
HAL Id: hal-02346074
https://laas.hal.science/hal-02346074

Submitted on 4 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mirage: towards a Metasploit-like framework for IoT
Romain Cayre, Vincent Nicomette, Guillaume Auriol, Eric Alata, Mohamed

Kaâniche, Geraldine Marconato

To cite this version:
Romain Cayre, Vincent Nicomette, Guillaume Auriol, Eric Alata, Mohamed Kaâniche, et al.. Mirage:
towards a Metasploit-like framework for IoT. 2019 IEEE 30th International Symposium on Software
Reliability Engineering (ISSRE), Oct 2019, Berlin, Germany. �hal-02346074�

https://laas.hal.science/hal-02346074
https://hal.archives-ouvertes.fr

Mirage: towards a Metasploit-like framework for
IoT

Romain Cayre∗†, Vincent Nicomette∗, Guillaume Auriol∗, Eric Alata∗, Mohamed Kaaniche∗, and Geraldine Marconato†
∗CNRS, LAAS, 7 avenue du colonel Roche, F-31400

Univ de Toulouse, INSA, LAAS, F-31400
†APSYS.Lab, APSYS

Email: ∗firstname.lastname@laas.fr, †firstname.lastname@airbus.com

Abstract—Internet of Things (IoT) devices are nowadays widely
used in individual homes and factories. Securing these new
systems becomes a priority. However, conducting security audits
of these connected objects based on experimental evaluation
is a challenging task: it requires the use of heterogeneous
hardware components leading to a set of specialised software
tools, generally incompatible with each other and often complex
to use. In this paper, we present a security audit and penetration
testing framework called Mirage. This framework, written in
Python, is dedicated to the analysis of wireless communications
commonly used by IoT devices, and provides a generic, modular,
unified and low level audit environment that is easy to adapt
to new protocols. The paper describes the software architecture
of Mirage, its goals and main features, and presents a concrete
example of security audit performed with this framework.

Keywords-IoT; wireless; audit; security; framework

Nowadays, fundamental changes are taking place in the in-
formation technology sector: many objects used in day-to-day
life become connected and upgraded continuously with new
functionalities. This major change, leading to the expansion of
the Internet network into the physical world, is called “Internet
of Things” (IoT).

These changes occur in a particular context. Indeed, several
wireless communication protocols developers are waging a
merciless economic war, trying to attract industry to engage
with them. In order to address technical requirements related
to these new IoT devices, such as low power consumption or
mobility, Zigbee, ANT+ or Bluetooth Low Energy (which is a
variant of Bluetooth, designed to provide significantly lower
power consumption) are engaged in a keen competition to win
new markets, leading to the continuous release of new func-
tionalities, sometimes without adequate attention to security
requirements. The heterogeneity of these existing protocols
and their rapid expansion is problematic [1], contributing to
increasing the attack surface of those devices and consequently
of the systems and networks in which these devices are
deployed.

In this particular context, reliable and efficient tools and
relevant experimental-based methodologies are needed to anal-
yse and assess the security of IoT devices. Many different
exploitation frameworks and exploits have been released in
recent years, such as Killerbee [2] or BTLEJack [3]. However,
conducting security audits of IoT devices is still a challenging
task for the following reasons.

The multiplicity and the heterogeneity of wireless com-
munication protocols used by IoT devices has led to the
development of various offensive radio frequency (RF) compo-
nents (e.g. Ubertooth, Micro:Bit, Yard Stick One, ...) [4]–[6]:
every hardware component has its own specificities and APIs,
leading the security analyst to develop time-consuming and
low value source code to perform such experimental analyses.
Moreover, two distinct types of hardware components are
commonly used to analyse wireless communications: Software
Defined Radios or low cost Systems On Chip adapted to RF
communications. However, they have various limitations in
terms of efficiency. Software Defined Radios are interesting
because of their genericity and because they are highly cus-
tomizable. However, they involve a large amount of effort to
implement the protocols stacks. On the other hand, the System
on Chips are generally not designed for security analysis,
implying the development of customized offensive firmware,
often poorly documented and poorly tested.

As a result, security analysts generally make use of high-
level libraries that have not been developed with a security
perspective in mind, or create their own libraries, resulting
in a lack of modularity and flexibility. This generates costly
duplicate developments and sometimes leads to poorly written
code.

The code of these tools becomes more complex, and as
a consequence, more likely to be errorprone. Simplicity,
reusability and modularity are three characteristics of modern
software development according to McCall’s Factor Model [7],
and the previously mentioned constraints have a significant im-
pact on these characteristics (e.g. the development of complex
architectures or the use of custom firmware).

The aforementioned problems have a big impact on the
reproducibility of security audits based on penetration testing
techniques, which is a key requirement in this context [8].
Indeed, the use of non standard libraries and software tools
as well as the heterogeneity of hardware components make
a systematic approach difficult. It is imperative to provide a
tool to efficiently carry out experimental security audits for IoT
devices. Unfortunately, to our knowledge, such a tool does not
exist yet.

To fill this gap, this paper presents the design and the
implementation of an original open source attack-oriented
framework to support the security analysis of IoT devices,

named “Mirage”. This framework, written in Python, targets
commonly used wireless IoT communication protocols. The
primary objective is to provide a modular and flexible software
environment for the development of security assessment tools,
similarly to the popular Metasploit framework. However, pro-
viding such a framework is a more difficult task because of IoT
specificities (e.g. the large amount of protocols and offensive
RF hardware components used). As a result, the proposed
framework is designed to interface with any kind of RF
components thanks to a versatile communication architecture.
It provides an unified API to analyse the lower layers of
various wireless protocols, and can be easily extended to
support new protocols. Finally, Mirage allows complex attack
scenarios to be implemented, by the combination and chaining
of different modular software components.

The paper is organised as follows. Section I describes the
related work, Section II briefly introduces the key design prin-
ciples behind Mirage. Section III presents an overview of its
architecture. The different protocols and attacks implemented
so far in the framework are described in Section IV. Section V
presents a concrete illustrative example of a security audit
with Mirage. Finally, the main conclusions and future work
are discussed in Section VI.

