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Abstract—Predicting, in the one hand, the time duration that
a vehicle remains associated to a cell i.e. Network Attachment
Point (NAP) and, on the other hand, the next cell can help
anticipating network control decisions to provide services with
stringent requirements despite vehicle mobility. In this paper,
we propose a machine learning based approach for Software
Defined Vehicular Networks that allows a cell to estimate the
attachment duration of each newly associated vehicle at the
association request time, as well as, a prediction of the upcoming
cell, performed at the SDN controller that controls the cells. Our
proposed models have been evaluated on a large dataset, which
we have generated based on a real mobility trace from the city
of Luxembourg, and the evaluation shows promising results in
terms of prediction accuracy.

Index Terms—V2I communication, link lifetime estimation,
Supervised Machine Learning, Software Defined Vehicular Net-
works

I. INTRODUCTION

Under the umbrella of cooperative Intelligent Transportation
Systems (ITS) and automated driving, a variety of emerg-
ing services are envisioned for the near future with diverse
performance requirements on V2V (Vehicle-to-Vehicle) and
V2I (Vehicle-to-Infrastructure) communications in terms of
transfer delay, reliability and bandwidth requirements. The
firmness of some of these requirements makes current wireless
technologies unsuitable, and one possible research direction is
to consider a Software Defined Network (SDN) based hybrid
(LTE based and DSRC, etc.) vehicular Network as the access
network infrastructure to support these emerging services [1]
[2]. Indeed, (1) the ability given to vehicles to associate, during
their trip, either simultaneously or consecutively, to multiple
network attachment Points (Base Station (BS), Road Side
Unit (RSU), etc.), and (2) the ”logical” centralized control
based on a thorough visibility of the network, combined with
the fine-grained and programmable selection and forwarding
treatments of flows, inherent to SDN, can bring a noticeable
boost to the emergence of these services.

In this paper, we are interested in estimating the cell
attachment duration of vehicles (or V2I wireless link lifetime)
as well as identifying the next Most Probable Cell (MPC)
to which the vehicle is supposed to handover using machine

learning based techniques with, amongst, the following ex-
pected benefits: First, having an estimate of the cell attachment
duration of each associated vehicle as well as a view of up-
coming vehicles helps each cell to effectively use its network
resources by potentially anticipating the arrival of traffic with
strict performance requirements (e.g. [3]). Similarly, for delay
sensitive services in a fog/edge computing architecture, some
network functionalities and application services can be placed
close to the users at the cell premises to provide short latencies.
Anticipating the vehicle handover helps triggering a proactive
service migration to the identified next cell. Last, network
topology discovery is a core function of an SDN controller
since it builds at the controller the overall vehicular network
topology with V2V and V2I wireless links [4]. This view is
then exposed to network control applications. Obviously, very
short-live wireless links should not be reported to the SDN
controller in order to avoid transient and inconsistent network
decisions. The topology discovery service can leverage on the
wireless link lifetime estimation to that end.
A last contribution of this work is the creation of a large
dataset using simulators used in the automotive industry com-
bining real vehicle mobility traces collected in a large Euro-
pean city (e.g. Luxemburg) and network related information
at cells from the network infrastructure of a real operator.

The remainder of the paper is organised as follows. Section
II gives a description of related works. The Dataset generation
and collected features are explained in section III. Section
IV presents the proposed approach, while Section V presents
the performance evaluation. Section VI discusses the obtained
results. Finally, Section VII concludes this paper.

II. RELATED WORK

During the last decade, wireless link duration estimation
and characterization has been researched in the context of
wireless multi-hop mobile networks and considered as a
crucial piece towards an effective routing in Mobile Ad-hoc
NETwork (MANET). Most assumed a predefined mobility
model and simplified radio propagation models that, in fact,
do not accurately match the reality especially in urban or
in-door environments. For V2V wireless link prediction in



Vehicular Ad-hoc NETwork (VANET), some work assumed
that the speed of vehicles remains constant (as in [5] ), or that
vehicles moves along a straight highway [6], [7] assuming
some predefined probability distribution for vehicle speed (as
in [6]–[10]). Based on similar assumptions (i.e. trains moving
along a straight line at constant speed), V2I link prediction was
also researched as part of the routing algorithm for railway-
specific Software defined LTE-based high speed vehicular
networks [11].

