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Abstract—In this paper, we address the problem of failure
detection in assembly lines modeled as Timed Event Graphs
(TEG). The proposed method represents TEGs as (max,+)-linear
systems with time intervals and aims at detecting time shift
failures in the underlying assembly lines. To do so, we propose the
definition of a set of indicators relying on the residuation theory
on (max,+) linear systems that handle certain and uncertain
observable outputs.

Index Terms— (max,+)-linear system, assembly line, fault
detection, discrete event system, timed event graph

I. INTRODUCTION

In industrial systems such as assembly lines, fault diagnosis
is usually automatized by using Discrete Event System (DES).
Industry also requires that failures are rapidly identified,
to avoid systems unavailability for too long. The various
system failures can be loss of event information, loss of
time information. Among those failures, timing issues can
be a problem for instance, an assembly line that slows down
will put out fewer pieces. STMicroelectronics is a company
that develops, produces and commercializes microchips for
electronic system. The semiconductor manufacturing process
is extremely complex and constantly innovating. One of the
challenges is the monitoring of time drifts for the supervision
of an instrumented production chain. This means detecting as
soon as possible the time differences between the production
plan and the so-called Work In Progress (WIP for short) in
order to be able to apply the corrections in WIP quickly
without having too much delay in the delivery of the product.

This problem is a subclass of the problems called failure
diagnosis in timed discrete event systems. One of the first
diagnostic methods is the method extracted from [SSL+95]
which is applied to timed automata [Tri02]. This diagnostic
method refines decisions on the diagnosis by taking into
account dated observations. In [GTY09] the diagnostic method
uses time Petri net that models competition and/or system
parallelism. Among the classes of Petri Nets, Timed Event
Graph is a good candidate to represent assembly lines. TEGs
are one of the subclasses of Petri nets where places are
associated with a punctual duration. Recently, in the article
[SLCP17] the method uses (max,+) algebra to model TEGs
in a linear state representation and proposes a method to
perform failure diagnosis. This method performs diagnosis on

a fixed time (max,+)-linear system. In this article, we extend
the diagnostic method of the article [SLCP17] by dealing with
time intervals in TEGs and by still using a representation with
(max,+) algebra. We first propose a method for detecting time
lags in system with certain outputs (i.e. we know exactly what
are the output events of the system) that is secondly extended
to deal with a method for detecting time lags in system with
uncertain outputs (i.e. the occurrence date of the output events
is within a given time interval).

The paper is organized as follows. Section II presents
a motivation example inspired from the microchip industry.
Section III summarizes the necessary mathematical back-
ground about (max,+)-linear systems. Section IV introduces
the acceptable outputs in (max,+)-linear system with time
intervals. Section V then defines detection in (max,+)-linear
systems with time intervals with indicator for certain outputs
and indicator for uncertain outputs.

II. MOTIVATION EXAMPLE

In the STMicroelectronics plant, several products are pro-
duced at the same time. For the production of products there
is a several different production plans for the same product
there are variations in production time. WIP may change dur-
ing manufacture depending on equipment availability. These
changes may cause delays depending on the delivery date of
the product, the WIP have to be corrected. The purpose of
the proposed method is to detect when the delay becomes
significant and that it is absolutely necessary to make a
correction of the WIP in order not to have a delay on the
delivery.

Example 1. Figure 1 shows a part of such a plant. It is
an assembly line composed of equipments. It is represented
as a Time Event Graph where places hold time intervals.
Equipment 1 and 2 do the same treatment but not will the
same treatment time. The treatment on Equipment 3 need a
sufficient number of wafers so you have a synchronization
between equipments to do the treatment on Equipment 3. Input
u1 is a flow of timed events corresponding to the arrivals of the
wafers on Equipment 1, for the place p1 the time corresponds
to the arrival time of the wafers in front of the equipment. If
the equipment is ready, this corresponds to a token in the place



