cognitive
mechanisms for the semantic mash-up of available VOs to
create compound services with added value. It is based on the
“event/action” logic. Constructed VOCs are also published in a
CVO repository. iii) Service Level (SL) is the last layer of the
iCore architecture to translate end-user requests and search for
the most appropriate CVOs to satisfy them. Cognitive science
and semantic reasoning mechanisms are the strength of the
iCore architecture because they automate the processing of
user requests. However VOs have no reasoning ability to react
to internal or external events, and they are just used by another
layer.

ETSI M2M and oneM2M: ETSI M2M [17] is a set of
technical specifications developed in 2009 by the European
Telecommunications Standards Institute (ETSI) to develop
and maintain complete IoT/M2M architectures by creating
a common service layer. In 2012, ETSI is fully committed
to oneM2M’s global initiative of seven international stan-
dardization organisms [18], which aims to provide a global
standard for the construction of IoT service platforms.Within
this standard, virtualization of physical objects is represented
via RESTful resources. A resource is addressable in a unique
way via a URI and it corresponds to a single physical object
which gives the association one to one. This standard is
earned by providing mechanisms for platforms to be highly
extensible to integrate existing and new technologies. It also
provides methods for the efficient discovery of resources
and subscriptions/notifications. However, like the other works,
these resources are passive and cannot be aware of their state
to act as a consequence.

To summarize, Table I gives a synthesis of the studied works
according to six properties:

o Cardinality of representation : that designates the number
of objects assigned to a virtual representation.

o The concept of virtualization: that corresponds to the used
abstraction concept

o Semantic description: that considers if the studied work
relies on rich semantic descriptions

o The nature of application management: that indicates if
the systems management is centralized or decentralized.

o Deployment infrastructure: that defines the architecture
deployment environment

o Type of behavior: that corresponds to a passive or active
behavior of the virtual representation

Most of the existing works focus only on the interoperability
problem of IoT systems in their virtualization proposals. For
this, we propose in this work to extend these proposals
by highlighting an architecture based on virtual objects that
have autonomous reasoning and decision-making capabilities
without the intervention of a central third party.



TABLE I

A SYNTHESIS OF THE STUDIED WORKS

Studied work | Cardinality Concept of | Semantic Application Deployment Type of be-
of represen- | virtualization | Description management | infrastruc- havior
tation nature ture

Romer and | One to Many | Virtual Meta | - Central Not defined -

al. [7] Counterparts

(VMC)

Mrissa and | One to One Avatar + Not defined Device, Fog | +

al. [10] and Cloud

HAN and al. | One to One Device + Central Server (loca- | -

[91 Profile  for database tion not de-

Web Service fined)
(DPWS)

SENSEI One to Many | Resource - Distributed Cloud -

[11], [12]

IoT-A  [1], | Many to One | Virtual + Distributed Not defined -

[13] Entity (VE)

iCore [14]- | Many to | Virtual + Central Fog and | -

[16] Many Object (VO) repository Cloud

ETSI One to One Resource + Distributed Fog and | -

M2M  and Cloud

oneM2M

[17], [18]

III. AUTONOMOUS AVATAR-BASED ARCHITECTURE FOR
10T SYSTEMS

As stated above, an avatar is defined as a virtual abstraction
of a physical device in the Web [6]. It exposes the features
provided by this device as services. Its aim is to abstract
a concrete object to offer an interoperable interface. In this
paper, in addition to exposing object functionalities, an avatar
has reasoning capabilities. This enables avatars to handle their
collaborations without the intervention of a third party.

Several advantages can be derived from the use of au-
tonomous avatars in IoT systems including:

- Interoperability: the objects of the world are modeled in
a uniform and standard way, whatever their nature and
their technologies, notably thanks to the use of semantics,
which essentially favors their automatic discovery in IoT
systems.

- Autonomous behaviour: Reasoning to make decisions
without the intervention of other entities promotes effi-
ciency in terms of response time.

- Plug and Play: it represents the process of quickly and
automatically detecting devices as soon as they join the
network and expose their features and make their avatar
active.

