
HAL Id: hal-02347361
https://laas.hal.science/hal-02347361v1

Submitted on 5 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Autobot: An Emulation Environment For Cellular
Vehicular Communications
Quentin Ricard, Philippe Owezarski

To cite this version:
Quentin Ricard, Philippe Owezarski. Autobot: An Emulation Environment For Cellular Vehicular
Communications. 2019 IEEE/ACM 23rd International Symposium on Distributed Simulation and
Real Time Applications, Oct 2019, Cosenza, Italy. �hal-02347361�

https://laas.hal.science/hal-02347361v1
https://hal.archives-ouvertes.fr

Autobot: An Emulation Environment For Cellular
Vehicular Communications

Quentin Ricard1,2, Philippe Owezarski1
1CNRS-LAAS, Université de Toulouse, Toulouse, France
2Continental Digital Services France, Toulouse, France

firstname.lastname@laas.fr

Abstract—The rising interest in Intelligent Transportation Sys-
tems shines light on a complex task: The evaluation of new appli-
cations and services that could prevent accident, regulate traffic,
and help the automotive industry in designing energy efficient
vehicles. These applications will rely on a new communication
channel between vehicles, infrastructure and cloud services,
and will have to operate under various network performances.
However, testing applications and services in real-life networks
is costly and reproducing network behaviour in a controlled
environment is challenging. Furthermore, simulation tools lack
real-time evaluation capabilities. Therefore, we present in this
paper an environment for the real-time emulation of cellular
vehicular communications. It allows the user to rapidly and cost
efficiently implement and test applications under realistic mobile
network performances.

Index Terms—network emulation, docker, netem

I. INTRODUCTION

In recent years, the automotive industry and the research
community showed a lot of interest in connecting vehicles
to the digital world facilities. In fact, today’s vehicles embed
complex networks. They consist of numerous computer com-
ponents called Electronic and Telematic Control Unit (ECU,
TCU). Each of these components are responsible of specific
features in a vehicle (steering wheel, cruise control, assistance
braking system (ABS)) and operate by communicating with
others over a CAN bus (Control Area Network). It allows ve-
hicles to take complicated decisions based on multiple sources
of information. The introduction of a new communication
channel between vehicles and the rest of the internet allows the
extraction of interesting pieces of information from a vehicle
enabling new ways to improve traffic efficiency, safety, and
energy consumption. This new type of cyber-physical system
takes a major part in future Intelligent Transportation Systems
(ITS).

In this paper, we focus on Cellular vehicular networks
(CVN) as a way for vehicle to communicate with the rest
of the world. Unlike vehicular ad-hoc networks, CVNs rely
on established mobile devices communications infrastructures
such as Long-Term-Evolution (4G) and soon 5G.

While VANETs were designed to provide safety appli-
cations that require low latency between vehicles such as
collision avoidance, CVNs, introduce three types of services
that improve safety, fleet management and driver experience.

The first type is driver assistance services (DAS), which aim
in providing relevant traffic information and road condition
knowledge to the driver, e.g. congestions, accidents, weather
conditions. Fleet management services allow entities to mon-
itor a fleet of vehicles in order to gather useful knowledge on
each vehicle such as fuel consumption, durability, to name a
few. The last type of service is related to Infotainment appli-
cations and they aim at improving the driver and passenger
experience on the road by providing services such as video
streaming, mail services, or other third parties applications.

Because of the rise of connected vehicles nowadays and in
a very short future, evaluating ITS applications on cellular net-
work becomes paramount. Over years, the research community
studied vehicular networks in mostly two ways, simulation and
real-life experiments.

Network simulation is an efficient and cost effective way
to validate new designs and experiment with new protocols
definitions before large scale deployment [1] while real-life
experiments operate in real-time but require expensive equip-
ments.

A third way to study vehicular network would be network
emulation. It offers a combination of both real protocol and
application implementation as well as realistic network mod-
els. They allow users to reproduce realistic network behaviour
in controlled environment in order to test application and
protocols over particular network situations. However, it was
rarely attempted to emulate realistic application traffic for
cellular vehicular communications.