I. RELATED WORK

This section firstly underlines some defensive approaches,
then an overview of some offensive techniques and tools is
presented.

Several works present and analyse the rise of new kind of
threats targeting IoT devices with a potentially devastating
effect, such as the Mirai botnet [9] or massive coordinated
attacks on the power grid [10]. As a consequence, several
studies discuss the relevance of classical security approaches
and investigate new mitigation measures, especially intrusion
detection systems. For example, IoT SENTINEL [11] monitors
WiFi and Ethernet traffic through the access point of the
smarthome and isolates the identified vulnerable devices. Roux
et al. [12] provide a protocol-independent approach based on
the analysis of the physical layer using Software Defined Ra-
dios, to monitor wireless communications and detect intrusion
attempts. Defensive approaches based on IoT-based Honeypots
have also been discussed, such as IoTPOT [13] which is
dedicated to analysis of Telnet-based attacks.

At the same time, several attacks targeting wireless com-
munication protocols commonly used by IoT devices, such
as Wifi, Zigbee or Bluetooth Low Energy (BLE), were also
presented. In [14], Ronen et al. show that a vulnerability
affecting Philips Hue light bulbs allows an attacker to control
the connected objects and corrupt their firmware in order to
create an IoT worm. Ryan demonstrates in [15] that an attacker
is able to passively eavesdrop a Bluetooth Low Energy commu-
nication and to bypass its potential encryption. In [16], Armis
releases several critical vulnerabilities targeting the Bluetooth
stack, allowing to take control of billions of Bluetooth enabled
devices. In [17], Goodspeed et al. demonstrate a vulnerability
targeting some RF systems on chip allowing to use them

as a low level injection tool. Based on this work, Newlin
[18] demonstrates several critical vulnerabilities targeting the
Enhanced ShockBurst protocol (commonly used by wireless
mice and keyboards).

These new attack techniques lead to the development of
interesting offensive tools and frameworks. Wright released
Killerbee [2], a security framework targeting Zigbee-enabled
devices. Cauquil provided two offensive tools, BTLEJuice
[19] and BTLEJack [3], allowing to perform Man-In-The-
Middle attacks or hijacking attacks on Bluetooth Low Energy
connections, while improving the sniffing technique developed
by Ryan [15]. Jasek developed a similar tool called GATTacker
[20], allowing to conduct a Man-In-The-Middle attack on BLE
devices. Finally, various sniffers and RF hardware components
for security attacks [4]–[6] have been released and are dedi-
cated to offensive security.

However, these various tools and techniques have been
developed using different languages and libraries, which are
not generic. They use different APIs and interact with a
specific custom hardware, leading to a lack of modularity
and flexibility. An illustrative example is the development of
GATTacker and BTLEJuice. Both are based on two nodeJS
libraries called bleno and noble. These libraries allow to
implement Bluetooth Low Energy Peripherals and Centrals,
but they are not designed to be used together and imply
the use of two different operating systems. To address this
problem, GATTacker’s developer rewrote the code of these
libraries while the architecture of BTLEJuice was composed
of two software components running on different OS and
communicating thanks to a complex WebSockets architecture.

In this context, existing approaches and tools to support
experimental security audits must be adapted and improved.
In [21], Chung-Kuan et al. underline the fact that testing tools
and techniques are fundamental to support IoT security. In [8],
Dalalana Bertoglio & Zorzo have analysed 54 primary studies
related to Penetration Testing and classified the commonly
used tools. They conclude that there is almost no discussion
on IoT pentesting and underline the need for reproducibility of
security audits. In summary, to our knowledge, none of state-
of-the art existing tools provide so far a flexible and modular
environment allowing to easily integrate new protocols and
attack strategies, while providing a stable and unified API
for assessing the security of wireless IoT devices. The main
objective of our framework is to fill this gap.

II. KEY PRINCIPLES

The proposed attack-oriented framework named Mirage is
aimed at developing a modular and flexible software environ-
ment allowing to address the main constraints inherent to this
type of offensive security tools, especially the heterogeneity
of RF hardware components commonly used in the IoT world
and the lack of low level attack-oriented libraries covering
IoT wireless communication protocols. Four main principles
have guided and motivated our work, and are discussed in the
following subsections.

A. Providing an unified API

Nowadays, conducting experimental-based security audits
of connected objects implies that security analysts must use at
the same time several different software tools, each providing
its own API and documentation, and potentially using specific
file formats, and each of these tools has its own limitations.

As a consequence, the analyst has to learn a lot of technical
information that is not directly linked to the audit workflow
and is generally neither relevant nor reusable. In addition,
they must install the different, and potentially dependent, tools
and libraries, leading to increasingly complex solutions. This
situation involves rewriting many non-reusable codes to work
together or to integrate specific functionalities.

Our framework is designed to seamlessly integrate the
different software components and provide a unified API.
Indeed, each software component can be configured via a
similar interface and uses the same type of display, logging
and output mechanisms. The multiple components used to ma-
nipulate the wireless communication protocols closely follow
the same lines and expose a common API. In addition, the
framework architecture requires developers to follow these
guidelines while developing audit modules or implementing
new protocols.

This approach facilitates the interactions between different
pieces of code while harmonising the use and implementation
of attacks.

B. Modularity and reusability

Modularity is one of the main features of our framework.
Indeed, some attacks targeting a specific protocol imple-
ment similar elementary actions and behaviours. For example,
fuzzing and cloning a Bluetooth Low Energy devices involve
the same type of actions: the tool must scan the RF environ-
ment to find the target device, then connect to that device and
discover the services and features, etc. Finally, the specific
behaviour (fuzzing the device or simulating a similar one) can
be triggered.

To prevent code redundancy and facilitate maintenance, the
framework is designed to divide complex attacks scenarios into
small functional modules. Therefore, in the aforementioned
use cases, attacks could be broken down into small code units:
a scanner, a connection module and a discovery module are
provided and can be used in both scenarios, avoiding code
redundancy. Mirage allows existing modules to be directly
reused in a new attack implementation, but also to be executed
sequentially using a chaining operator similar to the pipe
operator in UNIX environments. This behaviour allows to
quickly generate complex attack workflows by controlling the
combination of several modules.