- Mobility management: virtualization of mobile objects
makes it possible to manage them in a transparent manner
regardless of their location, which will only represent
contextual information relating to its data.

- Context management: avatars are able to become aware
of the context (location, time, etc) in which the physical
object operate which improves their functionalities.

Traditional IoT architectures that use the virtualization of

real-world objects devote a whole layer above virtual objects
for application management. This layer is usually at the Cloud
level where the applications are managed in a centralized

way so that if a crash occurs at the server where they are
deployed, their data and their code will be lost. In addition,
there are several limitations because of the distance between
the devices and the cloud processing centers, especially in
terms of latency, bandwidth and security. The aim of our work
is to equip avatars with autonomous behavior and reasoning
mechanisms to enable them to collaborate with each other in
order to achieve common goals and build complex applica-
tions.

The proposed architecture is composed of two logical layers
as shown in the Figure 1:

Avatars Layer

Cloud

Fog nodes
)

Q m., !ﬂ

Devices

layer HT

Fig. 1. Autonomous avatar-based Architecture

- Devices Layer: is a collection of real-world devices:
sensors, actuators, and unconnected devices tagged with
RFID tags connected via several technologies to several
gateways that are in turn registered on a server. These
devices are heterogeneous, they can be mobile or fixed
and may be deployed in a distributed location.

- Avatars Layer: each Device Layer object is represented
via an avatar that virtualizes its profile and its features



using semantic descriptions. These avatars are active
entities. They have an autonomous behavior that allows
them to react following events modeled by changes in
their context (location for example) or at the level of
their internal data (e.g., detection of an anomaly in
the flow of a camera). Autonomic reaction capabilities
are related to the use of semantic representation and
reasoning mechanisms. Avatars can also talk to each
other to form a collaboration in order to solve a common
problem. They can be deployed directly at the device level
if they have the necessary resources. Also, Fog nodes
near the end-users or even the Cloud can be used if the
processes to be performed in the avatar are gourmand in
resources.

The generic architecture of an avatar is essentially composed
of three components as illustrated in Figure 2: i) a Knowledge
Base (KB) which contains its data and behaviors modeled
as logical rules, ii) a virtual object component that ensures
interoperability and iii) a component to model its autonomous
behavior in decision-making.

Autonomous
behavior

(Knowledge,
Rules)

Virtual Object

Fig. 2. Autonomous avatar Architecture

IV. SEMANTIC KNOWLEDGE MODEL

Semantic descriptions are a key element in our work since it
enable avatars to interpret their raw data to be understandable.
Moreover, inference and reasoning mechanisms can be exe-
cuted on the data to draw conclusions and decide what action
to do by using semantic reasoning rules.

In our model, each avatar has its proposed knowledge base
consisting of an instantiated generic ontology that mainly
contains a description of the avatar and the features it can
perform exposed as services, and a set of rules of type
“events/actions” where events represent internal changes of
data or context and actions represent a series of actions or
tasks to be performed following the events produced at the
level of the avatar.

We begin by presenting the ontology proposed in this work
and then we detail the reasoning mechanisms based on the
rules.

A. Ontologies

An ontology [21] is simply a graph that serves to provide
an unambiguous vocabulary and common model about objects,
their properties, and their relationships.

The proposed ontology AvatarOnt”, illustrated in the Fig-
ure 3, essentially describes the physical entities represented
by the avatars and all of their features that are modeled as
services. This ontology can be reused in any IoT application
domain. For the design of this ontology, we have based
on the NeOn [20] methodology which defines two types of
requirements: conceptual to present the concepts to integrate
into the ontology to create and functional regarding its general
structure.

The modules that make up the AvatarOnt ontology are:

- A service module: based on MSM! to describe service
operations, their inputs and outputs, hRests [22] for
service invocation REST methods and WSOnto to express
their non-functional part (QoS).

- A sensor module: based on SOSA? and IoT-O° to
describe the sensors and their observations.

- An actuator module: based on SAN* and IoT-O to
describe the actuators and the actions to be performed
on the devices.

- An avatar module: to describe the avatar, its goals, its
deployment node, the mobility of the device represented
and its location.

