
HAL Id: hal-02364255
https://laas.hal.science/hal-02364255

Submitted on 14 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Random Neural Networks and Deep Learning for Attack
Detection at the Edge

Olivier Brun, Yonghua Yin

To cite this version:
Olivier Brun, Yonghua Yin. Random Neural Networks and Deep Learning for Attack Detection at
the Edge. 2019 IEEE International Conference on Fog Computing (ICFC), Jun 2019, Prague, Czech
Republic. pp.11-14, �10.1109/ICFC.2019.00009�. �hal-02364255�

https://laas.hal.science/hal-02364255
https://hal.archives-ouvertes.fr


Random Neural Networks and Deep Learning

for Attack Detection at the Edge

Olivier Brun

LAAS-CNRS, Université de Toulouse, CNRS

Toulouse, France

Yonghua Yin

Intelligent Systems and Networks Group

Electrical & Electronic Engineering Department

Imperial College, London SW7 2AZ, UK

Abstract—In this paper, we analyze the network attacks
that can be launched against Internet of Things (IoT)
gateways, identify the relevant metrics to detect them, and
explain how they can be computed from packet captures.
We then present the principles and design of a deep
learning-based approach using dense random neural net-
works (RNN) for the online detection of network attacks.
Empirical validation results on packet captures in which
attacks are inserted show that the Dense RNN correctly
detects attacks.

Index Terms—Cybersecurity, IoT, attack detection, deep
learning, dense random neural network, Fog Computing.

I. INTRODUCTION

With the proliferation of network attacks aiming at

fraudulently accessing sensitive information or at ren-

dering computer systems unreliable or unusable, cy-

bersecurity has become one of the most vibrant of

today research areas. Whereas most work has been

done in the context of traditional TCP/IP networks,

IoT systems have specific vulnerabilities which need

to be addressed [1]. In this paper, we analyze the

cybersecurity threats against an IoT-connected home

environment and present the principles and design of a

learning-based approach for detecting network attacks.

Our approach relies on a two-class classification al-

gorithm based on a Dense Random Neural Network

(RNN). This approach is an extension of the work

presented in [2], [3].

The paper is organized as follows. In Sec. II, we

analyze the vulnerabilities of IoT gateways and identify

the relevant metrics for detecting attacks. We present our

approach in Sec. III, whereas Sec. IV presents validation

results. Some conclusion are drawn in Sec. V.

II. VULNERABILITIES OF IOT ENVIRONMENTS

Figure 1 describes the architecture of an IoT envi-

ronment, in which the main components are the smart

devices. In a typical IoT environment, there may be

dozens or even hundreds of sensors and actuators with

various functions (e.g., measuring temperature, light,

noise, etc.) Each of these devices may use differen-

t wireless technologies to communicate (e.g., Wi-Fi,

Bluetooth, Ethernet, ZigBee and others). Due to tights

limitations on hardware cost, memory use and power

consumption, these wireless technologies have their own

vulnerabilities, including traffic eavesdropping, packet

replay, energy and collision attacks. A first possibility

for an attacker is therefore to exploit the vulnerabilities

of the various wireless sensor networks (WSN) present

in an IoT environment.

Wireless sensor technologies used in IoT environ-

ments are not designed to enable smart devices to

connect directly to the Cloud. Instead, they connect to

an IoT gateway, which is a device capable of processing

and aggregating sensor data, before sending it to the

Cloud for further processing. Another possibility for an

attacker is therefore to launch traditional TCP/IP attacks

against IoT gateways.

Fig. 1. Architecture and vulnerabilities of IoT environments.

Safeguarding IoT environments implies to be able

to detect and block both types of attacks. The main

difficulty here is that attackers have devised a myriad

of different attack techniques. Our approach is to focus

on some of the most common and most damaging ones:

1) Denial-of-Service attacks against TCP/IP net-

works: A denial-of-service attack (DoS attack) is typ-

ically accomplished by flooding the targeted host with

superfluous requests in an attempt to overload systems

and prevent some or all legitimate requests from being



fulfilled [4]. In a distributed denial-of-service attack

(DDoS attack), the incoming traffic flooding the victim

originates from many different sources, making it im-

possible to stop the attack simply by blocking a single

source. Some DoS attacks remotely stop a network

service on the victimized host by sending a malformed

packet (e.g., Ping-of-death, Jolt2, Land, Latiera and

Rose attacks). Another form of DoS attack aims at

remotely exhausting the resources of the victim by

flooding it with a huge number of packets (e.g., TCP

SYN flood, UDP flood, ICMP flood attacks , HTTP

POST DoS attacks, etc).