This modular approach allows us to cover a large amount
of existing attack tools without rewriting them all in our
framework. Therefore, a security analyst can really focus on
his attack workflow without having to write a lot of irrelevant
code.

C. Genericity

Many different RF hardware components are nowadays used
to perform experimental based security audits. However, each
offers different features and APIs, and a significant part of
an analyst’s work is devoted to understanding the function-
alities provided by a specific component and implementing
the corresponding methods. As a result, one of the most
important guidelines for us was to design an architecture
able to manage these multiple hardware components while
following the aforementioned principles, e.g. by providing a
unified API to use them.

Each wireless communication protocol commonly used in
IoT devices has its own specificities. However, we have
identified similar behaviours. As a consequence, we have
chosen to design a generic communication architecture that
allows new protocols to be easily integrated or existing ones to
be manipulated. Currently, this architecture is functional and
we have successfully integrated eight hardware components
related to several protocols such as Bluetooth Low Energy,
Wifi, Zigbee, Enhanced ShockBurst and Infrared radiation
(IR).

D. Low level analysis

As mentioned above, many different attack tools use high-
level libraries. These libraries are generally not designed for
security analysis, and they potentially have certain constraints
and limitations that may have a significant impact on the tools
design.

As a consequence, it is necessary to allow the security ana-
lyst to work on the lower layers of the communication protocol
stacks. To address this problem, we have implemented flexible
and modular protocol stacks, allowing to deeply modify the
behaviour of the protocols and easily manipulate the lower
layers accessible by software.

This approach has been successful in the implementation
of Bluetooth Low Energy Man-in-the-Middle attacks. Working
at a lower level allowed us to avoid the limitations implied
by the previously mentioned libraries: our Man-in-the-middle
implementation does not require multiple operating systems
or need to fully clone the GATT layer of the device to work,
allowing us to directly redirect the packets without simulating
an entire BLE device.

III. ARCHITECTURE OVERVIEW

This section describes the key features of our framework
architecture. We present the main software components com-
posing our architecture, and we focus on our generic com-
munication architecture. Then, we focus on the modularity of
our framework by presenting the concepts of Modules and
Scenarios and introducing the chaining operator designed to
execute modules sequentially in a pipe, as does the UNIX shell
with commands.

A. Main software components

Mirage framework is composed of four main components,
as shown in Figure 1:

Fig. 1. Global architecture of Mirage framework

1) The core component (“core”): this component includes
the core mechanisms of our framework to load, con-
figure and execute the modules, but also to manage
the background tasks, signals and configuration files. It
provides an unique entrypoint, allowing the framework
to be used from a command line interface or directly
from the shell environment via the execution of scripts.

2) The internal libraries (“libs”): this component is in
charge of implementing the wireless protocol stacks, and
provides a generic communication architecture to easily
integrate new protocols. It provides some display and
logging mechanisms and some utilities and helpers func-
tions (e.g. modules and background tasks manipulation,
time management, ...).

3) The attacks and tools (“modules”): these software
components, called ”modules”, are independent and
implement the attacks and tools provided by the frame-
work. They provide a specific service such as protocol
sniffing or active attacks, and can be used independently
or sequentially thanks to the chaining operator.

4) The callbacks (“scenarios”): some modules, such as
Man-in-the-Middle attacks or devices simulation, im-
plement some complex behaviours and provide a stan-
dardised API to quickly customize their execution. The
scenarios are specialised classes composed of bindings
methods providing simple APIs.

B. Generic communication architecture

One key feature of our framework is the generic communi-
cation architecture. Indeed, many of the wireless communica-

tion protocols commonly used by IoT devices have their own
specificities, but several similar patterns can be extracted and
have made it possible to design a generic architecture. More-
over, many different RF hardware components can be used to
communicate with a given protocol, and our architecture must
be flexible enough to integrate them easily.

Our design defines a generic way to handle multiple proto-
cols in order to provide a unified API, but also allows the im-
plementation of the specific behaviour of each protocol, while
handling multiple RF devices and their key characteristics.

Mirage communication architecture is composed of three
main software components, depicted in Figure 2.

The Device class manages the interfacing with the various
RF hardware components. As a result, several classes can
inherit this abstract class and implement the main methods
for sending or receiving a specific frame as a binary repre-
sentation, check if the hardware component is connected and
ready to use, and initialize the component. However, some
devices provide additional features which can be implemented
as independent methods. Their method names must be added
to sharedMethods, a class attribute that is an array listing
the specific features available. An instance attribute called
capabilities can also be provided and defines some high level
capabilities of the device, indicating the available functional-
ities. This class is not directly available in the modules, but
the specific behaviour implemented as shared methods can be
directly used.

Another class named Receiver can be defined. It is able
to instantiate the right Device class according to the interface
parameter, provided by the end user, and communicate directly

Fig. 2. Generic communication architecture of Mirage framework

with it. One main method is needed, called convert. It
converts a binary frame provided by the device into an abstract
representation. This mechanism allows the programmer to
provide a rich interface to user while manipulating frames
(e.g. including dissectors, builders or converters). The class
Receiver exposes two methods to get the received frames,
and allows the user to register some callback functions which
can be triggered at the reception of a specific frame, at the
reception of a given number of frames or at each received
frame and can be run in a background thread or in foreground.

The abstract class Emitter provides mechanisms similar
to Receiver for emitting frames. It also includes a convert
method, and the child classes have to implement it to convert
an abstract frame object into a binary representation. It exposes
one main method, send, for sending frames from the modules.

The Emitter and Receiver classes include First In First
Out data structures (the send and receive queues) to store
temporarily the abstract representation of frames. The Emit-
ter class includes a background thread for converting these
objects into binary frames thanks to the convert method
previously mentioned and transmits the resulting bytes array
to the corresponding Device’s method (send). Another thread
is launched in background by the Receiver class and gets the
received frames from Device’s recv method, converts them
into their corresponding abstract representations and populates
the receive queue.

