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LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France
mfoughal@laas.fr

Abstract. The challenges of deploying robots and autonomous vehicles call for
further efforts to bring the real-time systems and the formal methods communi-
ties together. In this paper, we discuss the practicality of paramount model check-
ing formalisms in implementing dynamic-priority-based cooperative schedulers,
where capturing the waiting time of tasks has a major impact on scalability. Sub-
sequently, we propose a novel technique that alleviates such an impact, and thus
enables schedulability analysis and verification of real-time/behavioral properties
within the same model checking framework, while taking into account hardware
and OS specificities. The technique is implemented in an automatic translation
from a robotic framework to UPPAAL, and evaluated on a real robotic example.

1 Introduction
In robotics, schedulability analysis needs to be consolidated with the verification of
other important properties such as bounded response and safety. This need is flagrant in
e.g. mixed-criticality software, where some tasks are allowed to exceed their deadlines.
Dually, important hardware-software settings (e.g. number of cores, scheduling policy)
are classically abstracted away in formal verification. This renders verification results
valid only if all tasks run in parallel at all times, which is seldom a realistic assumption.

Bridging the gap between these communities would be of a great benefit to practi-
tioners and researchers: one could imagine a unified framework where schedulability,
but also other properties can be verified, on a model that is faithful to both the under-
lying robotic specification and the characteristics of the OS and the robotic platform.
This is however very difficult in practice. For instance, theoretical results on schedulers
are difficult to exploit given e.g. the low-level fine-grain concurrency at the functional
layer of robotic systems, where components directly interact with sensors and actuators
(details in Sect. 3.1). Similarly, enriching formal models with e.g. dynamic-priority-
based scheduling policies usually penalizes the scalability of their verification, even in
non-preemptive settings. As an example, cooperative EDF [20] requires knowing the
waiting time of tasks in order to compute their priorities. Model checking frameworks
are hostile to this kind of behavior: UPPAAL [7], for instance, does not allow reading
the value of a clock (to capture waiting time), which requires using discrete-time-like
methods that create further transitions in the model [19], leading to unscalable verifica-
tion in the context of complex robotic systems.

In this paper, we propose a novel approach that allows schedulability analysis and
formal verification of other properties within the same framework. We transform captur-
ing waiting times from a counting problem to a search problem, which we solve using a



binary-search-inspired technique. Integrated within a template, this technique allows us
to automatically obtain, from functional robotic specifications, scalable formal models
enriched with dynamic-priority cooperative schedulers. Our contribution is thus three-
fold: we (i) propose a novel approach for the general problem of capturing, at the model
level, the value of time elapsed between some events, (ii) enable model checking robotic
specifications while taking into account hardware- and OS-related specificities and (iii)
automatize the process so the formal models are obtained promptly from any robotic
specification with no further modeling efforts. We pay a particular attention to the read-
ability of this paper by a broad audience in the different communities of robotics, formal
methods and real-time systems. In that regard, we adopt a level of vulgarization with
simple mathematical notions, together with sufficient references for further readings.

The rest of this paper is organized as follows. First, we propose a novel technique
that ensures alleviating the effect of modeling schedulers on scalability (Sect. 2). Then,
in Sect. 3, we present the UPPAAL template [15], which automatically generates formal
models from robotic specifications, and show how we extend it with dynamic-priority
schedulers using the solution shown in Sect. 2. In Sect. 4, we use the automatically
generated models to verify properties over a real-world case study, before we explore
the related work in Sect. 5 and conclude with a discussion and possible future work
(Sect. 6).

2 Capturing Time
In this paper, we focus on dynamic-priority cooperative (i.e. non preemptive) sched-
ulers, namely cooperative Earliest Deadline First (EDF) and Highest Response Rate
Next (HRRN). The computations of either of these schedulers rely on a key informa-
tion: the waiting time. Let us consider n tasks T1 .. Tn. Whenever a core is free, wi, the
time each task Ti has been waiting in the queue so far, is used to compute its priority.
In EDF (resp. HRRN), the smaller (resp. higher) the value of di − wi (resp. 1 + wi

ei
),

the higher the priority of Ti, where di is the (relative to task activation) deadline (resp.
ei is the estimated execution time) of Ti (more in Sect. 3.3). The task with the highest
priority is then released: it is removed from the queue and a core is assigned to it.