p3, the processing of the equipment is carried out on place p4
and the process duration is between 2 and 5 hours. Input u2
is a flow of timed events corresponding to the arrivals of the
wafers on Equipment 2. For the place p2 the time corresponds
to the arrival time of the wafers in front of the equipment. If the
equipment is ready, this corresponds to a token in the place p6,
the processing of Equipment 2 is carried out on place p5 and
the process duration is between 1 and 3 hours. The processing
of Equipment 3 corresponds to place p10 and the process lasts
exactly 2 hours. This operation can only be processed if there
is a sufficient number of wafers coming from Equipments 1 and
2. The time on places p8 and p7 corresponds to the arrival
times where process lasts 3 hours for p8 and 5 hours for p7.
Now suppose that on the input u1 we have a wafer at t=0 then
a wafer at t=1 then a wafer at t=2 and finally a wafer at t=3.
Suppose now that it is the same on input u2. Imagine now
that final products are available on the output y respectively
at time 12, 15, 18 and 23, is the schedule respected according
the TEG of Figure 1 or is there a time drift within the assembly
line.
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Fig. 1. Representation of assembly line as a Time Event Graph with time
intervals

Time Event Graphs, as the one presented in Figure 1, can be
formally defined as (max,+) linear systems that are introduced
in the next section. This formalization will be used to the
definition of the indicators of time shift failures as the one of
Example 1.

III. SCIENTIFIC BACKGROUND

This section recalls the mathematical background that will
be used in this paper for describing (max,+) linear systems
with time intervals. For this section, interested reader is invited
to peruse [BCOQ92], [Max91], [BHMR] and [LHCJ04].

A. Dioid theory

Definition 1. A dioid D is a set composed of two internal op-
erations ⊕ and ⊗. The addition ⊕ is associative, commutative,
idempotent (i.e. ∀a ∈ D, a⊕a = a) and has a neutral element
denoted ε. The multiplication ⊗ is associative, distributive on
the right and the left over the addition ⊕ and has a neutral
element denoted e. When there is no ambiguity, the symbol ⊗
is omitted.

Definition 2. A dioid is complete if it is closed for infinite
sums and if the multiplication ⊗ is distributive over infinite
sums.

Example 2. The dioid Rmax = (R ∪ −∞) with the max
operation for the law ⊕ and the addition for the law ⊗ and
with ε = −∞ and e = 0. Rmax is not complete because +∞
does not belong to the set Rmax so the infinite sum is not
set to +∞. By adding +∞ to the dioid Rmax, we get the
complete dioid Rmax.

Theorem 1. Let D be a complete dioid, x = a∗b is a solution
of the equation x = ax⊕ b, where x = a∗b, where a∗ =

⊕
i≥0

ai

the Kleene star operator with a0 = e.

Definition 3. For a dioid D, � denotes the order relation such
that ∀a, b ∈ D, a � b⇔ a⊕ b = b.

Example 3. The complete dioid B[[γ, δ]] is the set of formal
series with two commutative variables γ and δ with boolean
coefficients in {ε, e} and exponents in Z. A series s ∈ B[[γ, δ]]
is written s =

⊕
n,t∈Z

s(n, t)γnδt where s(n, t) = e or ε. ε =⊕
n,t∈Z

γnδt and e = γ0δ0 are the neutral elements.

Graphically, a series of B[[γ, δ]] is described by a collection
of point of coordinates (n, t) in Z2 with γ as horizontal axis
and δ as vertical axis. For instance, Figure 2 shows a couple
of series p = γ3δ0⊕γ4δ1⊕γ5δ2 and p = γ0δ1⊕γ2δ3⊕γ4δ5.

Example 4. The complete dioid Max
in [[γ, δ]] is the quotient

dioid B[[γ, δ]] by the modulo γ∗(δ−1)∗. The complete dioid
Max

in [[γ, δ]] with ∀a, b ∈ Max
in [[γ, δ]]: ab ⇔ aγ∗(δ−1)∗ =

bγ∗(δ−1)∗. The internal operations are the same for B[[γ, δ]]
and neutral elements ε and e are identical to those of B[[γ, δ]].

Definition 4. Let s ∈ Max
in [[γ, δ]] be a series, the dater

function of s is the non-decreasing function Ds(n) from
Z 7→ Z such that s =

⊕
n∈Z

γnδDs(n).