Finally, it should be noted that end users cannot directly
instantiate the Device’s classes. According to the design pat-
tern called Registry, devices linked to a specific interface are
instantiated only once by an Emitter or Receiver instance,
and the same device can be used by multiple emitters or re-
ceivers. Methods corresponding to specific behaviours cannot
be directly called by the users, but they are provided by the
Emitter and Receiver classes which implement the design
pattern called Proxy.

This design presents some interesting properties: 1) the most
common actions (e.g. receiving and sending frames) are facili-

tated, and the API provided is the same for each protocol; 2) it
allows specific features provided by the hardware components
to easily manipulated, without looking at their respective APIs;
3) the frames are manipulated as an abstract representation,
allowing powerful mechanisms such as dissectors to be added.

C. Modules and scenarios

The modules are the key elements of our framework: they
are used to implement the attacks and tools. They inherit and
extend a class called core.Module, to quickly prototype and
develop an offensive strategy.

Fig. 3. Architecture overview of a module

As shown in Figure 3, every module must implement an
init method, allowing the input parameters to be initialized as
a dictionary and providing three main instance attributes, used
by the core component to classify them:

• technology: this attribute indicates the wireless com-
munication protocol targeted by the module. The corre-
sponding emitters and receivers are automatically selected
according to its value.

• type: this attribute is used to provide the type of tool
implemented by the module. It allows the module to be
easily classified.

• description: this attribute is a short string describing the
role of the module.

The module behaviour can be customized by passing named
arguments as inputs. These arguments are defined as the keys
of a dictionary called args, and the corresponding values are
used to provide default values.

This init method is called directly by the constructor when
the module class is instantiated. The modules are dynamically
loaded and instantiated by the class Loader, included in the
core component. This class lists the files included in the
modules sub-directory, instantiates the modules classes found
into them and classifies them. This mechanism is automatically
executed at the beginning of the execution, allowing the user
to focus on the development of the module.

Another main method, called run, must be implemented.
This is the main method of a module because it contains the

code that implements the attack or tool behaviour. This method
is called at the beginning of the module execution. It returns
a dictionary composed of a boolean value (indicating whether
the module execution is successful or not) and a dictionary
(providing the potential output parameters), which can be eas-
ily generated thanks to two helpers methods, called ok (if the
execution is successful) and nok (if an error occurred during
the module execution). If some specific actions need to be
executed before or after the module execution, the developer
can implement two additional methods named prerun and
postrun.

Finally, some complex modules such as Man-in-the-Middle
attacks can be highly customized by filling an input argument
named “SCENARIO”. It allows to provide a name correspond-
ing to a child class of core.Scenario. It allows to easily cus-
tomize the behaviour of a module by providing some callback
methods, called if the module triggers the corresponding event.
An event named “onKey” is automatically triggered if a key is
pressed, which provides a basic user interface during execution
of a module.

This design allows new attacks or tools to be easily proto-
typed or developed while ensuring a high level of modularity.
Indeed, this approach forces the developers to follow the
framework guidelines, which leads to a modular software
environment. However, it is flexible enough to allow complex
developments and the scenarios allow the developer to provide
an elegant way to customize the behaviour of this module
without changing the corresponding code.

D. Chaining operator

Another key feature has been added to our framework,
to easily combine different modules to set up complex at-
tack workflows: the chaining operator, called “pipe”. Indeed,
several attacks are composed of the same type of actions.
For example, cloning a device or launching a fuzzing attack
imply the use of similar actions, such as scanning the RF
environment or connecting to the device. While it is still
possible to use existing modules in a new module, a common
need is to sequentially execute existing modules to compose
customised attack workflows without writing a module. So,
we have included a chaining operator inspired by the pipe
operator, commonly used in UNIX environments.

The chaining operator included in our framework operates
in a similar manner, allowing a data pipeline to be created
between two modules. Every module can be customised by
passing named parameters as inputs and can generate named
parameters as outputs: as a result, our operator allows to
sequentially execute two modules and propagate the outputs
from the first module to the inputs of the second one, according
to their name. If an output is not used by the next module in
the pipeline, it will be stored to be used later by a next module
included in the pipeline.

If a module included in the pipeline fails, sequential execu-
tion is interrupted. Several modules make use of the classes
Emitter and/or Receiver mentioned previously. Therefore, if
a given interface is used by a module, each subsequent module

included in the pipeline using an Emitter or a Receiver based
on the same interface does not need to re-instantiate these
classes but automatically reuses the existing ones (according
to the design pattern called Registry). This mechanism allows
a complex attack workflow to be divided into simpler actions,
leading to a powerful and modular approach. An example of
such an execution is shown in Figure 4.

Fig. 4. Example of sequential execution

IV. PROTOCOLS AND MODULES

Several protocols commonly used by IoT devices have been
integrated into our framework, and several different modules
have been developed. In the following subsections, we present
an overview of this work by describing the protocol stacks
included in Mirage and the corresponding modules. Finally, we
underline the development process to integrate a new protocol
or add a new attack module.

A. Bluetooth and Bluetooth Low Energy

A lot of work has been done to integrate Bluetooth devices,
especially Bluetooth Low Energy devices. Indeed, this tech-
nology is often used by connected objects because of its low
power consumption and its massive integration in smartphones
and tablets.

A partial implementation of a Bluetooth Classic stack is
included in Mirage. It implements a subset of Bluetooth layers
(especially those used to inquiry and connect to devices) and
works by communicating directly with the Host Controller
Interface (HCI), without requiring the use of an external
library. As a result, it makes it easy to use an HCI device
such as Bluetooth dongles. Moreover, some providers provide
an interesting feature in order to develop attack modules: they
include in their hardware design some vendor-specific HCI
frames allowing to change the BD address of dongles. As
a result, this functionality has been included in Mirage and
makes it easy to spoof a BD address and impersonate the
identity of a targeted device. However, a lot of additional work

is required to provide a complete stack due to the multiplicity
of application layers supported by this technology.

Currently, two main modules related to this technology can
be used in our framework: bt info and bt scan. The first
module allows useful information about the specified interface
to be displayed, while bt scan allows to launch an inquiry
scan and identify the visible Bluetooth devices in the RF
environment.