2) Denial-of-Sleep attacks against WSNs: A simple

form of attack is to deplete the energy available to

operate the wireless sensor nodes [5]–[7]. For instance,

vampire attacks are routing-layer resource exhaustion

attacks aiming at draining the whole life (energy) from

network nodes, hence their name [8]. Denial-of-Sleep

attacks are another form of energy attacks. These MAC-

layer attacks aim at keeping the victim node out of

its power conserving sleep mode, so as to reduce its

lifetime. These attacks can take on several forms: sleep-

deprivation attacks [9], barrage attacks, synchronization

attacks [10], replay attacks [11], broadcast attacks [12]

and collision attacks [13].

We have carefully analyzed the principles of the above

mentioned attacks and identified the relevant metrics for

detecting them. As an example, consider a UDP flood

attack, in which the attacker sends a large number of

UDP packets to random ports on a remote host. Upon

reception of a UDP packet, the victim first checks for

the application listening on this port, and, after seeing

that no one listens on the port, it replies with an ICMP

“Destination Unreachable” packet. In this way, the vic-

timized system is forced to send many ICMP packets,

eventually leading it to be unreachable by other clients,

or even to go down. For this attack, the relevant metric is

clearly the number of ICMP “destination unreachable”

messages sent by the gateway over a time slot of given

length. Indeed this metric is expected to take very low

values under normal traffic conditions and to suddenly

increase when a UDP flood attack is launched.

III. ATTACK DETECTION APPROACH

As shown in Fig. 2, our attack detection approach

relies on the analysis of the traffic flows exchanged

with the IoT gateway. The data packets exchanged with

the IoT gateway are captured on all network interfaces.

These packet flows are then analyzed in order to extract

various packet-level metrics from which network attacks

can be detected. A classification algorithm, which has

been previously trained with ”normal” and attack IoT

traffic, takes as input these metrics and predicts the

probability that the IoT-connected home environment is

currently under attack. Note that, although the computa-

tion of metrics is done on the gateway, the classification

algorithm can be run in a nearby micro datacenter.

attack probability

Cloud
Gateway

IoTIoT

devices

packet flowspacket flows

captured packets

packet−level metrics

captured packets
Analysis

Algorithm
Classification

Fig. 2. Architecture of the online attack detection system..

We describe below the main components of our attack

detection system.

A. Analysis of Packet Captures

The packet captured on the network interfaces of

the IoT gateway are analyzed using Scapy, a packet

manipulation tool for computer networks [14]. We have

written a Python module based on Scapy. The module

takes as input a pcap file and computes the values

of various network metrics over a time slot (e.g., 10

seconds). Some metrics are rather generic (e.g., number

of packets over a time slot) whereas others are devised to

detect specific network attacks (e.g., number of ICMP

“Destination unreachable” packets). By collecting the

time-series for the different network metrics, we obtain

a dataset which is used to train the classification algo-

rithm, which in turn predicts the probability of an attack.

B. Network-attack detection with random neural net-

work

We apply the random neural networks (RNN) [15],

[16] developed for deep learning recently [17]–[19] to

detecting network attacks using network metrics extract-

ed from the captured packets, which can be viewed as

a binary classification problem.

1) Dataset construction: We extract data samples

from the time-series network metrics by setting a sliding

window with length l. If a sample Xn ∈ Rl×1 is

extracted in the non-attack case, then we assign the

label of this sample denoted as yn as 0; otherwise,

if it is extracted in the attack case, the label of this

sample is assigned as yn = 1. Then, we have a dataset



{(Xn, yn)|n = 1, · · · , N}, where the inputs are network

metrics and the output is a binary value.

2) Dense random neural network for deep learning:

A dense cluster in a “Dense RNN” [17], [18] is com-

posed of n statistically identical cells. Each cell receives

inhibitory spike trains from external cells with rate x,

whose spike behaviours follow the pattern of random

selection of soma-to-soma interactions. A cell receives

excitatory and inhibitory spikes from external world

with rates λ+ and λ− respectively. Let p be the repeated-

firing probability when a cell fires, r be the firing rate of

a cell, and let q denote the probability of the activation

state of a cell in the cluster in the steady state. Previous

work shows that a numerical solution can be obtained

for q such that

q = ζ(x) =
−(c− nx)−

√

φ(x)

2p(n− 1)(λ− + x)
,

where c = λ+p + rp − λ−n − r − λ+pn − npr and

φ(x) = (c−nx)2−4p(n−1)(λ−+x)nλ+. For notation

ease, ζ(·) is used as a term-by-term function for vectors

and matrices.