Machine learning based techniques have recently emerged
as an alternative to these model-based wireless link predic-
tion techniques alleviating the need to resort to simplifying
assumptions on vehicle mobility. The work in [12] relies on
the use of alert messages sent by each vehicle periodically
to convey information used by surrounding vehicles to feed
a neuronal network in charge of predicting the expected
average speed of the vehicle, from which it derives the V2V
wireless link duration Similarly, the work in [13] relies on
regular message exchanges between vehicles to collect various
V2V wireless link metrics that are then transmitted to the
infrastructure to feed a set of predictors that are combined
using the adaboost algorithm [14] to build a more accurate
prediction of V2V wireless link duration.
This work is rather focused on V2I wireless links in an infras-
tructure based vehicular network where typically a vehicle get
attached to multiple RSUs/BS during its trip. Our prediction
of cell (RSU/BS) attachment duration doesn’t preclude any
predefined assumption on vehicle mobility and, in comparison
to the above cited work, it incurs very limited message
transmission overhead since the prediction is triggered only
at RSU/BS association request.

Next-cell prediction has been researched mainly in the
context of LTE cellular networks as a way to improve handover
delays. Similarly to link lifetime predictions, many proposals
relied on stochastic models, mostly Markov chain based deci-
sion processes that take as input a probability transition matrix
that describes the potential transitions between adjacent cells.
One of the main challenges of these approaches is how to set
the probability transition matrix to make it work regardless of
any cause that may impact the mobility of vehicles, e.g. the
day, the time of day, traffic jam, or any unusual event.
The work in [15] and [16] follow a different approach based
on a user mobility database that records, for each vehicle, its
mobility during its past history. This database is maintained
by the network thanks to position updates sent regularly by
each vehicle during its trip. Next cell prediction is based
on vehicles’ history and the history of neighbouring vehicles
flowing in the same direction. Both approaches work well for
regular drivers with quite steady itinerary habits but requires
tremendous computing/storage at the base station as well as
transmission resources.
[17] employs machine learning from the CSI (Channel State
Information) observed by the vehicle while passing through
the current cell (in addition to the previous cell from which
it originated). Since the CSI is regularly conveyed by LTE
protocols to the base station, no extra transmission is needed

to report the inputs required by the prediction algorithm. Also,
the prediction algorithm is continuously updated during system
operation, by renewing the training with all users traversing
the cell, which increases the prediction accuracy. The main
limitation of the proposed approach is the size of the CSI
sequence that is needed to get an accurate prediction. The
performance evaluations of [17] show that this may take 70%
of the path, which could be prohibitive for small cells or fast
cars, with not enough time left to proactively trigger some
handover procedures.

Our proposed next cell prediction scheme is also based on a
supervised machine learning scheme. As for V2I link lifetime
prediction, it incurs very little overhead, since the information
required by the predictor is piggybacked with the association
request message. In comparison to [17], our prediction is
computed and made available at association time, while still
achieving accurate predictions in line with the performance of
[17].

III. INPUT DATASET

Below, we present the dataset that we created. we first de-
scribe the data collection process, then the collected features.

A. Data Collection

The dataset employed in this paper was generated using the
VEINS framework [18], which is an open source framework
for running vehicular network simulations. It is based on two
well-established simulators: OMNeT++ [19], an event-based
network simulator, and SUMO [20], a microscopic road traffic
simulator. OMNET with the SimuLTE-based LTE extension
is responsible for simulating the LTE protocol stack (signal
strength, handover, connectivity), while SUMO is responsi-
ble for vehicle mobility. The global framework provides a
realistic simulation of LTE connectivity for vehicles. Our
setup consists of two main parts: the first one concerns the
LTE network setup while the second one is relevant to the
vehicle mobility setup. We used the Luxembourg SUMO
Traffic (LuST) Scenario by Codeca et al. [21]. It is generated
using SUMO and is realised in Luxembourg city. The trace
reproduces the mobility behavior of almost 300 000 vehicles
composed of different types of vehicles (personal vehicles,
public transport vehicles, etc.) in an area of 156 Km2 during
24h. In our study, we focused mainly on the urban scenario;
for instance, we selected an area of 2.5*2.5 km in the city-
center composed of residential and arterial roads. For the LTE
network, we used the eNodeB locations of a Luxembourg
mobile network operator introduced by the project LuST-LTE
[22]. We selected 16 eNodeBs as shown in Figure 1a. For
the LTE network simulation settings, we used those provided
by default by the SimuLTE project [23], e.g. the handover
procedures implemented by SimuLTE [23], described in [22],
is based on the Signal-to-Interference-and-Noise-Ratio (SINR)
instead of RSRP (Reference Signal Received Power) and
RSRQ (Reference Signal Received Quality) as is usually the
case in LTE.