Therefore, this paper introduces a lightweight emulation
environment for vehicular communications combining network
emulator tool Netem [5] and Operating-system-level virtual-
ization software docker. Autobot is easy to install and extend
and provides accurate long-term-evolution network behaviour
without the need to simulate the LTE infrastructure and core-
network. It provides researchers the possibility to test real-
life ITS applications under different networking properties and
allows them to generate networking datasets without the need
for high-end hardware. The rest of this paper is as follows, we
present relevant work surrounding our solution in section II.
Then, we introduce our environment that allows researchers to
generate networking datasets dedicated to vehicular commu-
nications in section III. A performance study of the proposed
emulation environment is done in section IV. Finally, we
conclude this paper in section V and present relevant future978-1-7281-2923-5/19/$31.00 ©2019 IEEE

work on Autobot.

II. RELATED WORK

In [12], the authors present a testbed for evaluating the
quality of experience (QoE) perceived by users for 3D video
streaming over LTE. They also use Netem for the emulation
of the network. In their study, they used two nodes that run
3D video streaming clients, one on a computer connected to a
LAN, while the other one was a smartphone running android
connected to a WiFi network. The node hosting the WiFi
network as well as the LAN acted as a gateway to connect
both nodes to a video streaming server. The gateway runs
Netem an manipulate the communications coming from the
WiFi network to emulate LTE networking behaviour. In our
case, our environment is fully virtualized using docker and
does not need additional hardware.

In [13] the authors developed a platform that provides
students lab exercises on cybersecurity. Their work consists on
the emulation of applications and networking services inside
a contained environment using docker containers. It allows
student to perform offensive tasks in order to take control of
the emulated network. The key advantage in this situation is
that the environment is entirely confined. We followed the
same approach but we focused on vehicular communications
and we emulate realistic LTE network behaviour.

III. AUTOBOT

A. Overview

Autobot is a lightweight emulation environment for cellular
vehicular networks. It was designed to emulate realistic net-
work traffic of ITS communications between vehicles and the
rest of the world. Users of Autobot can test the behaviour of
their own applications under different network properties. In
its default settings, our environment is able to emulate a server
and vehicles communicating with each other. The connectivity
of the vehicles is meant to emulate that of real LTE networks
in terms of latency and packet loss.

Autobot allows multiple network topology for the com-
munications. The one that is used in Autobot by default is
defined as follows: All vehicles are in the same sub-network
and are allowed to communicate with a server that is located
in another virtual network. The vehicles have internet access
through the same gateway that is used to communicate with
the server similarly to how mobile devices are connected to
the internet in LTE networks. In fact, in the LTE architecture,
a user equipment (typically a mobile phone), connects to the
evolved packet core (EPC) network by attaching itself to an
antenna (EnodeB). The EPC is in charge of identifying the
device and authorizing it to communicate with external IP
networks through the packet data network gateway (P-GW).

Autobot is based on Operating-System-level virtualization.
Therefore, each vehicle or server runs in an isolated en-
vironment. Moreover, we are able, theoretically, to emulate
a considerable number of applications running inside these
isolated environment as long as the host hardware is able to
maintain the performances of the network. The role of each

application is to generate communications between vehicles
and the server, or between vehicles. This allows users to build
their own applications in order to validate them under specific
network behaviour.

B. Proof of Concept

a) Virtualization: Our implementation is using docker,
a popular containerization software. Containers run and isolate
processes, packaging their own libraries, dependencies and
configurations. They avoid shipping an entire operating-system
(OS) for each container and therefore provide a lightweight
solution in terms of CPU consumption and storage space
compared to virtual-machine-based solutions.

In Autobot, each container acts as a node in an emulated
LTE network. Therefore, in order to emulate n vehicles we
deploy n containers. Every container is connected to a virtual
network using a virtual network interface. Finally, we emulate
realistic network behaviour by using traffic-control (or
tc)1, specifically NetEm an enhancement of tc written by
Stephen Hemminger.

b) Traffic manipulation: We chose NetEm over other
available network emulation tools because of its usability
on virtual interfaces. Several studies [14], [15] showed that
NetEm has limitations related to packet delay variations. It
affects mostly QoE, in video streaming for example, and is
irrelevant to the applications that are currently emulated in
our environment.
NetEm is controlled using traffic-control a tool that

is part of the iproute2 utilities. It allows users to manipulate
the Linux Kernel packet scheduler that is responsible of the
receive and transmit buffer of network interfaces.