Example 5. Considering the example 1, for the input u1 must
start operating on a wafer at time t=0 then on a second wafer
at time t=1 then an a third at time t=2 and finally on a fourth
wafer at t=3. The date function of this input is written u1 =
γ0δ0 ⊕ γ1δ1 ⊕ γ2δ2 ⊕ γ3δ3 ⊕ γ4δ+∞ where Du1(0) = 0,
Du1(1) = 1, Du1(2) = 2 and Du1(3) = 3.

B. Residuation theory

Residuation is a general notion in lattice theory which
allows for the definition of ”pseudo-inverse” of some isotone
maps. In particular, the residuation allows to find the biggest
solution of inequalities such as π(x) � b.

Definition 5. Let π : D 7→ C be an isotone mapping, where D
and C are complete dioid. The largest solution from π(x) = b
and noted π] is called the residual of π. Where π is residuated,
π] is the unique isotone mapping such that π ◦ π] � IdC and
π] ◦ π � IdD where IdC and IdD are respectively the identity
mapping on C and D



Example 6. The mapping La 7→ a⊗x and Ra 7→ x⊗a defined
over a complete dioid D are both residuated. Their residuals
are denoted, respectively, by L]

a(x) = a ◦\x = x
a , R

]
a(x) =

x◦/a = x
a .

Thanks to the residuals defined above we will be able to
define time comparison between series.

Definition 6. Let a, b ∈Max
in [[γ, δ]] and their respective dater

function Da and Db, the time shift function representing the
time shift between a and b for each n ∈ Z is defined by
Ta,b(n) = Da −Db.

Theorem 2. Let a, b ∈Max
in [[γ, δ]], the time shift function can

be bounded by:

∀n ∈ Z, Db◦/a(0) ≤ Ta,b(n) ≤ −Da◦/b(0).

This theorem defines some minimum and maximum bounds
for the time shift function. The extraction of the bound is done
on the series a◦/b and b◦/a. The Db◦/a(0) bound is obtained from
the γ0δDb◦/a

(0) ∈ b◦/a. The Da◦/b(0) bound is obtained from the
γ0δ
D

a◦/b
(0) ∈ a◦/b.

Definition 7. Let a, b ∈ Max
in [[γ, δ]], the time shift between

series a and b is

∆(a, b) = [Db◦/a(0);−Da◦/b(0)], (1)

where γ0δ
D

b◦/a
(0) ∈ b◦/a and γ0δ

D
a◦/b

(0) ∈ a◦/b. In this
interval, the reference series, that is the series from which
the time offset is measured is the series a.

Example 7. Let us consider two different observable outputs
y from the system modeled by Figure 1: y1 = γ0δ12⊕γ1δ15⊕
γ2δ18⊕ γ3δ21⊕ γ4δ+∞ (i.e delivery of final products at time
12, 15, 18, 23), and y2 = γ0δ12 ⊕ γ1δ15 ⊕ γ2δ19 ⊕ γ3δ23 ⊕
γ4δ+∞ (i.e delivery of final products at time 12, 15, 19, 23).
The minimal time shift between y1 and y2 is Dy2◦/y1

(0) = 0
and is found in y2◦/y1 = γ0δ0⊕γ1δ3⊕γ2δ7⊕γ3δ11⊕γ4δ+∞.
The maximal time shift is −Dy1◦/y2

(0) = 2 and is found in the
monomial where the degree of γ is 0 of y1◦/y2 = γ0δ−2 ⊕
γ1δ2 ⊕ γ2δ6 ⊕ γ3δ9 ⊕ γ4δ+∞.

After having introduced the residuation and comparison
between series them we interval dioid theory that will allow
to introduce (max,+)-linear systems with time intervals.

C. Interval dioid theory

Definition 8. A closed interval in dioid D is a set of the form
x = {t ∈ D|x � t � x} denoted by x = [x, x].

Definition 9. The set of intervals over D denoted by I(D)
endowed with the following element-wise algebraic operations
x⊕y = [x ⊕ y, x ⊕ y] and x⊗y = [x ⊗ y, x ⊗ y] with x =
{x ∈ D|x � x � x} and y = {y ∈ D|y � y � y} where
the interval ε = [ε, ε] is neutral element of ⊕ and the interval
= [e, e] is neutral element of ⊗.