Example: A Camera_Avatar description
The following example gives a semantic description of the
camera avatar that represents the sensor camera device and
exposes its features as services. This avatar has a purpose
modeled as a process that is the detection and treatment of
driver tiredness.
<owl:NamedlIndividual rdf:about="avataront;Camera_Avatar”>
<rdf:type rdf:resource="&avataront;Avatar”/ >
<realizes rdf:resource="&DEMISA;, Tiredness_Process” / >
<represents rdf:resource="&ssn;Camera” | >
<hasService rdf:resource="&msm;Get_Tiredness_Driver” ] >
< Jowl:NamedIndividual>
<owl:NamedIndividual rdf:about="<&avataront; Camera” >
<rdf:type rdf:resource="&ssn;Sensor” | >
<hasObservation rdf:resource="&ssn;Driver_Tiredness”] >
< [owl:NamedIndividual>
<owl:NamedIndividual rdf:about=""&ssn;Driver_Tiredness” >
<rdf:type rdf:resource="&ssn;Observation”/ >
<hasSensorOutput rdf:about =" &ssn; Eyes_Inclination” ] >
< /owl:NamedIndividual>
<owl:NamedlIndividual rdf:about="&msm;Get_Tiredness_Driver” >
<rdf:type rdf:resource="&msm;Service”/ >
< Jowl:NamedIndividual>
Each avatar has a set of objectives to achieve, modeled
as a process. A process is defined as a continuous series of
correlated actions that has dependencies in their execution.
An objective can be broken down into several tasks that can
be complex or atomic. Several approaches have been proposed
for this purpose. The abstract description of the workflow by

Uhttp://iserve kmi.open.ac.uk/ns/msm
Zhttp://www.w3.0rg/ns/sosa/
3https://www.irit.fr/recherchessMELODI/ontologies/IoT-O
“http://www.w3.org/ns/ssn/



hasAvailability
hasTotalCalls

Q hasURI hasMethod
hasOutput, ii ;faslnpu

hasOperation
hasQoS

semcedep\oyedln

hasPerformance
asValue

achcahcn

hasMobility

epresen(s haana\s ActuationInput

hasEnerg\eReslncnon asActuation

hasMeasurmentCapability hasActuatingCapability

ha;Measurmethmpe’ty

hasAc(uaﬂngProperty

hasSurvwa\Propeny

Fig. 3. AvatarOnt ontology

the designer is one of the most common approaches given its
reduced cost. To do this, we use an ontology that describes the
different composite and atomic tasks that make up the appli-
cation to be performed and the logical dependencies between
them. The semantic description of the objectives to be achieved
provides an interoperable framework for understanding the
messages exchanged between them during their collaboration.
We use the same ontology proposed by Tiezt and al [23] while
adding a Task related node to designate the process state see:
Waiting, Running or Pausing, as shown in the Figure4.

one0f
hasPnlenndm&/&sl’recundman

hasNenCi
subClass,
/ ubClas

Waiting

Running

Pausing

hasState

asChlIdTask

hasGmupmg Sea

one0f|

Parallel

Choice

Fig. 4. DEMISA Task ontology [23]

Example: Tiredness_Process description
In this example, we describe a process that triggers once
tiredness is detected. This process is composed of two atomic
tasks that can performed in parallel; a vibration task that
needs to receive an ON command as a precondition and a
Message task that requires the text to be displayed to the driver.
<owl:NamedIndividual rdf:about="&DEMISA;, Tiredness_Process” >
<rdf:type rdf:resource="&DEMISA;Task”/ >
<hasGrouping rdf:resource="&DEMISA;Parallel” ] >
<hasChildTask rdf:resource="&DEMISA; Vibration” | >

asExecutionTime

<hasChildTask rdf:resource="&DEMISA;Message” ] >

< /owl:NamedIndividual>

<owl:NamedlIndividual rdf:about="&DEMISA, Vibration”>
<rdf:type rdf:resource="&DEMISA;AtomicTask”/ >
<hasPreCondition rdf:resource="&DEMISA;op=ON"/ >

< Jowl:NamedIndividual>

<owl:NamedIndividual rdf:about="&DEMISA; Message” >
<rdf:type rdf:resource="&DEMISA;AtomicTask”] >
<hasPreCondition rdf:resource="&DEMISA;op=0ON &text="Attention

Assist: Pause!’”/ >
< Jowl:NamedIndividual>

hasDateTime

B. Reasoning mechanisms

Concerning reasoning mechanisms, we have turned to meth-
ods based on reactive rules driven by events because these
methods have proved their effectiveness in distributed systems
deployed in uncertain environments, particularly in artificial
intelligence (AI) and Multi-Agents Systems (MAS).