It allows the user to define matching filters in order to
manipulate packets according to a defined policy. Packets can
be manipulated in the following ways:

• Shaping: to control the rate of transmission of packets.
• Scheduling and Dropping: to reorder and drop packets.

Therefore, we are able to manipulate the communications of
vehicles and server of our emulation scenario in terms of
latency, bandwidth and packet loss.

c) Emulated Applications: We emulate an application
dedicated to fleet management services. The scenario is the
following: a vehicle sends telemetry information about its
status to a remote server. The application sends message
following the specification of Sensoris2, an industry defined
exchange format for vehicles and cloud communications. The
messages include but are not limited to:

• Speed, GPS coordinates, torque, pressure applied on the
brakes, dimensions of the vehicle, the nature of the
ground (paved, macadam) and others.

The data was extracted from a vehicle during a trip of 1.5 hour
near the city of Toulouse, France, and is artificially replayed
in our emulation to craft the Sensoris messages.

1http://man7.org/linux/man-pages/man8/tc.8.html
2https://sensor-is.org/

The messages are sent to the server in our emulation over
the MQTT protocol. MQTT, for Message Queuing Telemetry
Transport is a publish-subscribed-based ISO standard that is
very popular in the Internet-of-Things for its low bandwidth
requirement and small code foot-print. We believe that it is
highly possible that it will be used by vehicles so send similar
information to remote servers in ITS. In fact, even though
mobile communications are getting cheaper, there is still a non
negligible cost to send data on cellular networks. Furthermore,
the reception quality is changing depending on the position of
the vehicle, i.e. urban and rural do not experience the same
bandwidth and latency variations. Therefore, we believe the
industry will chose the protocol that is the most efficient in
terms of bandwidth and cost.

d) Defining Network characteristics: In order to define
accurate network characteristics for our emulation environ-
ment we used a raspberry Pi and connected an antenna
equipped with 4G connectivity subscribed to a major French
mobile operator. We measured the latency between the de-
vice and a famous DNS server (8.8.8.8). The captures were
generated following different mobility scenarios (highway,
countryside, ring road). Results of this experiment were used
to set up the netem rules.

IV. EVALUATION

We evaluated Autobot based on CPU consumption: to
define the maximal number of vehicles that we are able to
emulate on two hardware set up and network behaviour: to
assert the ability of Autobot to emulate the network behaviour
properties used to configure Netem.

We evaluate Autobot using two different hardware set-up.
The first evaluation is done on a virtual machine running on
a laptop. The host is running Windows 10 with an Intel Core
i7-6820 (2.71 GHz) and 16 gigabytes of RAM. The virtual
machine executing Autobot runs on Ubuntu (18.01) and is
allocated 6 processors and 6 gigabytes of RAM. The second
evaluation is done on a high end server running Ubuntu 16.04
with 32 processors (2.6 GHz) and 64 gigabytes of RAM.

In the emulation, every vehicle is sending Sensoris messages
at varying frequencies using an MQTT client. We alert the
reader on the fact that sending a Sensoris message might lead
in multiple TCP frames being sent. Our goal is to emulate as
many vehicles as possible while maintaining the behaviour of
the containers unchanged as well as maintaining the expected
network behaviour.

A. CPU consumption

We collected the memory and CPU consumption of every
set up while running Autobot. During each run of Autobot, we
defined the number of vehicles to emulate and the frequency
at which they would send MQTT messages. The parameters
for the evaluation on the server and laptop were defined as in
table I, where the values correspond to:

• min and max #veh represent the minimum and maximum
number of vehicles in the emulation;

Set up min #veh max #veh vincr min f max f fincr
Server 10 40 5 0.5 2.5 0.5
Server 10 40 5 3 8 1
Server 40 200 20 3 8 1
Server 200 400 50 1 11 0
Laptop 10 100 10 1 8 1

TABLE I: Parameters for the evaluation depending on Hard-
ware set up, number of vehicles and frequency of messages.