The order relation � in I(D) induced by the additive law
⊕ is such that

x⊕y = y⇔ x � y⇔
{
x � y in D
x � y in D

Let I(Max
in [[γ, δ]]) denote the set of intervals of the dioid

Max
in [[γ, δ]]. An interval defined over I(Max

in [[γ, δ]]) corre-
sponds to all the series between the series of the minimum
bound and the series of the maximum bound. For this purpose,
the representation of the series in Max

in [[γ, δ]] is used for the
plotting of the series of the lower and upper bounds.

Example 8. Back to Figure 2 the couple of polynomials
represents the interval
p = [p, p] = [γ3δ0 ⊕ γ4δ1 ⊕ γ5δ2 , γ0δ1 ⊕ γ2δ3 ⊕ γ4δ5].

1 2 3 4 5

1

2

3

4

5
p

p

γ

δ

Fig. 2. Interval representation of p ∈ I(Max
in [[γ, δ]])

D. Models of (max,+)-linear systems with time intervals
The objective is to define a Time Event Graph with time

intervals (see Figure 1) as a (max,+)-linear system with time
intervals. The elements of the TEG will be represented by
equations in I(Max

in [[γ, δ]]). The equations can be grouped into
a set of matrices A, B and C called the state representation of
the system that defines the relations between any set of input
event flows u and the state x and the relations between the
state x and the output event flows y. Let u ∈ I(Max

in [[γ, δ]])p×1

be the input vector of size p, x ∈ I(Max
in [[γ, δ]])n×1 be the

state vector of size n and y ∈ I(Max
in [[γ, δ]])q×1 be the output

vector of size q. The state representation is:{
x = Ax ⊕ Bu,
y = Cx.

where A ∈ I(Max
in [[γ, δ]]n×n), B ∈ I(Max

in [[γ, δ]]n×p) and
C ∈ I(Max

in [[γ, δ]]q×n).
x = Ax⊕Bu can be transformed to x = A∗Bu thanks to

Theorem 1 so we have

y = CA∗Bu.

The matrix H = CA∗B represents the transfer function of the
TEG.

Example 9. For the system of Figure 1 the matrices
A ∈ I(Max

in [[γ, δ]]6×6), B ∈ I(Max
in [[γ, δ]]6×2) and C ∈

I(Max
in [[γ, δ]]1×6) of the state representation are:



A(1; 2) = [γ1δ0, γ1δ0]; A(2; 1) = [γ0δ2, γ0δ5];
A(3; 4) = [γ1δ0, γ1δ0]; A(4; 3) = [γ0δ1, γ0δ3];
A(5; 2) = [γ0δ3, γ0δ3]; A(5; 4) = [γ0δ5, γ0δ5];
A(5; 6) = [γ1δ0, γ1δ0]; A(6; 5) = [γ0δ2, γ0δ2].

B(1; 1) = [γ0δ0, γ0δ0]; B(3; 2) = [γ0δ0, γ0δ0];

C(1; 6) = [γ0δ0, γ0δ0];

Any other elements in the matrices correspond to ε.
In any element of the matrices, the exponent n of γ

represents the backward event shift between transitions (the
n + 1th firing of x1 depend on the nth firing of x2) and
the exponent of δ represents the backward time shift between
transition (the firing date of x2 depend on the firing date of
x1 and time between 5 and 7).

IV. ACCEPTABLE OUTPUT IN (MAX,+)-LINEAR SYSTEMS
WITH TIME INTERVALS

This section present the tool using to define acceptable
output of this system. This section introduces the acceptable
outputs of a (max,+)-linear system with time intervals. Ac-
ceptable outputs correspond to the observable outputs that are
included in the interval of the predicted output. The hypothesis
for the different definitions that we will define inputs are
observable and outputs are observable.

A. Time comparison between output in (max,+)-linear systems
with time intervals

For a (max,+)-linear system with time interval with
H ∈ I(Max

in [[γ, δ]]q×p) as a transfer function and u ∈
I(Max

in [[γ, δ]]p×1) as an observed input one can obtain the
predicted outputs of the system yp = Hu = [y

p
, yp]. The

predicted outputs are the observable trajectories obtained with
the knowledge of the system. With the time shift bounds given
in Definition 9 we define the time shifts of the (max,+)-linear
systems as time interval: that is the difference between yp and
y
p
.