Many software components have been implemented in our
framework, to perform security audits on Bluetooth Low En-
ergy devices. Indeed, the Bluetooth Low Energy stack inherits
from the Bluetooth Classic one, allowing to reuse some
interesting features (e.g. BD address spoofing) while adding an
exhaustive Bluetooth Low Energy stack implementation. This
stack uses directly Host Controller Interface without requiring
additional libraries, and it also provides several dissectors and
helpers functions to easily analyse and generate data from
upper layers, such as the Attribute Protocol (ATT) and Generic
Attribute Profile (GATT) layers. A complete GATT server has
been implemented, allowing to easily simulate a BLE device
using the Peripheral role.

Two main RF hardware components are commonly used to
sniff Bluetooth Low Energy communications: Ubertooth and
BTLEJack. These hardware components are fully supported by
Mirage and a unified API to control them is provided. Some
additional features have been included in a custom version of
BTLEJack firmware, allowing to easily sniff and selectively
jam advertisements, both versions are fully supported by
our framework. A PCAP writer is also provided, allowing
Bluetooth Low Energy sniffed frames to be exported to a PCAP
file.

The previously mentioned sniffers can jam BLE communi-
cations and BTLEJack is able to hijack such a communication.
These features can be directly used by the framework and
the BTLEJack hijacking attack can be combined with some
active modules commonly used with HCI dongles, to highly
customize the attack workflow.

Many different modules, have been included and can be
used together to perform complex actions. ble info lists the
available interfaces. ble mitm, ble hijack and ble jam allow
active attacks to be performed, while ble sniff can be used to
passively eavesdrop the communications. Some modules are
also provided in order to execute legitimate actions such as
ble scan, ble adv, ble connect, ble discover, ble master or
ble slave: all these modules expose some specific scenarios
events, allowing to deeply customize their behaviour.

B. Zigbee

Since two security frameworks targeting the Zigbee protocol
(called Killerbee and Secbee) have been published in recent
years, a partial implementation of the Zigbee stack developed
from scratch is included in the framework as a proof of
concept. It allows the user to interact with a RZUSBStick
from Atmel using Killerbee firmware. Five corresponding
modules are provided, allowing to display information about
an interface (zigbee info), scan the RF environment to identify

target networks (zigbee scan), sniff Zigbee frames on a given
channel (zigbee sniff), inject Zigbee frames (zigbee inject)
or run a Denial of Service attack by flooding a Zigbee router
with association frames (zigbee floodassoc).

C. Enhanced ShockBurst and Mosart

Several relevant works focusing on Enhanced ShockBurst
and Mosart protocols have been published in the recent years.
These protocols are widely used by input devices such as
mice or keyboards, and many vulnerabilities targeting this kind
of hardware have recently been published, allowing to inject
keystrokes or mouse-related frames.

As a result, Mirage includes a partial Enhanced ShockBurst
stack and a complete Mosart stack, allowing the user to
easily sniff and inject frames. It interacts with a CrazyRadio
PA dongle or a Logitech Unifying dongle embedding the
nRF Research firmware developed and released by Bastille
Networks. Several dissectors are provided to analyse mouse
movements or keystrokes, and a DuckyScript interpreter has
been added to facilitate attacks targeting keyboards. Finally,
a generic component allows to generate a graphical view of
mouse movements and can be combined with the previously
mentioned sniffer.

Several attack modules are provided for both Enhanced
ShockBurst and Mosart protocols. The interfaces can be enu-
merated thanks to esb info and mosart info, esb scan and
mosart scan allow to scan the channels in order to identify
devices, esb sniff and mosart sniff are used to sniff the
frames on a given channel. Some active modules are also
provided, such as esb keystrokes and mosart keystrokes
that allow to generate an attack trace containing unencrypted
keystrokes as a pcap file, while esb inject and mosart inject
can be used to inject frames. A generic module called
mice visualizer allows to visualise the mouse movements for
both protocols.

D. Wifi

Wifi is a well-known technology in terms of offensive
security, so we have decided to focus on other protocols
more specific to IoT and to implement a minimal stack as
a proof of concept. Currently, this stack allows to control
management frames such as deauthentication, disassociation
or probe frames. As a result, four main modules have been
included in our framework: wifi info provides some useful
information about the interface used, wifi scan allows to
discover access points and stations, wifi deauth allows to run
a denial of service attacks by injecting deauthentication or
disassociation frames while wifi rogueap simulates an access
point (without accepting connections).

E. IR protocols

Infrared Radiations are widely used by manufacturers to
control connected objects: it’s probably one of the cheapest
technology available for short range communications. As a
result, we integrate many protocols based on this physical layer
in Mirage (e.g. RC5 or Sony).

As far as we know, no specific hardware has been released
targeting these IR protocols. As a consequence, we have de-
signed and implemented a custom hardware component based
on an Arduino Uno, allowing easy sniffing and manipulation
of IR frames. The corresponding firmware and schematics are
open source and can be quickly reproduced and improved.

Three main modules are provided by Mirage to manipulate
these protocols: ir info (displays useful information about an
IR interface), ir sniff (passively eavesdrop an IR frame) and
ir inject (injects an IR frame).

F. Adding new protocols and modules

One of the main advantages of our framework is that a
new protocol can be easily added. First, the developer has to
implement a new child class of libs.wireless.Device, allowing
interaction with a given specific hardware. This class should
provide only four main methods: a) init (initialising the
hardware component), b) isUp (indicating if the hardware can
be used), c) recv (allowing to receive frames) and d) send
(allowing to transmit frames). As a result, developing a driver
is straightforward.

Some specific features can also be added by creating a new
method and appending its name to the array sharedMethods,
allowing them to be called from a module environment.

At least one of the two child classes of
libs.wireless.Receiver or libs.wireless.Emitter must be
implemented. They initialize the device previously defined in
their constructor and must implement the convert method,
allowing to convert a binary frame into an abstraction or a
abstract representation of a frame into an array of bytes. As
a result, the protocol is fully integrated and can be used from
modules.