Now, we need to integrate these schedulers into “model-checkable” formal models
of robotic and autonomous systems. We explore thus two main formalisms: time Petri
nets TPN and timed automata extended with urgencies UTA, both extended with data
variables. This is because most of paramount model checkers are based either on the
former (e.g. Fiacre/TINA [8] and Romeo [22]) or the latter (e.g. UPPAAL [7] and IM-
ITATOR [6]). Also, we already have templates that translate robotic specifications to
both Fiacre/TINA [12] and UPPAAL [15]. Exploring both TPN and UTA will help us
conclude on which of these templates we need to extend with schedulers.

2.1 Preliminaries

We (very briefly) present TPN and UTA as to show the difference between these for-
malisms in the context of this paper. In the original “model checkable” version of each
formalism, timing constraints (bounds of time intervals in TPN and clock constraints in
UTA) are allowed in Q≥0 ∪∞. Since we can always multiply all timing constraints by
a natural that brings them to N ∪∞ (that is the lowest common multiple LCM of their
denominators), we use natural constraints in our presentation.



Time Petri nets TPN: Time Petri nets TPN [24] are Petri nets extended with time inter-
vals (we only focus on closed intervals in this succinct presentation). Each transition t is
associated with an interval I (t) = [at , bt ] over R≥0 where at ∈ N (resp. bt ∈ N ∪∞)
is the earliest (resp. latest) firing deadline of t. The semantics of I (t) is as follows: if
t was last enabled since date d, t may not fire before d + at and must fire before or at
d + bt unless it is disabled before then by firing another transition. Time intervals in
TPN are thus relative to the enabledness of transitions: if t is disabled, then I (t) has no
semantic effect. We consider a version of TPN where guards and operations over data
variables are possible on transitions.

Timed automata with urgencies UTA: Timed automata TA [4] extend finite-state Büchi
automata with real-valued clocks. The behavior of TA is thus restricted by defining
(natural) constraints on the clock variables and a set of accepting states. A simpler
version allowing local invariant conditions is introduced in [18], on which this paper
(and tools like UPPAAL) relies. The syntax and semantics of TA in this paper follow
those in [2] except that we refer to switches as edges. UTA [9] extend TA with a notion
of urgency on edges, mainly (i) the strong urgency eager, denoted

;

, meaning the edge
is to be taken as soon as enabled and (ii) the weak (by default) urgency lazy, meaning
the edge may be taken when enabled. Transitions resulting from synchronizing some
clock-constraint-free edges inherit the strongest urgency (if there is at least one

;

edge
in the synchronization, the resulting transition is also

;

). We consider a version of UTA
where guards and operations over data variables are possible on edges.

TPN vs UTA: What we need to retain for the sake of understanding this paper relates
uniquely to the way time is handled in both formalisms. The main difference is that TPN
feature no clocks (time intervals depend on transitions enablendess) whereas clocks in
UTA evolve monotonically and independently from edges/transitions enabledness.

2.2 A High Level Presentation: Problem and Solution

We analyze the problem of capturing an arbitrary time, in both TPN and UTA models, at
a framework-independent high level. We consider in each case a “process” that needs to
store the value of time τ separating two events e and e′, captured through the Booleans
b and b′, respectively. The value of τ is needed to perform further computations in the
model. Since we are reasoning at a high level, we use standard algorithmic notations:
← for assignment, = for equality and ¬ for negation. In UTA, reset(x ) denotes reset-
ting the valuation of clock x to zero. In graphical representations, guards are in green,
operations in blue, and discontinued arcs/edges refer to missing parts of the model.

Before we go any further, it is very important to distinguish between the modeling
and the verification levels. Here, it is essential to capture and store τ in order to construct
the model (the model depends on the value of τ , as explained for EDF and HRRN
above, and further detailed in Sect. 3.3). We cannot just use verification techniques to
e.g. look for the bounds τ lies within, because the model itself relies on the exact value
of τ for each e− > e′ sequence, the tracking of which is far from obvious. Indeed, TPN
feature no clocks to capture τ directly in the model. Surprisingly, this is also the case for
UTA: UTA-based model-checkers allow comparing a clock value to some constraints,
but none of them permits reading such a value as to e.g. store it in a variable, since
that would prevent symbolic representations like regions [3]. It follows that we can only
approximate τ to its truncated natural value (or the natural that upper-bounds it).