Definition 10. Let yp = Hu = [y
p
, yp], with u ∈

I(Max
in [[γ, δ]]p×1), H ∈ I(Max

in [[γ, δ]]q×p), with u a degen-
erated input and H a transfer function. The system gap with
yp in reference is:

∆yp
= [Dy

p
◦/yp

(0);−Dyp◦/y
p
(0)] = [∆yp

,∆yp
].

The system gap with system gap with y
p

in reference is:

∆y
p

= [Dyp◦/y
p
(0);−Dy

p
◦/yp

(0)] = [∆y
p
,∆y

p
].

The system gap with yp in reference corresponds to the gap
form y

p
to yp. Since yp is an interval yp � yp so Dy

p
◦/yp

(0) ≤
0 and −Dyp◦/y

p
(0) ≤ 0.

The system gap system gap with y
p

in reference corresponds
to the gap of yp from y

p
. Since yp is an interval we have

yp � yp so Dyp◦/y
p
(0) ≥ 0 and −Dy

p
◦/yp

(0) ≥ 0.

Example 10. Given the TEG of Figure 1, suppose that
Equipement 1 (resp. 2), this results in the following observable
inputs u1 = [u1, u1] = [γ0δ0 ⊕ γ1δ1 ⊕ γ2δ2 ⊕ γ3δ3 ⊕
γ4δ+∞ , γ0δ0 ⊕ γ1δ1 ⊕ γ2δ2 ⊕ γ3δ3 ⊕ γ4δ+∞] when u1 =
u1 and u2 = [u2, u2] = [γ0δ0 ⊕ γ1δ1 ⊕ γ2δ2 ⊕ γ3δ3 ⊕
γ4δ+∞ , γ0δ0⊕γ1δ1⊕γ2δ2⊕γ3δ3⊕γ4δ+∞] when u2 = u2.
With this observable inputs we get the predictive output yp =
[y

p
, yp] = [γ0δ9⊕γ1δ11⊕γ2δ13⊕γ3δ15⊕γ4δ+∞ , γ0δ11⊕

γ1δ16 ⊕ γ2δ21 ⊕ γ3δ26 ⊕ γ4δ+∞]. The system gap with yp in
reference is ∆yp

= [Dy
p
◦/yp

(0);−Dyp◦/y
p
(0)] = [∆yp

,∆yp
] =

[−11,−2] where Dy
p
◦/yp

(0) found in y
p
◦/yp = γ0δ−11 ⊕

γ1δ−6 ⊕ γ2δ−1 ⊕ γ3δ4 ⊕ γ4δ+∞ and Dy
p
◦/yp

(0) found in
yp◦/yp = γ0δ2 ⊕ γ1δ7 ⊕ γ2δ12 ⊕ γ3δ17 ⊕ γ4δ+∞. The system
gap with y

p
in reference is ∆y

p
= [Dyp◦/y

p
(0);−Dy

p
◦/yp

(0)] =

[∆y
p
,∆y

p
] = [2, 11] where Dyp◦/y

p
(0) found in yp◦/yp =

γ0δ2⊕γ1δ7⊕γ2δ12⊕γ3δ17⊕γ4δ+∞ and −Dy
p
◦/yp

(0) found
in y

p
◦/yp = γ0δ−11 ⊕ γ1δ−6 ⊕ γ2δ−1 ⊕ γ3δ4 ⊕ γ4δ+∞.

B. Acceptable outputs

Definition 11. Let H ∈ I(Max
in [[γ, δ]]q×p) transfer function,

u ∈ I(Max
in [[γ, δ]]p×1) a observable interval input, Hu =

yp = [y
p
, yp] the observable predicted output, a observable

output yacc is a output acceptable if yacc must respect the
following condition y

p
� yacc � yp. The set of acceptable

outputs denote Yacc ∈Max
in [[γ, δ]].