Developing an attack targeting this new protocol implies
creating a new python file in the modules sub-directory. A
child class of core.Module with the same name will be created
into this file, allowing the core.Loader component to find this
new module. The developer has to integrate an init method
and provide the main necessary attributes (technology, type,
description and args). Then, he can instantiate the previously
created Emitter and Receiver and implement his attack by
developing the corresponding run method.

V. EXPERIMENTATION

This section is dedicated to the presentation of a security
audit of a smart connected bulb that we performed with
our framework. This experiment is aimed at illustrating the
relevance and efficiency of our framework. It also shows
how simple it is, using this framework, to perform such
security analyses, that have so far been quite complex to carry
out, using heterogeneous and sometimes incompatible tools.
It should be noted that many other experiments have been
performed using our framework, such as security audits of
connected objects or the evaluation of an Intrusion Detection
System for IoT. The framework also allowed us to discover
20 new vulnerabilities targeting five commercial products.

The main objective of this experiment was first to reverse
engineer the communication protocol of the bulb in order to
evaluate its attack surface. The bulb is managed, through a
BLE communication, by an Android application running on a
smartphone. This application allows the bulb user to choose
its color, change its brightness, turn it on or off, and update
its firmware.

A. Information gathering

First of all, it was necessary to use this Android application
to register the bulb in the application and activate the various
legitimate functionalities of the bulb. During these operations,
the framework was used to analyse and understand the follow-
ing behaviours: a) change brightness, b) change temperature,
c) switch on/off, d) change color and e) update firmware.

After this first analysis, the next step consists in identifying
the list of the ATT server attributes, stored in the bulb, as
well as their GATT abstractions, under the form of primary,
secondary services and characteristics.

To do this, it was necessary to dump the ATT and GATT
databases. The following modules were used: a) ble scan (in
order to scan the environment to identify the advertisements
of connected objects within radio range), b) ble connect
(in order to establish a connection to a specific object), c)
ble discover (in order to enumerate the services, character-
istics and attributes associated to the ATT/GATT layers of a
specific object).

The first step was to launch the ble scan module, whose
outputs were the following ones:
$ sudo ./mirage.py ble_scan
[INFO] Module ble_scan loaded !
[SUCCESS] HCI Device (hci0) successfully instanciated !
Devices found
BD Address Name Company

XX:XX:XX:39:8E:07 Salon Texas Instruments Inc.

This scan enabled to obtain three interesting information
items: the BD address, the manufacturer of the system as
well as the name of the object. These information items
were extracted from the advertising packets. In this study,
the name of the smart bulb is “Salon”, its BD address is
XX:XX:XX:39:8E:07 and the manufacturer name is “Texas
Instruments Inc.”. The next step was to perform a connection
to the object and then dump the services, characteristics of the
object (at the GATT level). The chaining operator integrated
in Mirage allowed us to easily combine two existing modules
(ble connect and ble discover) to obtain the structure of the
high level protocol layers, i.e. GATT layer. It is also possible to
export this information in a .cfg file, by setting the GATT FILE
parameter of the ble discover module.
$ sudo ./mirage.py "ble_connect|ble_discover" //
ble_connect1.TARGET=XX:XX:XX:39:8E:07 //
ble_discover2.GATT_FILE=/tmp/gatt.cfg

The output of the module indicates that three services (quite
common for most connected object) are available on the smart
bulb: a) Generic Access (handles 0x0001 to 0x000b), b)

Generic Attribute (handles 0x000c to 0x000f), c) Device
Information (handles 0x0010 to 0x001e).

Three other services, specific to the bulb, are also available
from handles 0x001f to 0x002f, 0x0030 to 0x0039 and 0x003a
to 0xFFFF.

Furthermore, two interesting features are associated with the
first service: DataTransmit (handle 0x0020) and DataReceive
(handle 0x0023).

B. Reverse-engineering of the communication protocol

In order to accurately identify the behaviour of the object, a
Man-In-The-Middle attack was performed, while the different
functionalities of the bulb were activated thanks to the An-
droid application on the smartphone. The Man-In-The-Middle
attack allowed us to analyse the traffic corresponding to these
functionalities. At first, since no specific scenario was loaded
in the Man-In-The-Middle module, the default behaviour was
applied (redirection and logging of the packets).
$ sudo ./mirage.py ble_mitm //
TARGET=XX:XX:XX:39:8E:07 //
SHOW_SCANNING=no //
ADVERTISING_STRATEGY=btlejuice

This attack allowed us to identify the format of the com-
mand messages. They are triggered by a Write Request
to the handle of value 0x0021 (which corresponds to the
DataTransmit characteristics, identified during the previous
step of the analysis).

The messages format is as follows:

0x55 identifier – 1 byte parameter 0x0d 0x0a

Every action is performed using a specific identifier (e.g.
0x10 for switching on or off, 0x13 for color modification ...)
and the corresponding parameter. As an example, the messages
intended to modify the color include the identifier 0x13,
followed by three bytes corresponding to the hexadecimal RGB
code of the required color, as shown in Table I.

TABLE I
MESSAGES FORMAT RELATED TO COLOR MODIFICATION

Color modification (Red) 55 13 ff 00 00 0d 0a
Color modification (Green) 55 13 00 ff 00 0d 0a
Color modification (Blue) 55 13 00 00 ff 0d 0a

To confirm our assumptions, we performed a connection to
the bulb and executed the ble master module. Then, another
Man-In-The-Middle attack was also performed, in which our
framework was able to modify on the fly the different com-
mands sent by the smartphone application to the bulb (for
instance, the color Red and Green were exchanged, as well as
the switch on/off action).

C. Obtaining a firmware dump

The last step of our security audit was to analyse the
firmware update procedure of the bulb. Indeed, when con-
necting the smartphone application, a dialog box proposes to
update the firmware of the bulb over the air. To analyse this
update process, we used the ble sniff module:

sudo ./mirage.py ble_sniff //
CHANNEL=37 SNIFFING_MODE=newConnections //
INTERFACE=microbit0

The data dumped during this sniffing attack allowed us to
identify eight different steps of the update process (mostly
Read Requests and Write Commands on different handles).