Dense RNN in multi-layer architectures (DenseRNN)

are constructed in the following manner.

The first layer (input layer) of the DenseRNN is made

up of RNN cells that receives excitatory spike trains

from external sources, resulting in a quasi-linear cell

activation q(x) = min(x, 1). The successive L layers are

hidden layers composed of dense clusters that receive

inhibitory spike trains from cells in the previous layer,

with a resultant activation function q(x) = ζ(x). The

last layer is an RNN-ELM. Let us denote the connecting

weight matrices between layers of a L-hidden-layer

(L ≥ 2) DenseRNN by W1, · · · ,WL ≥ 0 and output

weight matrix by WL+1. Given input matrix X , a

forward pass of X in the DenseRNN can be described

as:







Q1 = min(X, 1),
Ql = ζ(Ql−1Wl−1) for l = 2, · · · , L+ 1,
O = QL+1WL+1.

where Q1 is the 1st layer output, Ql is the lth layer

output (l = 2, · · · , L+1) and O is the final DenseRNN

output.

Given a training dataset {(Xn, yn)|n = 1, · · · , N},

the work in [17], [18] have developed an efficient train-

ing procedure for DenseRNN to determine the values of

W1, · · · ,WL,WL+1, which combines unsupervised and

supervised learning techniques [17]–[19].

IV. EXPERIMENTAL RESULTS

A. Experiment Setup

Some packet captures were obtained from a standard

installation of the Carelife system. The Televes gateway

was connected to the Internet using a 3G SIM card.

Several software modules were installed on the gateway

in order to capture and parse (in a PCAP file format)

the data packets exchanged with various sensors which

were previously paired and registered by the gateway, as

well as those exchanged by the gateway with Internet

servers. Packets were captured for a complete weekend

on all network interfaces (see Fig. 3).

Fig. 3. Configuration used for the experiment.

In the following, we focus on the packets captured on

the PPP interface, but the analysis would be similar for

the other network interfaces. In total, 100, 653 frames

were captured on this interface during the experiment,

50, 296 IP packets were received by the gateway, and

41, 938 IP packets were sent by it.

B. Attack generation

Using Scapy, we wrote a Python script implementing

several attack techniques. The resulting pcap files can be

merged with the initial packet captures using the utility

tool mergecap, so as to superimpose an attack upon the

”normal” traffic collected during the experiment.

C. Example of attack detection results

As an example, Fig. 4a plots the time-series for

the difference between the numbers of initiated and

established TCP connections per time slot (10 s) which

was extracted from a pcap file obtained using the above

procedure. As can be observed in Fig. 4b, the Dense

RNN models correctly predicts that there was an attack.



�0

�10

�20

�30

�40

�50

�60

�70

�80

09/21

09:10

09/21

09:20

09/21

09:30

09/21

09:40

09/21

09:50

09/21

10:00

09/21

10:10

09/21

10:20

09/21

10:30

09/21

10:40

09/21

10:50

09/21

11:00

09/21

11:10

D
if
fe
r
e
n
c
e

time

(a)

�0.25

�0.3

�0.35

�0.4

�0.45

�0.5

�0.55

�0.6

�0.65

�0.7

�0.75

09/21

09:10

09/21

09:20

09/21

09:30

09/21

09:40

09/21

09:50

09/21

10:00

09/21

10:10

09/21

10:20

09/21

10:30

09/21

10:40

09/21

10:50

09/21

11:00

09/21

11:10

A
tt
ac
k�
P
ro
b
ab
ili
ty

�P
re
d
ic
te
d
�b
y�
D
en
se

�R
N
N

time

(b)

Fig. 4. Scenario where a SYN attack, starting at 10:10 AM and lasting
for 40 seconds, was inserted into the normal traffic captured from 9:15
AM to 11:03 AM on Sep. 21st, 2017: (a) time-series of the difference
between the numbers of initiated and established TCP connexions per
time slot (10 s), and (b) attack probability predicted by the Dense
RNN.

V. CONCLUSION

In this paper, we presented a methodology for the

online detection of network attacks against IoT gateways

using dense RNNs. As future work, we intend to apply

our methodology to a broad range of network attacks,

including Denial-of-Sleep attacks against Zigbee and

Bluetooth-connected devices.

ACKNOWLEDGMENT

This paper was supported by European Union’s Hori-

zon 2020 research and innovation programme under

grant agreement No 740923, project GHOST1 (Safe-

Guarding Home IoT Environments with Personalised

Real-time Risk Control).