The purpose of this type of rules is to detect events in order
to allow automatic reactions. They are of type E1 A E2A ... A
En — Pi, where the first part of rule represents a conjunction
(or a disjunction) of events and the second part Pi represents
the process to be accomplished as a result of events.

Example:

This example shows the rule which allows to trigger the
TirednessProcess and which has as antecedent: the detection
of driver eyes inclination by a sensor intended to observe the
driver tiredness.
Sensor(?s) A

hasSensorOutput(DriverTiredness, Eyes_Inclinatio) —

hasObservation(?s, DriverTiredness) A
hasState(TirednessProces, Waiting)
The reasoning and decision-making within an avatar are

provided essentially by three components illustrated in the
Figure 5 and detailed below:

Process to
be executed

Send
message .

H---=>l@ P

SPARQL | Reasoning
operations|  Engine o
sparqL
operations ! . .
I P
Context Receive Other
Manager message [ ayatars
A -
1 T
Raw data | | Action

1 k' 4
Device Layer

Fig. 5. Reasoning modules

- Context Manager: it allows to permanently monitor the
changes that may occur in the the avatar’s environment or
at the device level represented by him regarding changes



in his state or data. The contextual information we are
interested in is: quality of service, device features, device
location, mobility, and availability. Once the changes are
detected, this manager is responsible for updating the
knowledge base via SPARQL operations (create, update
and delete).

- Knowledge Base (KB): it consists of the instantiated
AvatarOnt ontology, a set of logical rules describing the
behavior of the avatar in response to events and a cache
to store the latest messages received or sent by the avatar.
All of these three elements constitute the knowledge of
the avatar.

- Reasoning Engine: this module integrates several algo-
rithms implemented in a programming language (Java or
C++ for example) and a reasoner (JENA for example),
which take care of the execution of processes (to achieve
a goal) triggered by a logical rule at the level of the
KB, the processing of messages received by the avatar
and the update of the avatar KB with a new knowledge.
This means that once a process takes the Waiting state
in the KB, that engine puts the process state to Raining
via an UPDATE SPARQL query and execute a SELECT
SPARQL query to retrieve the complete process descrip-
tion. Then for each task, it executes an ASK SPARQL
query to find if there is a task that corresponds to the
considered task taking into account its preconditions and
post-conditions. If it does, it executes it, otherwise, it
solicits a UDDI® (Universal Description Discovery and
Integration) to retrieve the list of avatars able to achieve
it while considering preconditions and post conditions
of the task. The avatar sends a request message to the
first avatar of the list to ask him to confirm that he
can perform the task. If he get an acceptance message
and he has the input data of this task, he sends him a
confirmation message with the inputs. Otherwise, if he
will have a rejection message, he will request another
avatar from the returned list, and so on. The dependencies
existing between the process tasks such as the sequence,
parallelism for example are specified in its semantic
description (see ontology Figure 5) which allows to guide
this engine in the execution stage. All of these actions are
summarized in Algorithm 1 and Algorithm 2.

Example :

Let us consider a tiredness detection scenario within a
connected vehicle. It is assumed that the vehicle is equipped
with a camera placed in front of the driver to analyze its
behavior and detect any sign of tiredness: head inclination
and eyes inclination, a vibrator built into the steering wheel
and an user interface to display messages to the driver.