Once these messages are exchanged, the Master starts to
write, by means of Write Commands, in the handle 0x0040,
values formatted as follows:
000017deffff0500007c42424242ffffffff
0100ffffffffffffffffffffffffffffffff
0200000102030405060708090a0bffffffff
[...]

By analysing the format of these messages, we we were able
to see that the first two bytes represent a counter, followed by
the contents of the firmware, sent by 16 bytes data blocks.
The attack scenario slave lightbulb was then built, (based on
the ble slave module) in order to dump the whole firmware
in the “firmware.bin” file. Creating an identical clone of the
bulb can offer many advantages. First, it enables to simulate
the behaviour of the object to be audited. It may also be used
to perform a denial of service attack of the legitimate object.

Such a strategy could easily be instantiated in our frame-
work, thanks to the following chained execution: a) ble scan
(dumping of advertisement data),b) ble connect (connection
to the bulb), c) ble discover (dumping of GATT services
and characteristics in a .cfg file), d) ble adv (sending ad-
vertisements) and e) ble slave (creation of a BLE Slave using
the same GATT data and implementing the slave lightbulb
scenario). This example illustrates the relevance of introducing
a chaining operator, which allows complex attack workflow to
be designed without writing a single line of code.
$ sudo ./mirage.py //
"ble_scan|ble_connect|ble_discover|ble_adv|ble_slave" //
ble_scan1.TARGET=XX:XX:XX:39:8E:07 //
ble_discover3.GATT_FILE=/tmp/gatt.cfg //
ble_adv4.INTERFACE=hci1 //
ble_slave5.SCENARIO=slave_lightbulb

After the information collection phase and the creation
of the BLE slave, the latter was executed and produced the
following output:
[...]
[SUCCESS] HCI Device (hci1) successfully instanciated !
[INFO] Importing GATT layer datas from /tmp/gatt.cfg ...
[INFO] Scenario loaded !
[INFO] Updating connection handle : 68
[INFO] Master connected : 73:5E:A2:21:C7:9D
[...]
[INFO] Sending notification (1)...
[INFO] Sending notification (2)...
[INFO] Starting firmware recuperation ...
[INFO] Writing #0...
[INFO] Write Command : handle = 0x40 /
value = 000017deffff0500007c42424242ffffffff
[...]

After this operation, the firmware was dumped and available
in the “/tmp/firmware.bin” file.

D. Conclusion

In summary, this security audit was carried out relatively
easily using our framework and quickly revealed enough

useful information to produce a relevant security assessment
report. No security mechanism seems to be implemented
on this smart object. The sending of commands as well as
the firmware update Over The Air are carried out through
unencrypted data. Reverse engineering of the firmware, even
if out of scope of this paper, makes it relatively easy for
an attacker to develop a malicious firmware that could be
loaded on the bulb, and which could possibly enable the set
up of some form of smart bulbs based botnets. Such malware
propagation through smart objects is today a real threat and a
framework like Mirage could be very useful to ease the audit
of smart objects and prevent the development of such botnets
by applying adequate protection mechanisms.

VI. CONCLUSION

In this paper, we presented a new security audit and
penetration testing framework called Mirage dedicated to IoT
devices, focusing on the analysis of widely used wireless
communication protocols. It offers a flexible software en-
vironment for developing new tools and attacks thanks to
a modular architecture and the introduction of a chaining
operator. We also described a generic communication archi-
tecture that allows new protocols to be easily integrated and
provides a unified API for multiple technologies. Then, we
highlighted multiple protocols and modules already included
in Mirage, demonstrating that several existing attacks could be
easily integrated into our framework and sometimes improved,
thanks to a low level architecture. Finally, we described an
experiment to demonstrate its usability. It should be noted
that our framework has been successfully used to evaluate
an Intrusion Detection System dedicated to IoT. It has been
useful in easily automating the generation of intrusion attempts
in a smart-homes context, leading to an efficient evaluation
process.

The framework is publically available as an open-source
project1, and we intend to actively maintain and extend it by
including additional and new wireless protocols. As future
work, we plan to use Mirage as a passive eavesdropping
tool, in order to monitor wireless traffic and perform intrusion
detection. Indeed, many different passive modules are already
implemented in the framework and allow us to easily analyse
frames from various protocols. As a result, we plan to integrate
new protocols such as ZWave, ANT+ or LoRaWAN, and add
relevant modules to analyse a complete wireless environment
such as for network topology inference. Such a monitoring
and intrusion detection tool dedicated to wireless network
communications of connected objects would constitute, to our
viewpoint, a novel and relevant contribution to support the
security analysis of IoT wireless communications and develop
appropriate protection mechanisms.

1Repository: https://redmine.laas.fr/projects/mirage

REFERENCES

[1] Z.-K. Zhang et al., “Iot security: Ongoing challenges and research
opportunities,” in 2014 IEEE 7th International Conference on Service-
Oriented Computing and Applications, pp. 230–234, 11 2014.

[2] J. Wright, “KillerBee: Practical ZigBee Exploitation Framework,” 2009.
http://www.willhackforsushi.com/presentations/toorcon11-wright.pdf.

[3] D. Cauquil, “You’d better secure your BLE Devices or we’ll
kick your butts !,” 2018. https://media.defcon.org/DEFCON26/
DEFCON26presentations/DamienCauquil-Updated/DEFCON-26-
Damien-Cauquil-Secure-Your-BLE-Devices-Updated.pdf.

[4] D. Spill, “Ubertooth,” 2012. http://ubertooth.sourceforge.net/.
[5] D. Cauquil, “Weaponizing the BBC Micro:Bit,” 2017.

https://media.defcon.org/DEFCON25/DEFCON25presentations/
DEFCON-25-Damien-Cauquil-Weaponizing-the-BBC-MicroBit.pdf.

[6] Atlas, “SubGHz or Bust,” 2012. https://media.blackhat.com/bh-us-12/
Briefings/Atlas/BH US 12 Atlas GHZ Workshop Slides.pdf.

[7] J. P. Cavano and J. A. McCall, “A framework for the measurement of
software quality,” ACM SIGSOFT Software Engineering Notes, vol. 3,
pp. 133–139, 11 1978.