REFERENCES

[1] K. Fu and T. Kohno and D. Lopresti and E. Mynatt and K. Nahrst-
edt and S. Patel and D., Richardson and B. Zorn B. Safety, Securi-
ty, and Privacy Threats Posed by Accelerating Trends in the Inter-
net of Things. http://cra.org/ccc/resources/ccc-led-whitepapers/,
2017.

1https://www.ghost-iot.eu

[2] O. Brun and Y.Yin and J. Augusto-Gonzalez and M. Ramos and
E. Gelenbe, IoT Attack Detection with Deep Learning, ISCIS
Security Workshop, Imperial College, London, UK, Feb. 26 2018.

[3] O. Brun, Y. Yin and E. Gelenbe. Deep Learning with Dense
Random Neural Network for Detecting Attacks against IoT-
connected Home Environments. Procedia Computer Science, 134:
458-463, 2018.

[4] E. Skoudis and T. Liston. Counter Hack Reloaded: A Step-by-Step
Guide to Computer Attacks and Effective Defenses, 2nd Edition.
Prentice Hall, 2005.

[5] A. Dubey, V. Jain, and A. Kumar. A survey in energy drain
attacks and their countermeasures in wireless sensor networks.
Int. J. Eng. Res. Technol., 3(2), 2014.

[6] F. Francois, O. H. Abdelrahman, and E. Gelenbe. Impact of
signaling storms on energy consumption and latency of lte user
equipment. In 2015 IEEE 7th Int. Symp. on Cyberspace Safety

and Security, pp 1248–1255, Aug 2015.
[7] E. Gelenbe and Y. Murat Kadioglu. Energy life-time of wireless

nodes with and without energy harvesting under network attacks.
In IEEE Int. Conf. on Communications (ICC), Kansas City, MO,
USA, 20-24 May 2018.

[8] E. Y. Vasserman and N. Hopper. Vampire attacks: Draining
life from wireless ad hoc sensor networks. IEEE Trans. Mobile

Computing, 12(2):318–332, Feb 2013.
[9] M. Pirretti, S. Zhu, N. Vijaykrishnan, P. McDaniel, M. Kandemir,

and R. Brooks. The sleep deprivation attack in sensor networks:
Analysis and methods of defense. Int. Journal of Distributed

Sensor Networks, 2(3):267–287, 2006.
[10] X. Lu, M. Spear, K. Levitt, N. S. Matloff, and S. F. Wu. A

synchronization attack and defense in energy-efficient listen-sleep
slotted mac protocols. In 2008 2nd Int. Conf. on Emerging

Security Information, Systems and Technologies, 2008.
[11] Alessio Di Mauro, Xenofon Fafoutis, Sebastian Mödersheim,

and Nicola Dragoni. Detecting and Preventing Beacon Replay

Attacks in Receiver-Initiated MAC Protocols for Energy Efficient

WSNs, pp 1–16. Springer Berlin Heidelberg, 2013.
[12] M. Brownfield, Y. Gupta, and N. Davis. Wireless sensor

network denial of sleep attack. In Proc. 2005 IEEE workshop

on information assurance and security, West Point, NY, 2005.
[13] Yee Wei Law, Marimuthu Palaniswami, Lodewijk Van Hoesel,

Jeroen Doumen, Pieter Hartel, and Paul Havinga. Energy-efficient
link-layer jamming attacks against wireless sensor network MAC
protocols. ACM Trans. Sen. Netw., 5(1):6:1–6:38, February 2009.

[14] R. Rehim. Python Penetration Testing Cookbook Packt Publish-
ing, 2017.

[15] E. Gelenbe. Learning in the recurrent random neural network.
Neural Computation, 5(1), 154–164, 1993.

[16] E. Gelenbe. Random neural networks with negative and positive
signals and product form solution. Neural Computation, 1(4),
502–510, 1989.

[17] E. Gelenbe and Y. Yin. Deep learning with random neural
networks. Neural Networks (IJCNN), 2016 Int. Joint Conference

on, IEEE, 1633–1638, 2016.
[18] E. Gelenbe and Y. Yin. Deep Learning with Dense Random

Neural Networks. Proc. Int. Conf. on Man–Machine Interactions,
Springer, 3–18, 2017.

[19] Y. Yin and E. Gelenbe. Single-cell based random neural network
for deep learning. Neural Networks (IJCNN), 2017 Int. Joint

Conference on, IEEE, 86–93, 2017.
[20] Y. Yin and E. Gelenbe. Nonnegative autoencoder with

simplified random neural network. CoRR, abs/1609.08151,
http://arxiv.org/abs/1609.08151, 2016.