The classical method: Fig. 1 shows the “classical” way to capture τ in TPN. The orig-
inal net is in black stroke: as soon as (denoted by the interval [0, 0]) b (resp. b′) is true,
transition t (resp. t′) is fired, which unmarks place p (resp. the “waiting” place w) and
marks place w (resp. p′). When p′ is marked, we need the value of τ to perform further
computations. The part in light blue is thus added to the net. Transition t count, whose
input and output place is w , is fired at each time unit as long as event e′ is not received,
which increments the value of τ . Consequently, as soon as p′ is marked, τ holds the
truncated natural value of the real duration d separating e and e′ (d − 1 if d is natural).
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Fig. 1: Capturing waiting time in TPN
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Fig. 2: Capturing waiting time in UTA

An equivalent solution is implemented in UTA (Fig 2). Location l is to wait for
event e. Eager (

;

) edges are taken as soon as their guard is true. The invariant on clock
x at location w enforces taking the added edge (in light blue) at each time unit, which
increments the value of τ . This method, referred to as integer clocks, is proposed to
solve a similar problem in [19].

Now, in either formalism, this solution is very costly: adding transitions triggered
at each time unit creates further interleavings and complexity that leads to combinatory
explosion in real-world robotic case studies (Sect. 4.1).

An optimized method: A key idea of this paper relies on transforming the counting
problem into a search problem: instead of counting the time elapsed between e and e′,
we search for the value of τ once e′ is received. This technique requires however an
upper bound of τ (that is a value UP we know τ will never exceed). In our solution,
this value may change for each sequence e− > e ′ (UP may take a different value each
time location l (or place p) is (re-)reached).

The solution in UTA is shown in Fig 3. At location s (for search), at which time
cannot elapse (all outgoing edges are

;

), we undertake a binary search (aka half-interval
search) that swings the value of τ within the bounds u (upper bound, initially UP ) and d
(lower bound, initially 0) till x lies within [τ − 1 , τ + 1 ], after which we simply assign
τ the natural that lower-bounds the real value of x (by taking one of the edges from s
to l′). This method is not implementable in TPN due to the absence of clocks.

Now, we already know that, generally, binary search algorithms (logarithmic com-
plexity) are faster than linear ones. We extrapolate that the number of times edges from
location s (in the optimized solution, Fig. 3) are taken is generally (and noticeably)
smaller than the one of taking the self-loop at location w (in the classical solution,
Fig. 2). Thus, there is a considerable gain in terms of state space size (and therefore
scalability) when using the optimized technique, as we will confirm in Sect 4.1.
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Fig. 3: Capturing waiting time in UTA (optimized solution)

Note that we can think of more optimized solutions, like simply testing the value
of x between each pair of integers i and i + 1 within the range 0..UP on separate
edges from s to l′. This would not, however, work if the value of UP varies from an
e− > e ′ sequence to another, which renders the solution less generic (e.g. in the context
of schedulability, it would not work for tasks with variable deadlines [29]).

3 Application to Robotic Systems
In previous work, we bridged the robotic framework GenoM3 (Sect. 3.1) with
Fiacre/TINA [12, 13] and UPPAAL [15] through templates. Now, we only extend the
UPPAAL template (since the optimized method, Sect. 2, is only implementable in UTA)
with EDF and HRRN schedulers. The UPPAAL template output is proven faithful to
the semantics of GenoM3 [14,15]. Therefore, we present briefly GenoM3 in this section,
then explain some of the former’s important behavioral and real-time aspects using an
example of an automatically generated UPPAAL model of a GenoM3 component.

3.1 GenoM3:

GenoM3 [14, 23] is a component-based framework for specifying and implementing
functional layer specifications. Fig. 4 shows the organization of a GenoM3 component.
Activities, executed following requests from external clients, implement the core al-
gorithms of the functionality the component is in charge of (e.g. reading laser sensor,
navigation). Two types of tasks are therefore provided: (i) a control Task to process re-
quests, validate the requested activity (if the processing returns no errors), and report
to the clients and (ii) execution task(s) to execute activities. Tasks (resp. components)
share data through the Internal Data Structure IDS (resp. ports).