(a) eNodeB locations (b) Mobility information

Fig. 1: Considered urban scenario details

TABLE I: Collected (c) and Generated (g) features

Feature Name Feature Description
(c) Vehicle Id a unique identifier per vehicle.
(c) Vehicle posi-
tion

coordinates (x,y), which can be converted to GPS
coordinates

(c) Speed (m/s) vehicle speed in mps
(c) Serving Cell id serving cell id for a vehicle
(c) Serving Cell
position

coordinates (x,y), which can be converted to GPS
coordinates

(c) Timestamp of
association (s)

timestamp when a vehicle joins a Cell

(c) Timestamp of
dissociation (s)

timestamp when a vehicle detach from a Cell

(c) Road Id road identifier
(c) Line Id line identifier
(g) Distance to
serving Cell (m)

distance between the serving cell and vehicle in
meters

(g) Link duration
(s)

time spent by a vehicle under the coverage of a
Cell

(g) Cell load number of vehicles that are under the coverage of
a Cell at the same time

(g) Previous cell previous cell to which it was connected,
(g) Next cell next cell to which it will be connected
(g) Theta the angle between the BS location and vehicle

location

B. Data Description

Table 1 describes All the features considered in our dataset
(those we collected, and those we generated). In our proposed
algorithms, we use some of these features that we present in
Section IV. They cover both vehicles’ mobility and network
handover decisions. We perform measurements for all vehicles
during 24 hours, the total number of vehicles for the selected
area is 147 554. Figure 1b shows the evolution of the number
of vehicles and their average speed over a day, presented in
blue and red lines respectively. The collected dataset consists
of 824774 observations, spread over the different BSs, as
presented in Figure 2b. The portion of observations related to
each BS depends mainly on its location and the traffic density
in each area.

The link lifetimes vary from one BS to another, as shown in
Figure 3. They mainly depend on the BS coverage (presented
in Figure 2a), and the traffic demand in each area. For example,
on average, BS3 and BS2 recorded higher values compared to
BS9 and BS13. The main reason is that they cover a larger
area.

In summary, our created dataset contains V2I links with
different lifetimes enriched with mobility information recorded

(a) BS coverage
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(b) Data Proportion by BS

Fig. 2: BS coverage and data proportion by BS
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Fig. 3: violin plot of link lifetime per BS (without outliers)

from a mobile network with various kinds of BS and mobility
patterns. The complete dataset is available in [24].

IV. PROPOSED APPROACH

In order to estimate the V2I links lifetime, we propose a
Machine Learning based approach that allows each BS to
learn the link lifetime variation. In particular, we propose a
lightweight approach in which the information collected are
only the vehicle’s location and its speed during the association
request, as shown in Figure 4. These information are coupled
with others in order to allow the BS to estimate the link
lifetime. The model design is detailed in the next section.
The second part of our work consists in estimating the next
cell to which a vehicle will associate. We adopt a centralized
approach with the intention of taking advantage of the global
view available at the controller. Furthermore, the ML model
is executed by the SDN Controller, which uses mainly some
historical data of each vehicle (e.g. previous cell) so that it is
possible to infer the next most probable cell.

Fig. 4: Conceptual view of the proposed approach

Figure 4 outlines the key elements of the proposed approach.
We assume that all vehicles are equipped with a GPS module
and send additional information (location and speed) during



the association request. In the case of LTE networks, this
information can be sent using Measurement Reports (sent by
a UE using the UL-DCCH messages).

In addition, we also assume that each BS sends vehicle
information (and the estimated LLT) to the SDN controller to
estimate its next cell.