We will now unfold the functioning of the above modules on
our use case: once an inclination of the driver’s eyes is detected
via the video stream analysis of the camera that monitors his
tiredness state thanks to an algorithm embedded in the Context

5We assume in this first work that all available avatars publish their services
in an UDDI

Algorithm 1 Process Execution
Inputs: Process i with Waiting state

Qutputs: success or failure
BEGIN

1 Make the state of Process i to Raining with SPARQL
UPDATE request

2 Get the process description with SPARQL GET request

3 Extract the first task : task

4 WHILE (task hasNext)

5 IF task is AtomicTask
Call ExecuteAomicTask();
6 ELSE
7 IF task hasGrouping Parallel or Choice
FOR each ChildTask of task
JUMP to 5
8 ELSE
JUMP to 4
ENDIF
ENDIF
ENDWHILE
END

Manager of the Camera avatar,this last updates the knowledge
base with an UPDATE operation. Thanks to the rule of the
example , this change will trigger the process expressed in the
example by setting its state to Waiting. Once the reasoning
engine realizes that there is a pending process through periodic
checks, it sets its state to Raining with a SPARQL UPDATE
operation.

Then it retrieves its description, it extracts the first task
which is of type GroupedTask, so it recovers the type of
Grouping thanks to the relation hasGrouping and it finds that
it is of parallel type. And so he gets back the subtasks through
the hasChildTask relation and he finds that he has two subtasks
Vibration and Message and as the relation is parallel he takes
for each task apart. For the vibration task, it checks whether
it is an atomic or grouped task, it finds that it is atomic and it
checks if it has in its knowledge base a service to carry out this
task. So, it seeks from the UDDI the avatars who can realize
the task and it finds one who is Vibration_Avatar. The engine
sends it a REQUEST message awaits its answer. Once the
avatar receives the response ACCEPT_PROPOSAL, it checks
the preconditions for the execution of the task, it finds that
there are no conditions that depend on other tasks so it sends
a CONFIRM message to Vibration_Aavatar with the complete
description of the task. Once the Vibration_Avatar receives the
confirmation, it executes the corresponding service. And the
same with the message display task.

V. IMPLEMENTATION TECHNOLOGIES

As we said at the beginning, our goal is to add autonomous
behavior to virtualized IoT entities that ensure interoperability
between different IoT domains regardless of the technologies



Algorithm 2 Execute AtomicTask()
Inputs: task description

Qutput: outputsService, success or failure
BEGIN

1 Run a SPARQL ASK query on the avatar KB
2 IF (avatar is able to perform the task)

3 Execute the service matches
4 Return his outputs

5 ELSE

6 Search the list of avatars able to perform the task

in the UDDI
7 Send a message to all the avatars of the list: msg =

[id, REQUEST, taskDescription, list];

8 Continue = true;
9 WHILE (Continue & (timeOut not expire) )

13 ReceiveMessage();

14 IF (Performative == ACCEPT_PROPOSAL)

15 Send a message to avatar: msg = [id, CON-
FIRM, taskDescription, avatar]
16 Continue = false

17 ELSE

18 IF (Performative == REJECT_PROPOSAL)
19 Continue= true
ENDIF

ENDIF

ENDWHILE
20 IF (timeOut expire)

21 Return failure
ENDIF
END

used. For this, we chose to use a platform based on the
intentional standard oneM2M .OM2M?®: is an open source
project developed by the LAAS-CNRS’, then distributed by
the Eclipse Foundation. It provides a standardized horizontal
M2M services platform implementing ETSI SmartM2M and
oneM?2M standards. OM2M aims to reduce the complexity of
the process of developing vertical M2M applications that can
work across a wide range of heterogeneous devices, protocols
and networks to facilitate their deployment. This platform
offers a modular architecture, which runs over the OSGI
EQUINOX (Open Services Gateway initiative) layer, which
makes it highly extensible via plugins.

In order to add autonomous behavior to an OM2M resource
that represents a virtual representation of a single real-world
object, we have studied the multi-agent frameworks as Ja-
CaMo®, PADE’, FraMaS [25] and JADE!. Thanks to this

Shttps://www.eclipse.org/om2m/
7https://www.laas fr/public/
8http://jacamo.sourceforge.net/
%https://pade.readthedocs.io/en/latest/
10http://jade.tilab.com/

study, we realized that JADE is the most adapted to our needs
given its ease of use and compliance with the FIPA standard.