An execution task is in charge of a number of activities. With each period, it will run
sequentially, among such activities, those that have been already validated by the control
task. Activities are finite-state machines FSM, each state called a codel, at which a piece
of C or C++ code is executed. Each codel specifies a WCET (worst case execution
time) on a given platform, and the possible transitions following its execution. Taking
a pause transition or a transition to the special codel ether ends the execution of the
activity. In the former (resp. latter) case, the activity is resumed at the next period (resp.
terminated).
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Fig. 4: A generic GenoM3 component
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Fig. 5: The RobNav application

IDS, ports & concurrency: At ths OS level, tasks are parallel threads, with fine-grain
concurrent access to the IDS and the ports: a codel (in its activity, run by a task) locks
only the IDS field(s) and/or port(s) required for its execution (simultaneous readings
are allowed). A codel in conflict (cannot execute at the same time) with another codel
because of this locking mechanism is called thread unsafe (thread safe otherwise). Be-
cause of the concurrency over ports, codels in conflict may belong to different compo-
nents. This aspect renders generalizing results on optimal schedulers very difficult in
the context of robotics, as referred to in Sect 1.

Case study: In this paper, we consider a variation of the RobNav application developed
by fellow researchers at LAAS-CNRS (Fig. 5, technical details in [13]). The GenoM3
specification includes four components interacting to achieve autonomous terrestrial
navigation. There are five execution tasks. Additionally, each component has a control
task. The total number of tasks is therefore nine. The presentation in this paper focuses
mainly on execution tasks and is greatly simplified. For more details on control tasks
(e.g. how they are activated) and more complex aspects (e.g. interruption of activities),
we refer the interested reader to [14].

3.2 UPPAAL Template

We show in Fig. 6 a very simplified version of the automatically generated UPPAAL
model of the periodic execution tasks odo and track (ROBLOCO component, one time
unit in the model is equal to 1 ms). This model follows the implementation model shown
in [15], proven faithful to the semantics of GenoM3 [14, 15]. The urgency process is to
enforce

;

transitions through the urgent channel exe (UPPAAL supports

;

transitions
only, not

;

edges). Note that not all activities are shown.
Each task t is composed of a manager (to execute, at its location manage , activ-

ities sequentially), a timer (to send, through the Boolean tick t , period signals to the
manager), and a number of activities the task executes. The next() function browses
the array tab t , whose cells are records with two fields: n (activity name) and s (activ-
ity status), and returns the index of the first activity that is previously validated by the
control task and still not executed in this cycle (an information retrieved through the
s fields). The manager and the activities use this function, together with the variables



lock t and turn t , to communicate: the manager computes the identity of the next ac-
tivity to execute and gives it the control (through turn t and lock t). The activity will
then execute until it pauses (e.g. reaching track pause in TrackSpeedStart) or termi-
nates (e.g. reaching ether in InitPosPort), in which case it computes the identity of the
next activity to execute (in i) and gives the control back to the manager. When there
are no more activities to execute (i is equal to the size of tab t and the manager has the
control through lock t), the manager transits back to its initial location start .

Now, at the activity level, a signal is transmitted when the activity pauses or ter-
minates (through the Boolean finished t) to the control task (not shown here), so the
latter informs the client that requested such activity and updates the status of the activ-
ity in tab t . A thread-unsafe codel c is represented using two locations, c and c exec
(e.g. compute and compute exec in TrackOdoStart). The guards and operations over
the array of Booleans mut ensure no codels in conflict (e.g. codel track in TrackSpeed-
Start and codel compute in TrackOdoStart) execute simultaneously, and the urgency
on c → c exec edges ensures the codel executes (or loses some resources) as soon as
it has the required resources. The invariants on locations c exec and the guards on the
clock on the edges of the form c exec → reflect the fact that a codel is executed in a
non-zero time that cannot exceed its WCET. For thread-safe codels, c exec locations
are not needed, and the invariant is thus associated with c locations.

As we can see, this model is highly concurrent: tasks may run on different cores and
locking shared resources is fine grain (at the codels level) with simultaneous readings
allowed. These features allow to maximally parallelize the tasks, but render manual
verification and analytical techniques for schedulability analysis impractical.