Proposition 1. yacc ∈ Yacc is acceptable output if and only
if the following 4 conditions hold:

Dyacc◦/yp
(0) ∈ [∆yp

, 0], (2)

−Dyp◦/yacc
(0) ∈ [∆yp

, 0], (3)

Dyacc◦/y
p
(0) ∈ [0 , ∆y

p
], (4)

−Dy
p
◦/yacc

(0) ∈ [0 , ∆y
p
]. (5)

Proof. For the superior bound case yacc = yp, the time shift
between yp = [y

p
, yp] and the observable output yacc is

Dyacc◦/yp
(0) = 0 and Dyp◦/yacc

(0) = 0 because yacc = yp.
It follows that Dyacc◦/y

p
(0) = Dyp◦/y

p
(0) and Dy

p
◦/yacc

(0) =

Dy
p
◦/yp

(0).
For the lower bound case yacc = y

p
, the time shift is

Dyacc◦/y
p
(0) = 0 and Dy

p
◦/yacc

(0) = 0 because yacc =

y
p
. Thus, Dyacc◦/yp

(0) = Dy
p
◦/yp

(0) and Dy
p
◦/yacc

(0) =

Dy
p
◦/yp

(0).
As y

p
� yacc � yp, Dyacc◦/yp

(0) ∈ [∆yp
, 0] because

yacc evolves between y
p

and yp so Dyacc◦/yp
(0) can only

evolves between limit cases Dyacc◦/yp
(0) = Dy

p
◦/yp

(0) and

Dyacc◦/yp
(0) = 0. We get as −Dyp◦/yacc

(0) ∈ [∆yp
, 0] s

yacc evolves between y
p

and yp so −Dyp◦/yacc
(0) can only

evolves between limit cases Dyp◦/yacc
(0) = Dyp◦/y

p
(0)) and

Dyp◦/yacc
(0) = 0. Following the same reasoning, Dyacc◦/y

p
(0)



and −Dy
p
◦/yacc

(0). So if yacc ∈ Yacc then conditions 2, 3, 4
and 5 hold.

If Dyacc◦/yp
(0) ∈ [∆yp

, 0], it involve the worst case
Dyacc◦/yp

(0) = ∆yp
that gives us yacc = y

p
or Dyacc◦/yp

(0) =

0 that gives us yacc = yp so y
p
� yacc � yp.

If −Dyp◦/yacc
(0) ∈ [∆yp

, 0], it involve the worst case
−Dyp◦/yacc

(0) = ∆yp
that gives use yacc = y

p
where

−Dyp◦/yacc
(0) = 0 that gives us yacc = yp so y

p
�

yacc � yp. If Dyacc◦/y
p
(0) ∈ [0,∆yp

] it involve the worst
case Dyacc◦/y

p
(0) = 0 that gives us yacc = y

p
where

Dyacc◦/y
p
(0) = ∆yp

that gives us yacc = yp so y
p
�

yacc � yp. If −Dy
p
◦/yacc

(0) ∈ [0,∆y
p
] it involve the worst

case −Dy
p
◦/yacc

(0) = 0 that gives us yacc = y
p

where

−Dy
p
◦/yacc

(0) = ∆y
p

that gives us yacc = yp. So if the 4
conditions 2, 3, 4 and 5 are true then yacc ∈ Yacc.

Example 11. yp = [y
p
, yp] = [γ0δ7 ⊕ γ1δ9 ⊕ γ2δ11 ⊕

γ3δ13 ⊕ γ4δ+∞ , γ0δ10 ⊕ γ1δ15 ⊕ γ2δ20 ⊕ γ3δ25 ⊕ γ4δ+∞]
is represented by the series in plain line in figure 3 with the
system gap ∆yp

= [−12,−3] and ∆y
p

= [3, 12].
The observable output y1 = γ0δ8 ⊕ γ1δ11 ⊕ γ2δ14 ⊕ γ3δ17 ⊕
γ4δ+∞ is represeneted by the series in dashed line and the
observable output y2 = γ0δ7 ⊕ γ2δ9 ⊕ γ3δ13 ⊕ γ4δ+∞ is
represented by the series in dotted line.
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Fig. 3. Graphical representation of the acceptable output y1 and the non-
acceptable output y2 with respect to interval yp = [y

p
, yp]

The output y1 belongs to the set of acceptable outputs, it
indicates −8 ∈ [−12, 0] and −2 ∈ [−3, 0] and 1 ∈ [0, 3]
and 4 ∈ [0, 12]. The output y2 does not belongs to the set
of acceptable outputs, it indicates −12 ∈ [−12, 0] and −3 ∈
[−3, 0] and −3 /∈ [0, 3] and 0 ∈ [0, 12].