A. Supervised Machine Learning

In our study, we consider the Supervised Machine Learning
where the training process is done with labeled data. In other
words, the model learns from a set of data with both input
and output information. Given a set of data D defined by
D{(x1, y1), ...(xn, yn)}, the goal of the training process is to
establish a relation between input X and output y, y =M(X),
so that, for the new input data Xn with unknown outputs, the
model can predict the corresponding output ŷn = M(Xn)
with a good accuracy. We distinguish two types of supervised
problem: regression problem, when the value to be predicted
is a real continuous number, y ⊂ R and classification problem,
when y belongs to a finite set C = {1, 2...c} called classes.
Several techniques have been proposed in the literature. Each
technique has its pros and cons (sensitivity to noise in data
(anomalies), training time, resource consumption, etc.). A
comparative study is presented in [25] [26]. Furthermore,
we consider the so-called ensemble learning techniques [27],
which are one of the most popular and powerful supervised
algorithms that provide a more generalized model and avoid
overfitting. We focus mainly on the Random Forest algorithm
[28] both for regression and classification problems.

B. Model Design

As presented above, we first try to estimate link lifetime
between a vehicle and its NAP ( e.g eNodeB in case of LTE
network) then the most probable next cell of a vehicle. Our
problem consists of two sub-problems: the first one can be
modeled as a regression problem where the target variable is
the link lifetime. And, the second as a classification problem
where cell Ids represent the Classes. We detail in the next
sections the techniques and features that we considered to
design our model.

1) LLT Model (Link Lifetime):
It’s trivial that the link lifetime depends on the communica-
tion range of a cell. In 4/5G mobile networks, we mainly
distinguish between two types of cells: micro and macro cells.
These cells are deployed and tuned based on traffic demand
and coverage conditions in a given area. Figure 2a shows that
in the considered scenario, we have small cells (e.g. BS 10,
BS 5) deployed in dense areas and are generally characterized
by shorter link lifetime (median around 50s) compared to those
with a larger communication range (e.g. BS 3, BS2), with
a median link lifetime around 100s (see Figure 3). One of
the criteria that also impacts the link lifetime is the distance
traveled by a vehicle within the coverage of a given cell as
well as its speed, and this depends on the characteristics of
the trajectory: size (m), type (arterial, residential ...), as shown
in Figure 2a, and depicted in Figure 5. A vehicle can spend

more time than another under the coverage of the same cell
depending on the shape of the route taken by each vehicle. We
use this trajectory type property as a learning variable (feature)
to help the model differentiate roads and therefore estimate the
link lifetime more accurately. To do that, each vehicle sends its
location with the association request. The cell then calculates
the distance D (1) and the angle θ (2) used as input in the
LLT model, as shown in Figure 5.

D =
√
(x2 − x1)2 + (y2 − y1)2 (1)

θ = arctan (
y2 − y1
x2 − x1

) (2)

with (x1, y1) and (x2, y2) the position coordinates of vehicle
and base station

Fig. 5: Road identification as a learning variable

The third aspect that can impact the link lifetime is the road
traffic. When roads are more overloaded (e.g. rush hours), the
vehicles move more slowly. Consequently, they spend more
time under the coverage of a given cell. In order to integrate
this aspect in our model, the cell calculates its load based on
the number of associated vehicles at a given time. This may
help the model to infer the roads occupancy, and therefore,
enhance the quality of links’ lifetime estimations.

Given that the identified characteristics vary from one cell
to another, we decided that each cell has its own model.

Algorithm 1: Link lifetime estimation
Input: vehicle location (x1, y1), vehicle speed v,

Serving cell location (x2, y2),
historial information (number of vehicle
served by a cell), Sliding window T , MLLT

(Model obtained from offline training)
Output: l̂lt : predicted link lifetime for vehicle vi

1 D =
√
(x2 − x1)2 + (y2 − y1)2

2 θ = atan( y2−y1

x2−x1
)

3 for t in sliding window T
4 compute cl (number of associated vehicles)
5 endfor
6 l̂lt = MLLT (D, θ, v, cl)
7 return l̂lt

2) MPC Model (Most Probable Cell):
As for the LLT estimation, the next most probable cell depends
mainly on the trajectory traveled by a given vehicle, as shown



in Figure 5, the vehicles passing through the cell1 via roads
1 (e.g. red car) and 2 will have BS2 as the next cell, while
vehicles using road 3 will have the BS3 as a next cell.

We consider the same road identification method explained
in the LLT model, so we use distance and angle (D, θ) as
variables in the MPC model.