• min f and max f represent the minimum and maximal
frequency at which vehicles send MQTT messages;

• vincr and fincr represent respectively the increments of
the number of vehicles and frequency used between each
step during the evaluation;

The results of the evaluation are depicted in figure 1.
We notice that while the number of vehicles tends to have
little impact on the CPU consumption, the frequency of the
messages has a more important impact. In fact, as stated
before, the application we emulate is actually sending Sensoris
messages based on data captured during a real-life trip of a
vehicle. Thus, the application reads the data from a file at the
frequency defined at the beginning of the emulation, and then
sends the message to the server. Thus, as the frequency grows
it requires more and more CPU to be allocated to the container
of each vehicle. We found that the maximal frequency to
which we were able to send MQTT messages that way was
approximately 10Hz independently of the number of vehicles.

We did not increase the number of vehicles further as the
starting time of the emulation, especially on the laptop, was
exceeding 3 minutes after 100 vehicles (resp. 400 on the
server). This is due to the docker environment that has to create
every container but also the fact that we apply the netem rules
sequentially to each virtual network interface of each container
once its starts.

We did not notice any correlation between the frequency
of messages and memory usage. In fact, the memory usage is
mostly due to the capture file (88MB) that each vehicle uses
to send messages.

B. Network Behaviour

In order to evaluate the network behaviour of the envi-
ronment we used tcpdump to collect traffic on the virtual
interface of one vehicle and we analysed the traces in order to
assert that the delay interval between each sensoris message
of the communication of the vehicle were respected as well
as the latency of each packet.

The delay aspect allows us to assert that while the emulation
is running each container has enough resources to send its
messages on time based on the frequency parameter. While
the latency aspect, on the other hand, allows us to verify
that netem manipulates the traffic according to the rules we
defined.

a) Latency: We used the highway mobility latency dis-
tribution to configure netem. The emulation was running 400
vehicles sending messages at 2 Hz for 30min. We note that
the highway mobility distribution is relatively well respected

Fig. 1: Average CPU consumption ratio of Autobot on a High-
end set up with varying amount of vehicles and frequency of
messages.

by netem considering the high amount of traffic to handle at
the same time (35 kBps on each interface).

b) Message delay interval: Based on the same capture
file, we extracted the intervals between each messages sent
from a vehicle. We noted that the vehicle was not able to send
all its messages on time. In fact, the delay was only respected
for the first 600 messages. We ran the same experiment but
lowered the frequency of messages to 1Hz and noticed that in
this case the delay between messages was respected.

C. Concluding the Evaluation

Based on the detailed analysis we provided in this section
we are able to conclude that Autobot behaves as expected even
when dealing with large amount of vehicles. Furthermore, we
also demonstrated that it is easy to deploy on cheap hardware
while still being able to emulate a significant number of
vehicles. However, there is a trade-off to maintain between
the frequency of messages and the number of vehicles in order
to maintain the expected behaviour. The maximum amount of
vehicles sending messages at 10Hz is 140 for the server and 60
at 8Hz for the laptop set up. Beyond these limits the frequency
must be diminished.

V. CONCLUSION AND FUTURE WORK

In this paper we presented Autobot, a realistic emulation
environment dedicated to cellular vehicular networks. We
showed that it is able to emulate large amount of vehicles
with a high frequency of messages while maintaining expected
network behaviour. The application integrated to the emulated
vehicles depicted a telemetry service in charge of sending real-
life data extracted from a vehicle to a remote server. In order
to represent realistic LTE network properties, we gathered
latency measures during three different mobility scenarios and
integrated the results in netem as a distribution table.

Our evaluation shows that Autobot models fairly accurately
emulates the packet latency even when emulating large amount
of vehicles.

We plan extending the emulation environment to include
other relevant vehicular services such as infotainment appli-
cations and update over-the-air. We also plan on extending
netem to include fluctuating bandwidth based on a recently
gathered dataset [18].