V. FAULT DETECTION IN (MAX,+)-LINEAR SYSTEMS WITH
TIME INTERVAL

In this section we will present indicators to detect faults in
(max,+)-linear systems with time interval. Thanks to what we

learned in the section IV we can tell if any observable output
belongs to the set of acceptable outputs or not so that we can
make an indicator to tell us if a detectable failure is detected.

A. Indicator for certain output
For the certain output indicator, the outputs and inputs are

observable. To be able to make the diagnosis it is necessary
to detect the failures for that it is necessary to define the
detectable failures.

Definition 12. A system failure is detectable if the obser-
vations of the system it generates do not correspond to the
expected observations.

Definition 13. Let (max,+)-linear system with H ∈
I(Max

in [[γ, δ]]q×p) the transfer function, u ∈ I(Max
in [[γ, δ]]p×1)

the observed inputs, yo ∈Max
in [[γ, δ]]q×1 the observed output.

The indicator II (u, yobs) of this system is a function

II(u, yo) =


false if for yp = Hu,−Dyp◦/yo

(0) ∈ [∆yp
, 0]

and Dyo◦/y
p
(0) ∈ [0,∆y

p
]

true otherwise.
(6)

Proposition 2. The indicator returns true if and only if the
system receive a detectable failure.

Proof. Let a system sudden a detectable failure, this implies
that the observed output is not in the set of acceptable outputs
of the system and is therefore one of the conditions 2, 3, 4
and 5 is true. Yet if 2 is true with 4 is true and if 5 is true
with 3 is true. Suppose the indicator returns false then 4 and
3 are false: the indicator cannot therefore be false at the same
time as the system is with detectable failure.

Let be a system to which the indicator refers true. The
indicator that returns true implies that 4 and 3 are false.
Suppose that the system not sudden a detectable failure then
the output is in the set of acceptable outputs of the system
so the conditions 2, 3, 4 and 5 are true. So a system without
detectable failure this indicator don’t cannot be true.

Example 12. Back to Figure 1, consider the scenario that
is defined by the inputs of Example 10 and suppose that in
reality there was an incident on Equipement 1 the operation
lasts longer will a processing time of 6 hours in place P1.
The TEG has thus the following system gap: ∆yp

= [−11,−2]
and ∆y

p
= [2, 11]. The incident on Equiment 1 gives us the

following observable output yo = γ0δ12 ⊕ γ1δ16 ⊕ γ2δ21 ⊕
γ3δ26 ⊕ γ4δ+∞. Computations of yo◦/yp and yp◦/yo give for
yo: yo◦/yp = γ0δ3 ⊕ γ1δ9 ⊕ γ2δ15 ⊕ γ3δ21 ⊕ γ4δ+∞ and
yp◦/yo = γ0δ−4 ⊕ γ1δ2 ⊕ γ2δ8 ⊕ γ3δ14. The residuals gives
us the following results Dyo◦/y

p
(0) = 3 /∈ [0,∆y

p
] = [0, 2]

and −Dyp◦/yo
(0) = −4 ∈ [∆yp

, 0] = [−11, 0]. This indicator
II(u, yo) indicates false because Dyo◦/y

p
(0) = 3 /∈ [0,∆y

p
] =

[0, 2] is false.



B. Indicator for uncertain output

This section present indicator with uncertain output. For
the uncertain output indicator, the outputs and inputs are
observable. We will have to define the output sets acceptable
intervals.

Definition 14. Let (max,+)-linear system with H ∈
I(Max

in [[γ, δ]]q×p) the transfer function, u ∈ I(Max
in [[γ, δ]]p×1)

the observed inputs, yo ∈ I(Max
in [[γ, δ]]) the observed outputs.