JADE!" (Java Agent Development Framework): is a soft-
ware that offers implementation facilities. It includes: i) A run-
time environment where agents will run on distributed hosts.
ii) A library of classes that can be used to develop agents,
per-to-per-call communication via FIPA-ACL!? (Foundation
for Intelligent Physical Agents) asynchronous messages. This
framework also supports the migration of agents from one
host to another which makes it interesting to implement the
autonomous behavior of avatars.

The combination of OM2M and JADE architectures in our
solution gave rise to the architecture shown in Figure 6:

Main
Container
IN-CSE

Server

Container Container Container

Gateways

MN-CSE MN-CSE MN-CSE

MOTT Bluctooth CAN

Devices

Fig. 6. Proposed avatar-based technical architecture

The distributed architecture of the proposed solution
essentially consists of a set of devices based on heterogeneous
technologies from different brands, connected to several
OM2M gateways that ensure interoperability by exposing the
features offered by the different devices via open interfaces
based on a lightweight RESTful API. Each OM2M gateway
(MN-CSE") hosts a JADE container on which the avatars run.
These gateways are connected and registered with an OM2M
server (IN-CSE'#) which allows access to the entire system
and which in turn hosts the JADE Main Container. The latter
contains a DF(Directory Facilitator) which represents Yellow
Pages of services where avatars can publish their capabilities
and search for avatars providing the capabilities they need
and an AMS(Agent Management System) used for avatars
life cycle management (creation, deletion and their migration).

Concerning the modeling of semantic knowledge of avatars,
we have chosen OWL!>(Web Ontology Language) for the
instantiation of the ontologies used and SWRL'® (Semantic
Web Rule Language) which provides a high-level syntax for
modeling the logical rules of the avatar as a sequence of
axioms and facts, because of their simplicity and intuitive use.

http://jade.tilab.com/

2http://www.fipa.org/

I3MN-CSE: Middle Node Common Services Entities
14IN-CSE: Infrastructure Node Common Services Entities
Dhttps://www.w3.0rg/OWL/
16https://www.w3.org/Submission/SWRL/



VI. CONCLUSION

In this paper, we presented the general context of our work
and a first proposal for a modular architecture for IoT systems
that relies on a software artifact called autonomous avatar.
This later virtualizes and represents a given real-world object
on the Web. This is suitable for developing interoperable com-
plex IoT systems. The particularity of our proposition is that it
relies on the artifact of autonomous and collaborative avatars,
which enables decentralized and collaborative management of
IoT systems. . In this contribution, we focused on the reasoning
module design of this architecture and the logical rules to
apply on the knowledge base.

In our ongoing works, we are extending the proposed archi-
tecture by defining a distributed and decentralized approach
for goal-guided autonomous avatars collaboration. This will
ensure a dynamic and distributed management of the services
provided by the avatars to realize complex IoT applications.
We aim to implement all of these proposals on the use case of
overtaking between vehicles in collaboration with the company
Continental'”.

ACKNOWLEDGMENT

This work is funded by Continental Digital Service France
(CDSF) in the framework of the eHorizon project.

REFERENCES

[1] Nitti, M., Pilloni, V., Colistra, G., and Atzori, L. (2015). The
virtual object as a major element of the internet of things: a
survey. IEEE Communications Surveys Tutorials, 18(2), 1228-
1240.

[2] Terdjimi, M. (2015, October). Multi-level context adaptation in
the Web of Things.

[3] Rachkidi, E. (2017). Modelling and placement optimization of
compound services in a converged infrastructure of cloud com-
puting and internet of things (Doctoral dissertation, Université
Paris-Saclay; Université d’Evry-Val-d’Essonne).

[4] Farris, 1., Girau, R., Militano, L., Nitti, M., Atzori, L., lera, A.,
and Morabito, G. (2015). Social virtual objects in the edge cloud.
IEEE Cloud Computing, 2(6), 20-28.

[S] Han, N. S. (2015). Semantic service provisioning for 6LoWPAN:
powering internet of things applications on Web (Doctoral dis-
sertation).

[6] DAVE, RAGGETT. Introduction to the Web of Things.
W3C.[Online]. Available at https://www.w3.0rg/2015/03/intro-
wot.pdf, Accessed: 2019-06-30.