3.3 Extending with Schedulers
We show how to extend the UPPAAL template with cooperative EDF and HRRN sched-
ulers. First, we use the case study to exemplify on how to adapt the solution shown in
Sect. 2 to efficiently and correctly integrate such schedulers. Then, we automatize such
integration within the template.
Example: Let us get back to the ROBLOCO example. The manager processes are the
only ones that will be affected. Also, we will need a scheduler process. Let us first in-
troduce the constants, shared variables and channels that the scheduler and managers
need to communicate and synchronize.
Constants: The number of tasks in the application is denoted by the constant
size sched . An array of constant naturals periods is introduced in which, with each
task denoted by index i, a period periods[i ] is associated.
Shared variables: We need a queue (array) T of size size sched in which we insert
tasks dynamic priorities. Then, since priorities change their position when T is de-
queued, we need an array p such that p[i ] tracks the index of T that points to the cell
holding the dynamic priority of task i (that is T [p[i ]]). Also, we need a natural len to
store the number of waiting tasks, an array w to store the waiting time for each task i,
and a natural s count to store the number of tasks for which the search for the waiting
time has already finished. Finally, the natural nc stores the number of available cores.
Channels: A handshake channel insert is introduced to increment len . A broadcast
channel up synchronizes with as many tasks as len to start the search operation. Be-
sides, a broadcast channel en synchronizes the scheduler with all waiting tasks in order
to diffuse the decision for each task on whether it is released (given a core to execute)
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Fig. 6: UPPAAL model of tasks odo and track (automatically generated)



or not (needs to wait further). Finally, a broadcast channel srch eliminates interleaving
between managers during the search operation (more explanation below).
We show now the scheduler, then how the manager of odo is modified accordingly:
Scheduler: The scheduler (Fig. 7) has three locations: start (initial), update and give .
The last two are committed, which (i) prevents interleaving with other interactions in
the system and (ii) enforces urgency on all their outgoing edges (time cannot elapse).

The self-loop edge at location start , synchronized on insert , increments the num-
ber of waiting tasks each time a task wants to execute (we do not need a guard on this
edge because the size of T is already equal to the number of tasks in the application).
From location start , it is possible to reach location update providing there is at least
one task to release.

len--, 
nc--

update_queue(T,p,w), 
dequeue(T,p)

s_count:= 0

s_count < len

len>0 && nc>0

s_count == len

srch!

en!

start up!

insert?
len++ update

give

Fig. 7: UPPAAL model of the scheduler

At location update , an edge synchronized over the channel srch allows looping as long
as the search has not finished for all waiting tasks (with one search operation for all
tasks at once thanks to the broadcast channel srch). Another edge permits reaching the
location give as soon as the search has finished for all waiting tasks (captured through
the value of s count). On this very edge, the core of the scheduling algorithm is imple-
mented: function update queue() updates the dynamic priorities in each T [p[i ]] before
the function dequeue() finds the task with the highest priority and removes its priority
by updating both p and T . The core of update queue() is given later in this section.
Now, from location give , the initial location is immediately reached through an edge
synchronized on the channel en . The number of cores as well as the number of waiting
tasks is decremented as the task having the highest priority is released.
Manager: In the new manager model (Fig. 8), we have a clock x and four intermediate
locations: ask , search , decide , and error . To meet the upper-bound condition (Sect. 2),
we reason as follows. In such a real-time system, we do not tolerate that a task is still
waiting (for a core) since a duration equal to its period. Thus, we enforce an urgency
(through an invariant) from location ask (at which the clock x tracks the waiting time)
to location error as soon as the waiting time is equal to the task period. Then, at the
analysis step, we start by checking whether error is reachable in any manager in the
model, in which case we drop the analysis and increase the number of cores.
The remaining aspects are rather trivial considering the scheduler model and the search
technique in Sect. 2 (we reuse the variable names for search bounds, u and d, from
Fig. 3): p[i ] is updated from start to ask , the edge from ask to search is synchronized
on up to drag all waiting tasks managers to the committed location search at which
they loop, synchronized on srch , until the search ends. When all managers reach their



Fig. 8: UPPAAL model of the odo manager (enriched)

respective decide locations, s count is equal to len (the number of waiting tasks) and,
in each manager, either the edge to manage or ask is taken, depending on whether
the task i is released (recognized through p[i ] equalling −1), or not (otherwise). In the
latter case, d (resp. u), the lower (resp. upper) bound for the next search is updated to
the current value of w [i ] (resp. period [i ]). Finally, the task frees the core at the end of
execution (operation nc ++ on the edge from manage to start).