REFERENCES

[1] E. Lochin, T. Perennou, and L. Dairaine, “When should i
use network emulation?” annals of telecommunications-annales des
télécommunications, vol. 67, no. 5-6, pp. 247–255, 2012.

[2] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” in
Modeling and tools for network simulation. Springer, 2010, pp. 15–34.

[3] A. Varga, “Discrete event simulation system,” in Proc. of the European
Simulation Multiconference (ESM’2001), 2001.

[4] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent devel-
opment and applications of SUMO - Simulation of Urban MObility,”
International Journal On Advances in Systems and Measurements,
vol. 5, no. 3&4, pp. 128–138, December 2012.

[5] S. Hemminger et al., “Network emulation with netem,” in Linux conf
au, 2005, pp. 18–23.

[6] C. Sommer, R. German, and F. Dressler, “Bidirectionally coupled
network and road traffic simulation for improved ivc analysis,” IEEE
Transactions on mobile computing, vol. 10, no. 1, pp. 3–15, 2010.

[7] B. Schünemann, “V2x simulation runtime infrastructure vsimrti: An
assessment tool to design smart traffic management systems,” Computer
Networks, vol. 55, no. 14, pp. 3189–3198, 2011.

[8] M. Rondinone, J. Maneros, D. Krajzewicz, R. Bauza, P. Cataldi, F. Hrizi,
J. Gozalvez, V. Kumar, M. Röckl, L. Lin et al., “itetris: a modular
simulation platform for the large scale evaluation of cooperative its
applications,” Simulation Modelling Practice and Theory, vol. 34, pp.
99–125, 2013.

[9] M. A. To, M. Cano, and P. Biba, “Dockemu–a network emulation tool,”
in 2015 IEEE 29th International Conference on Advanced Information
Networking and Applications Workshops. IEEE, 2015, pp. 593–598.

[10] T. Molloy, Z. Yuan, and G.-M. Muntean, “Real time emulation of an lte
network using ns-3,” 2014.

[11] A. Fouda, A. N. Ragab, A. Esswie, M. Marzban, A. Naser, M. Rehan,
and A. S. Ibrahim, “Real-time video streaming over ns3-based emulated
lte networks,” Int. J. Electr. Commun. Comput. Technol.(IJECCT), vol. 4,
no. 3, 2014.

[12] M. Solera, M. Toril, I. Palomo, G. Gomez, and J. Poncela, “A testbed
for evaluating video streaming services in lte,” Wireless Personal Com-
munications, vol. 98, no. 3, pp. 2753–2773, 2018.

[13] M. F. Thompson and C. E. Irvine, “Individualizing cybersecurity lab
exercises with labtainers,” IEEE Security & Privacy, vol. 16, no. 2, pp.
91–95, 2018.

[14] A. Jurgelionis, J.-P. Laulajainen, M. Hirvonen, and A. I. Wang, “An
empirical study of netem network emulation functionalities,” in 2011
Proceedings of 20th International Conference on Computer Communi-
cations and Networks (ICCCN). IEEE, 2011, pp. 1–6.

[15] J. Sliwinski, A. Beben, and P. Krawiec, “Empath: Tool to emulate packet
transfer characteristics in ip network,” in International Workshop on
Traffic Monitoring and Analysis. Springer, 2010, pp. 46–58.

[16] R. Lübke, P. Büschel, D. Schuster, and A. Schill, “Measuring accuracy
and performance of network emulators,” in 2014 IEEE International
Black Sea Conference on Communications and Networking (BlackSea-
Com). IEEE, 2014, pp. 63–65.

[17] L. Nussbaum and O. Richard, “A comparative study of network link em-
ulators,” in Proceedings of the 2009 Spring Simulation Multiconference.
Society for Computer Simulation International, 2009, p. 85.

[18] D. Raca, J. J. Quinlan, A. H. Zahran, and C. J. Sreenan, “Beyond
throughput: a 4g lte dataset with channel and context metrics,” in
Proceedings of the 9th ACM Multimedia Systems Conference. ACM,
2018, pp. 460–465.