[7] Romer, K., Schoch, T., Mattern, F., and Diibendorfer, T. (2004).
Smart identification frameworks for ubiquitous computing appli-
cations. Wireless Networks, 10(6), 689-700.

[8] Angarita, R., Manouvrier, M., and Rukoz, M. (2016, April). An
agent architecture to enable self-healing and context-aware web
of things applications.

[9] Han, S. N., Lee, G. M., and Crespi, N. (2013). Semantic context-
aware service composition for building automation system. IEEE
Transactions on industrial informatics, 10(1), 752-761.

[10] Mrissa, M., Medini, L., Jamont, J. P.,, Le Sommer, N., and
Laplace, J. (2015). An avatar architecture for the web of things.
IEEE Internet Computing, 19(2), 30-38.

[11] Presser, M., Barnaghi, P. M., Eurich, M., and Villalonga, C.
(2009). The SENSEI project: Integrating the physical world with
the digital world of the network of the future. IEEE Communi-
cations Magazine, 47(4), 1-4.

Thttps://www.societe.com/societe/continental-digital-services-france-
821289675.html

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

SENSEI project.[Online]. Available at https://www.ict-sensei.org/,
Accessed: 2019-06-30.

De, S., Barnaghi, P., Bauer, M., and Meissner, S. (2011, Septem-
ber). Service modelling for the Internet of Things. In 2011
Federated Conference on Computer Science and Information
Systems (FedCSIS) (pp. 949-955). IEEE.

Projet iCore.[Online]. Available at http://www.iot-icore.eu, Ac-
cessed: 2019-07-01.

Kibria, M. G., Kim, H. S., and Chong, I. (2016, January).
IoT learning model based on virtual object cognition. In 2016
International Conference on Information Networking (ICOIN)
(pp. 369-371). IEEE.

Parodi, A., Maresca, M., Provera, M., and Baglietto, P. (2015, Oc-
tober). An iot approach for the connected vehicle. In International
Internet of Things Summit (pp. 158-161). Springer, Cham.
ETSI, Terms of Reference for Technical Com-
mittee (TC) Smart Machine-to-Machine commu-
nications (Smart M2M).[Online]. Available at
https://portal.etsi.org/TBSiteMap/SmartM2M/SmartM2MToR.aspx,
Accessed: 2019-07-01.

oneM2M,Standards for M2M and the Internet of Things. [Online].
Available at http://www.onem2m.org/, Accessed: 2019-07-01.
Seydoux, N., Drira, K., Hernandez, N., and Monteil, T. (2016,
November). 10T-O, a core-domain IoT ontology to represent
connected devices networks. In European Knowledge Acquisition
Workshop (pp. 561-576). Springer, Cham.

The NeOn Methodology.[Online]. Available at

http://mayor2.dia.fi.upm.es/oeg-upm/index.php/en/methodologies/59-

neon-methodology/, Accessed: 2019-07-02.

Mizoguchi, R., and Kozaki, K. (2009). Ontology engineering en-
vironments. In Handbook on Ontologies (pp. 315-336). Springer,
Berlin, Heidelberg.

Roman, D., Kopecky, J., Vitvar, T., Domingue, J., and Fensel,
D. (2015). WSMO-Lite and hRESTS: Lightweight semantic an-
notations for Web services and RESTful APIs. Journal of Web
Semantics, 31, 39-58.

Tietz, V., Blichmann, G., Pietschmann, S., and MeiBner, K. (2011,
June). Task-based recommendation of mashup components. In In-
ternational Conference on Web Engineering (pp. 25-36). Springer,
Berlin, Heidelberg.

Swetina, J., Lu, G., Jacobs, P., Ennesser, F., and Song, J. (2014).
Toward a standardized common M2M service layer platform:
Introduction to oneM2M. IEEE Wireless Communications, 21(3),
20-26.

Su, C. J., and Wu, C. Y. (2011). JADE implemented mobile multi-
agent based, distributed information platform for pervasive health
care monitoring. Applied Soft Computing, 11(1), 315-325.