One of the points we considered in the design of the MPC
model is the last cell to which the vehicle was attached. This
will allow the model to distinguish the recurring trips, as
shown in Figure 5. Vehicles coming from the area covered
by cell 2 and passing through cell 1 tend to go to an area
covered by cell 5, while those coming from cell 4 tend to go
to an area covered by cell 3. So, we consider the previous cell
as a learning variable in our model. To design a model able
to make relevant decisions, we also consider the connectivity
time with the cell. Given the case schematized in Figure 6, the
car covered currently by cell 1 may have three potential next
cells (BS 2, 3 and 4). By using only the features presented
above the model may not take the relevant decision. For that,
we propose to consider the connectivity time with the cell as a
learning variable. By doing so, the model may dismiss the BS2
choice as a next cell, if the vehicle is still connected more than
T1 (s) and decline the BS3 choice if the connectivity duration
is greater than T2.

Fig. 6: Previous cell as a learning variable for MPC Model

Given that one of the main factors impacting the next cell is
the trajectory taken by the vehicles, the model infers the trends
using the features mentioned above. However these trends may
vary depending on the time of day and / or the day of the week,
according to the most requested places (e.g. business centers,
shopping centers). Therefore, the time of day and day of the
week may be integrated into the model in order to deduce the
potential variations and improve the prediction accuracy.

V. PERFORMANCE EVALUATION

The training is done in two main steps, the first consists of
tuning the hyperparameters of our models, while the second
aims at learning the model parameters (affected weights to
each selected feature). Random Forest has several hyperpa-
rameters that can be tuned in order to optimize the prediction
accuracy (e.g. the number of trees, the minimum number of
samples required to be at a leaf node, etc.). To that end,
we used the CV-GridSearch technique, which consists of
running the CV K-fold [29] several iterations, each time with
different model parameters (specified as input). At the end
of this process, the model with best accuracy is used for the

Algorithm 2: Most Probable Cell prediction
Input: vehicle position(x1, y1), Serving cell s c,

Serving cell location (x2, y2), historical
information (previous handover decisions of
each vehicle), llt estimated link lifetime,
MMPC (Model obtained from offline training)

Output: m̂pc : most probable next cell for vehicle vi
1 D =

√
(x2 − x1)2 + (y2 − y1)2

2 θ = atan( y2−y1

x2−x1
)

3 for vehicle vi
4 get the previous cell p c
5 endfor
6 m̂pc = MMPC (s c, D, θ, p c, llt)
7 return m̂pc

second step to train the model in order to learn the feature’s
parameters. For both models (MLLT and MMPC), we used
75% of dataset for training, the remaining 25% are used for
testing, which is a commonly used split ratio. Then, for each
entry Xi in the test set X, we compute the output ŷi =M(Xi)
by using the resulting model M. Then, we compare it with the
real value yi. We thus calculate the prediction accuracy of
each model using the performance metrics presented in the
following section.

A. LLT Model

1) Performance metrics and baseline: Two metrics are
considered in our evaluation :

• Mean Absolute Error (MAE ) represents an average of
absolute differences between the predicted and observed
link lifetime values. The smaller the value, the better the
prediction. It is calculated as follows :

1

N

N∑
i=1

|yi − ŷi| (3)

where ŷi is the predicted value.
• Coefficient of determination R2 represents the percentage

of how much our model is better than a simple baseline
(prediction values is the mean value of link lifetime). A
value closer to 1 means a good model. it is calculated as
follows :

1−
∑N

i=1(yi − ŷi)2∑N
i=1(yi − yi)2

(4)

where yi is the mean of link lifetime values, ŷi is the
predicted value.

2) Results: The LLT model learns primarily from the main
features (D, theta and speed). In order to evaluate the impact
of the additional feature ”cell load”, we evaluate two models:
the first one (MLLT1) with only the main features, and the
second one (MLLT2) with cell load as an additional feature
(calculated using a window T =100 s).
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Figures 7 and 8 show the performance results of the
proposed model. They respectively show the Coefficient of
determination R2 and the Mean Absolute Error.

The x-axis of Figures 7 and 8 represents the BSs sorted in
the ascending order (from left to right) of the average link
lifetime. Cell 13 has the smallest average of 19.13 s, while
cell 2 has the highest average, which is equal to 125.66 s.
We can notice that R2 is mostly between 0.4 and 0.6, with a
maximum, around 0.7, for cells with small link lifetimes (i.e.
13, 15), and a minimum, around 0.3, for cells with high link
lifetimes (i.e. 3, 2). We can also notice that MAE increases
with the average link lifetime. Cell 13 has the minimum MAE
of 3.52 s while cell 2 has the maximum MAE, which is equal
to 50 s. We can notice that our proposed model performs very
well for cells with small (e.g. 13, 9) and medium (e.g. 1, 10)
link lifetimes compared to cells with high link lifetimes (e.g.
2, 3). This can be explained by the fact that cells with high link
lifetime values generally have a large coverage (as shown in
Figure 2a). Consequently, the vehicle may change frequently
the path identified at association request.