[8] D. Dalalana Bertoglio and A. Zorzo, “Overview and open issues on
penetration test,” Journal of the Brazilian Computer Society, vol. 23, 12
2017.

[9] M. Antonakakis et al., “Understanding the mirai botnet,” in 26th
USENIX Security Symposium (USENIX Security 17), (Vancouver, BC),
pp. 1093–1110, USENIX Association, 2017.

[10] S. Soltan, P. Mittal, and H. V. Poor, “Blackiot: Iot botnet of high wattage
devices can disrupt the power grid,” in 27th USENIX Security Symposium
(USENIX Security 18), (Baltimore, MD), pp. 15–32, USENIX Associa-
tion, 2018.

[11] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A. Sadeghi, and
S. Tarkoma, “Iot sentinel: Automated device-type identification for
security enforcement in iot,” CoRR, vol. abs/1611.04880, 2016.

[12] J. Roux, E. Alata, G. Auriol, M. Kaâniche, V. Nicomette, and R. Cayre,
“Radiot: Radio communications intrusion detection for iot - A protocol
independent approach,” CoRR, vol. abs/1811.03934, 2018.

[13] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and
C. Rossow, “Iotpot: Analysing the rise of iot compromises,” in 9th
USENIX Workshop on Offensive Technologies (WOOT 15), (Washington,
D.C.), USENIX Association, 2015.

[14] E. Ronen, A. Shamir, A.-O. Weingarten, and C. OFlynn, “Iot goes
nuclear: Creating a zigbee chain reaction,” in 2017 IEEE Symposium
on Security and Privacy (SP), pp. 195–212, 05 2017.

[15] M. Ryan, “Bluetooth: With low energy comes low security,” in Pro-
ceedings of the 7th USENIX Conference on Offensive Technologies,
WOOT’13, (Berkeley, CA, USA), pp. 4–4, USENIX Association, 2013.

[16] Armis, “Blueborne Technical White Paper,” 2017.
[17] T. Goodspeed, S. Bratus, R. Melgares, R. Shapiro, and R. Speers,

“Packets in packets: Orson welles’ in-band signaling attacks for modern
radios,” in Proceedings of the 5th USENIX Conference on Offensive
Technologies, WOOT’11, pp. 7–7, 08 2011.

[18] M. Newlin, “MouseJack : White Paper,” 2016. https:
//github.com/BastilleResearch/mousejack/blob/master/doc/pdf/
DEFCON-24-Marc-Newlin-MouseJack-Injecting-Keystrokes-Into-
Wireless-Mice.whitepaper.pdf.

[19] D. Cauquil, “BtleJuice, un framework d’interception pour le Bluetooth
Low Energy,” 2017. https://www.slideshare.net/NetSecureDay/nsd16-
btle-juice-un-framework-dinterception-pour-le-bluetooth-low-energy-
damien-cauquil.

[20] S. Jasek, “Gattacking Bluetooth Smart Devices,” 2017. https://
github.com/securing/docs/raw/master/whitepaper.pdf.

[21] C.-K. Chen, Z.-K. Zhang, S.-H. Lee, and S. Shieh, “Penetration testing
in the iot age,” Computer, vol. 51, pp. 82–85, 04 2018.

https://redmine.laas.fr/projects/mirage
 http://www.willhackforsushi.com/presentations/toorcon11-wright.pdf
https://media.defcon.org/DEF CON 26/DEF CON 26 presentations/Damien Cauquil - Updated/DEFCON-26-Damien-Cauquil-Secure-Your-BLE-Devices-Updated.pdf
https://media.defcon.org/DEF CON 26/DEF CON 26 presentations/Damien Cauquil - Updated/DEFCON-26-Damien-Cauquil-Secure-Your-BLE-Devices-Updated.pdf
https://media.defcon.org/DEF CON 26/DEF CON 26 presentations/Damien Cauquil - Updated/DEFCON-26-Damien-Cauquil-Secure-Your-BLE-Devices-Updated.pdf
 http://ubertooth.sourceforge.net/
https://media.defcon.org/DEF CON 25/DEF CON 25 presentations/DEFCON-25-Damien-Cauquil-Weaponizing-the-BBC-MicroBit.pdf
https://media.defcon.org/DEF CON 25/DEF CON 25 presentations/DEFCON-25-Damien-Cauquil-Weaponizing-the-BBC-MicroBit.pdf
 https://media.blackhat.com/bh-us-12/Briefings/Atlas/BH_US_12_Atlas_GHZ_Workshop_Slides.pdf
 https://media.blackhat.com/bh-us-12/Briefings/Atlas/BH_US_12_Atlas_GHZ_Workshop_Slides.pdf
 https://github.com/BastilleResearch/mousejack/blob/master/doc/pdf/DEFCON-24-Marc-Newlin-MouseJack-Injecting-Keystrokes-Into-Wireless-Mice.whitepaper.pdf
 https://github.com/BastilleResearch/mousejack/blob/master/doc/pdf/DEFCON-24-Marc-Newlin-MouseJack-Injecting-Keystrokes-Into-Wireless-Mice.whitepaper.pdf
 https://github.com/BastilleResearch/mousejack/blob/master/doc/pdf/DEFCON-24-Marc-Newlin-MouseJack-Injecting-Keystrokes-Into-Wireless-Mice.whitepaper.pdf
 https://github.com/BastilleResearch/mousejack/blob/master/doc/pdf/DEFCON-24-Marc-Newlin-MouseJack-Injecting-Keystrokes-Into-Wireless-Mice.whitepaper.pdf
 https://www.slideshare.net/NetSecureDay/nsd16-btle-juice-un-framework-dinterception-pour-le-bluetooth-low-energy-damien-cauquil
 https://www.slideshare.net/NetSecureDay/nsd16-btle-juice-un-framework-dinterception-pour-le-bluetooth-low-energy-damien-cauquil
 https://www.slideshare.net/NetSecureDay/nsd16-btle-juice-un-framework-dinterception-pour-le-bluetooth-low-energy-damien-cauquil
 https://github.com/securing/docs/raw/master/whitepaper.pdf
 https://github.com/securing/docs/raw/master/whitepaper.pdf