Automatic synthesis: At this stage, we are ready to automatize the process. The user
may pass the flag -sched to the UPPAAL template, followed by two numbers: the
scheduling policy (HRRN (1) or EDF (2)) and the number of cores (a natural in 0 ..9 ).
For instance, the following command line generates the UPPAAL model of the GenoM3
specification spec.gen, that integrates a cooperative EDF scheduler over four cores:

genom3 uppaal/model -sched=24 spec.gen

Now, the core of the UPPAAL template is enriched to automatically integrate such
specificities in the generated model. As an example, the listing below shows the piece
of the template that generates the update queue() function. The interpreter evaluates
what is enclosed in <’ ’> in Tcl and outputs the rest as is. Line 1 conditions gener-
ating the function with the validity of the option passed by the programmer and lines
8-9 generates the right dynamic-priority formula according to the specified scheduler
in the option. In the case of EDF, we simply subtract the waiting time w [i ] from the
(relative) deadline, fixed to the period period [i ]. For HRRN, we proceed as follows.
The estimated execution time is usually an average computed dynamically. Here, we
fix it statically to the period of the task (the same reasoning was followed in [12] for the
SJF scheduling policy). Then, since we can only perform integer divisions in UPPAAL,
we look for the LCM lcm p of all periods and multiply the priority formula by it. Since
lcm p is strictly positive, the inequality sign is not affected.

1 <’if {$argv >= 10} {’>
2 /* scheduling */



3 /* update dynamic priorities */
4 void update_queue (int &T[size_sched], int &p[size_sched], int

&w[size_sched]) {
5 int i;
6 for (i:= 0; i<size_sched; i++) {
7 if (p[i] >= 0) {T[p[i]]:=
8 <’if {$argv < 20} {’>lcm_p + w[i] * (lcm_p/period[i])
9 <’} else {’>period[i] - w[i]<’}’>;}}

10 }
11 <’}’>

4 Results
We aim to analyze the deployability of the case study (Sect. 3.1) on the Robotnik
Summit-XL platform [1], featuring an embedded four-core PC running Linux. There
are two requirements, which we are unable to guarantee using classical FCFS and SJF
schedulers from [12]. The track task is hard real-time (R1): it must always finish execut-
ing its activities within its period (new computed speeds must be sent to the controller
at a fixed rate of 20 Hz). The remaining tasks are soft real-time, with the condition that
the time by which a task exceeds its period must be always smaller than the period
itself (R2). R1 is a typical schedulability property, whereas R2 is a bounded response
property. UPPAAL models extended with EDF and HRRN are automatically generated
from the case study. The results presented below are identical for both schedulers.

Schedulability: To check the schedulability of a task t, we first make sure such a task
never waits for a duration equal to its period before starting to execute its activities, that
is location error of its manager is unreachable:

A[] not manager_t.error

This safety property does not guarantee schedulability, but its falsification allows to
quickly invalidate R1 (and is generally unacceptable for any task). Thus, we start by
one core (nc = 1 ) and increase as soon as the safety property is violated for any task.
We stop when nc is equal to four, the number of cores on the platform. The results show
that as soon as nc reaches three, the property is satisfied for all tasks.

At this point, we fix nc to three and verify R1 (task track). The reasoning is as
follows. A task is busy (waiting or executing activities) as long as its manager is not at
location start (we verify beforehand that locations ask and manage are reachable in
all managers). Thus, we check whether no new signal from the timer is sent while the
manager is not at location start :

A[] (not manager_track.start imply not tick_track)

This safety property is violated for nc = 3 , which means R1 is dissatisfied, which is no
longer the case as soon as we increase nc to four. We fix thus nc to four and pursue the
verification for the remaining tasks in order to assess R2.

Bounded response: Now, for each task t that is not schedulable, we ask for the maxi-
mum value of clock x at location manage , at which activities are executed:
sup{manager t .manage} : manager t .x
Then, we simply subtract the period of t from the result to get exct , the maximum
amount of time by which t exceeds its period.



The results for both schedulability and bounded response are given in table 1. All
tasks are feasible, besides scan (component roblaser) that may exceed its period by up
to 20 ms (which is inferior to its period). R1 and R2 are thus both met on the four-core
platform, and we can provide the precise maximum amount of time by which the only
non schedulable task may overrun its period.

t odo track plan fuse scan
schedulabe Yes Yes Yes Yes No

exct / / / / 20
Table 1: Verification results (four cores).