One possible improvement would be to recompute the LLT
prediction using the new vehicle’s position after a time interval
T (specified according to the service using the prediction).
An adaptive interval T is more suitable for cells with high
link lifetimes in order to make a trade-off between network
overhead and prediction accuracy. This adaptation can be
guided by the average observed errors of each location (road).
Thus, the model can define a specific interval based on the
initial location from where the vehicle is connected to the
cell.

We can also notice that both models (MLLT1) and (MLLT2)
have slightly the same performance. The use of cell load
as a learning feature doesn’t greatly improve the prediction

accuracy.

B. MPC Model

1) Performance metrics and baseline: We consider the clas-
sical metrics used in the literature to evaluate the performance
of a classification model. The goal is to analyze the ability
of the proposed model to predict vehicle’s next cell using the
identified features. Firstly, we compute the Accuracy which
represents the ratio of correct predictions with regard to the
total number of input data. It measures the prediction accuracy
of the model for all the classes (BS id). A high value means
that the model generally predicts well the next cell for all the
classes (BSs). Secondly, we analyze the prediction quality of
each class using ROC curves, which represents a plot between
the true positive rate TPR (Sensitivity) and false positive rate
FPR (1 - Specificity) of each class. This allows us to identify
the classes in which the model performs better (high TPR
and low FPR, curve in the top left corner of the plot), and the
classes where the model takes more incorrect decisions (lower
TPR and higher FPR). Finally, we compute the Precision
metric of each class in order to analyze the true positive rate
with regard to the false positive, which represents the ability
of the model to capture the correct cases and do not confuse
other items with a given class (e.g. BS1, the model decides
that some items belong to class BS1, while, in fact, they’re
not). Table 2 defines the above-cited metrics.

TABLE II: Performance metrics.

Metrcis Formula
Accuracy TP+TN

TP+TN+FP+FN

Precision TP
TP+FP

ROC Sensitivity TP
TP+FN

(True Positive Rate)
Specifity TN

TN+FP
(True Negative Rate) = 1 - FPR (False

Positive Rate)
Where TP: True Positives, FN: False Negatives, FP: False Positives,
TN: True Negatives

We compare our model to a simple baseline that considers
the frequency of going from one cell to another as a metric
to predict the next cell. Figure 9 represents the computed
frequency for each cell and its neighboring cells. This fre-
quency is calculated using all the observations of the dataset.
For example, the frequency of going from cell 1 to cell 2
represents the ratio of the number of samples where the current
cell equals to 1 and next cell equals to 2 with respect to the
total number of samples where current cell equals to 1. From
there, the most probable cell is straightly derived by choosing
the one that represents the maximum frequency compared to
neighboring cells. For example, the prediction of the next cell
for the vehicle connected to cell 1 is cell 3 and for those
connected to cell 4 is cell 13.

2) Results: The MPC model learns primarily from the main
features (current cell, distance, theta and previous cell). In
order to evaluate the impact of the additional feature ”LLT”,
we evaluate two models: the first one (MMPC1) with only the
main features, and the second one (MMPC2) with LLT as an
additional feature (the evaluations are based on the observed
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Fig. 9: Neighborhood map with calculated frequencies

LLT values). Figure 10 shows the accuracy of the proposed
model compared to the baseline. The model (MMPC1), has a
precision of almost 80% compared to the baseline presented
above with an accuracy of 40%. In addition, the model reached
86% of accuracy (MMPC2) when we include the additional
feature about LLT, presented in Figure 6.

Fig. 10: Prediction accuracy of the proposed model

In order to examine the obtained accuracy, we first analyze
the TPR and FPR of each class for each model using the ROC
curves, and then the Precision as a second step. Figures 11 (a),
11(b) and 11(c) show respectively the ROC curves for baseline
model, MMPC1 and MMPC2 . The dotted line represents the
random model. The ROC curve of a class closer to the upper
left corner of the plot (high TPR and low FPR) means that the
model correctly predicts the next cell for the vast majority of
vehicles heading towards that cell.
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Fig. 11: MPC model performance (ROC metrcis)

We can notice that in our proposed model MMPC1 (without
LLT), the majority of the classes has a TPR of almost 80%,
some reach a TPR around of 95% (as shown in the Figure 11
(b)). This is the case of cells 12, 13, 15, which are surrounded

by a reduced number of neighbors (3 neighboring cells, as
shown on Figure 9) and they have the specificity of being
connected to their neighbors by mostly arterial roads with few
intersections (as shown in the Figure 2a). All contribute to
reduce the chance that a vehicle leaves the path identified by
the model at the association request, hence, helping the model
to correctly estimate the next cell. Conversely, cell 1 (ROC
blue curve) surrounded by neighboring cells that have a large
coverage area with residential roads and many intersections
has the lowest TPR (around 62%). In such case, accurate
prediction is harder.

The prediction can be however improved by including the
LLT metric. Indeed, with MMPC2 (as shown in Figure 11 (c))
the majority of the cells have a TPR greater than 83% (some
reache 97%). Notably, Cell 1’s TPR is improved by 18%. This
can be explained by the fact that cell 1 is surrounded by 3 cells
with a wide coverage (as shown in Figure 2a), which means
that vehicles spend generally more time in neighboring cells
to get to cell 1, this helps the model to take the right decisions.
The same trends are observed for the precision metric (shown
in Figure 12) with a precision of around 80% for the majority
of the cells and a high precision for cells 12,13,15 (around
92% ) and a precision around 70% for the cells 1, 4, 5. These
latter cells are the neighboring cells of the cells 2 and 3 which
means that the model confuses the choice of the next cell for
vehicles served by cells 2 and 3, by choosing cell 1 as the
next cell instead of cells 4 and 5. The precision of the model
is also improved by including llt (MMPC2), reaching more
than 80% for the majority of cells.
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Fig. 12: MPC model performance (Precision metric)

VI. DISCUSSION

Estimating the V2I link lifetime coupled with vehicle’s next
cell opens the way towards an intelligent and efficient network
control. In our proposed approach, we mainly exploited road
identification and recurrent trips as the main learning variables
in our models, and we made the choice that this happens
during the association request with a given cell. Indeed, it does
not represent any overload for the network. Performance tests
have shown very good results in the vast majority of cases.
The models are trained offline using the data collected during
a day. However, the trends captured by the models during
the training can vary slightly from one day to another. For
example, the roads and places solicited during the business
day are different from the weekend. This may influence the
learning variables, for example for the same previous cell (p c)



and given road (d, theta). We then will have a trend to go
to a given cell during the business day, and to another cell
during the weekend. A training with traces collected over a
long duration (e.g. week) including the day of the week as
learning variable allows the model to capture these variations.
On the other hand, the ISP provider may change the network
parameters in order to optimize its network (modifying cell
coverage, add or remove a cell). This may impact the perfor-
mance of the models. A retraining can occur if the prediction
error exceeds a given threshold (fixed according to the service
using the prediction outputs) with the new data collected and
obviously taking into account the new conditions.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a supervised machine
learning method based on random forests to estimate the
time duration that a vehicle remains connected to a cell.
The main peculiarity of our method is that the prediction is
done at association request and only requires the position and
speed from the vehicle (both piggybacked with the association
request message) and the cell load from the NAP. Based on a
dataset derived from real mobility traces from the Luxembourg
city that we complemented with network related information
derived for the infrastructure of a real cellular network operator
in Luxembourg, the performance results show a minimum
MAE (Mean Absolute Error) of 3.52 s for cell with narrow
coverage and short lifetime values and a maximum MAE of 50
s for cell with wide coverage and higher link lifetime values.
We have also proposed a supervised machine learning method
to predict the next cell that a vehicle is expected to handover
by considering an additional feature: the cell that the vehicle
is leaving. Performance results from the above-cited dataset
show an accuracy at the level of 80%.

The main perspectives to this work are: Firstly, to investigate
new features in order to enhance the accuracy of the proposed
models. For example, hour of day and day of the week may
help the MPC model to infer the trends of recurring trajectories
during the day and the week. Secondly, we plan to test our
models performance in different scenario, with various road
topology and mobility patterns and finally, to validate our
models using a real experimental dataset.
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