4.1 Discussion

The results are encouraging: (i) schedulability is verified for all tasks and (ii) if schedu-
lability is violated, the precise upper bound of the time the period is exceeded is re-
trieved. All this is done automatically at both the modeling (template) and verification
(model checker) levels, while taking into account the real hardware and OS specifici-
ties. As expected, the search technique used to capture waiting times scales much better
than the classical counting one: with the former, verification results are obtained within
around 80 s for each property with less than 1 Gb of RAM usage, while with the latter no
answer is given after several minutes and 4 Gb. However, we do not know whether we
can obtain better results (e.g. schedulability of all tasks or shorter exceeding time) with
preemptive schedulers. Indeed, we may not rely on generic theoretical results to know
whether preemptive schedulers may perform better than cooperative ones in this case,
and, unfortunately, preemption do generally not scale with model checking (Sect. 5).
Possible directions to deal with this issue are given in Sect. 6.

5 Related Work
Real-time analysis and model checking in robotics: Bridging the gap between analyti-
cal techniques (e.g. in schedulability analysis) and model checking is generally not ex-
plored at the functional layer of robotic and autonomous systems. On one hand, works
focusing on model checking [21, 25, 30] ignore hardware and OS constraints (number
of cores and scheduling policy) which restricts the validity of results to only when the
number of cores in the platform is at least equal to that of the robotic tasks, which is
usually an unrealistic assumption. On the other hand, real-time analysis of functional
robotic components [16, 17, 28], mainly focusing on schedulability, is non automatic,
gives no guarantees on other important properties and is hard to extend to verify spe-
cific temporal constraints (such as bounded response). Moreover, theoretical results on
optimized schedulers are hard to generalize to the case of robotics due to the complex-
ity of multitasking models. For instance, the experiments in [26] show how, contrary
to generic theoretical results, some non preemptive schedulers perform better than pre-
emptive ones in the case of a mobile robot application.
Model-checking for schedulability: Using model-checking-based techniques to verify
schedulability has been studied in the past, producing tools such as TIMES [5]. Unfor-
tunately, such tools are too high-level to implement complex robotic applications, which
prevents their use as a uniform environment to verify various real-time and behavioral
properties, including schedulability. Furthermore, they target mainly preemptive sched-
ulers, and consequently suffer from scalability issues in large applications.



Capturing time in formal models: To the best of our knowledge, enriching formal
models of robotic applications with dynamic-priority cooperative schedulers is a non-
explored research direction. Still, the problem that arises, i.e. storing arbitrary time
values in variables to construct the model, has been already encountered in other do-
mains. It is the case of [19], where the authors use integer clocks to perform arithmetics
on clock values stored in natural variables. Such integer clocks, relying on a classical
counting algorithm, lead to unscalable models in the case of large robotic applications.
Comparison to our previous work: In [12], we extended the Fiacre template with FCFS
and SJF cooperative schedulers. We concluded that we would need to integrate more
“intelligent” schedulers with dynamic priorities, which we efficiently achieve in this
paper using a novel binary-search-based technique. Practitioners can thus automatically
generate, from any robotic specification, a formal model enriched with EDF or HRRN,
on which various properties can be verified within the same framework, UPPAAL. The
results enable deploying the case study on a four-core platform.

6 Conclusion
In this paper, we elaborate an effort to bring the robotics, the real-time systems and
the formal methods communities together. We aim at providing, automatically, for-
mal models of robotic specifications that take into account the actual hardware and OS
specificities. In order to consider optimized (dynamic-priority) schedulers, we propose
a scalable search method that we automatize within the UPPAAL template developed
in [15]. The obtained results are encouraging, and allow to deploy the case study on a
four-core robotic platform while fulfilling real-time requirements. This work gives also
insights on the use of formalisms in practice. For instance, we favor TA-based to TPN
models for this particular problem, where it was the other way around in [11].

A possible direction of future work is considering preemptive schedulers. Indeed,
those may further improve the deployability, but do unfortunately not scale with model
checking. We are exploring the extension of the UPPAAL-SMC (Statistical Model
Checking) template [15] with preemptive schedulers in order to verify the properties
up to some high probability. In that regard, works like [10] may help us deal with the
lack of probabilistic requirements in the robotics domain (what could be considered as
a “sufficiently high probability” for a robotic application?). Another direction is to inte-
grate more low-level specificities, such as cache interferences (modeled using UPPAAL
in [27]), in our models as to gain a higher confidence in the verification results.
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