The indicator II (u, yobs) of this system is a function:

II(u, yo) =


false if for yp = Hu, −Dyp◦/yo

(0) ∈ [∆yp
, 0]

and Dy
o
◦/y

p
(0) ∈ [0,∆y

p
].

true otherwise.
(7)

Proposition 3. The indicator returns true if and only if the
system receive a detectable failure.

Proof. Let a system sudden a detectable failure, this implies
that the observed output is not in the set of acceptable outputs
of the system so either y

o
≺ y

p
, either yp ≺ yp or y

o
≺ y

p
�

yp ≺ yo. When y
o
≺ y

p
compare with the acceptable outputs

of the proposition 1 it gives us as a result 4 false. When yp ≺
yp compare with the acceptable outputs of the proposition 1 it
gives us as a result 3 false. Suppose the indicator returns false
then −Dyp◦/yo

(0) ∈ [∆yp
, 0] and Dy

o
◦/y

p
(0) ∈ [0,∆y

p
] is true:

the indicator cannot therefore be false at the same time as the
system is with detectable failure. Let be a system to which the
indicator refers true. The indicator that returns true implies that
−Dyp◦/yo

(0) ∈ [∆yp
, 0] and Dy

o
◦/y

p
(0) ∈ [0,∆y

p
] are false.

Suppose that the system not sudden a detectable failure then
the output is in the set of acceptable outputs of the system so
y
p
� y

o
� yo � yp which gives us −Dyp◦/yo

(0) ∈ [∆yp
, 0]

and Dy
o
◦/y

p
(0) ∈ [0,∆y

p
] true. So a system without detectable

failure this indicator don’t cannot be true.

Example 13. Let a TEG in example 1 with the system gap
following ∆yp

= [−11,−2] and ∆y
p

= [2, 11] for the sames
inputs of example 10. For our TEG we will observe outputs
yo (i.e delivery of final products at time between 9 and 12, 11
and 16, 13 and 21, 15 and 21). yo = [γ0δ9⊕γ1δ11⊕γ2δ13⊕
γ3δ15 ⊕ γ4δ+∞ ; γ0δ12 ⊕ γ1δ16 ⊕ γ2δ21 ⊕ γ3δ26 ⊕ γ4δ+∞].
Computation of y

o
◦/y

p
and yp◦/yo give for yo: y

o
◦/y

p
= γ0δ3⊕

γ1δ9 ⊕ γ2δ15 ⊕ γ3δ21 ⊕ γ4δ+∞ and yp◦/yo = γ0δ2 ⊕ γ1δ7 ⊕
γ2δ12⊕ γ3δ17⊕ γ4δ+∞. The residuals gives us the following
results Dy

o
◦/y

p
(0) = 3 /∈ [0,∆y

p
] = [0, 2] and −Dyp◦/yo

(0) =

−2 ∈ [∆yp
, 0] = [−2, 0]. This indicator II(u, yo) indicate

false because Dy
o
◦/y

p
(0) = 3 /∈ [0,∆y

p
] = [0, 2] is false.

VI. CONCLUSION

In this article, we have extended the problem of time failure
diagnosis in TEG by using time intervals. Using (max,+)
algebraic techniques we have proposed indicators that detect
time shift with certain or uncertain outputs. The indicators are

based on the dioid I(Max
in [[γ, δ]]) to define our system but the

indicator calculations are finally reduced to comparing the max
and min bounds of the outputs. This study is motivated by the
development of algorithms for time shift failure detection in
assembly lines.

We have several perspectives for the use of indicators on a
real production line such as that of STMicroelectronics. We
will set up the C++ coding of this indicator in the MaxPlus-
Diag library of the article [LCSPP18]. We plan to extend this
method by adding failure localisation and isolation modules
to refine the diagnosis. The distances measured between the
expected and observed output can give us useful information
for locating a fault in a system. Another perspective is also to
deal with event uncertainty (interval of tokens in a Place of
the TEG).
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C. Paya. Localization of time shift failures
in (max,+)-linear systems. International Work-
shop on Discrete Event Systems, WODES’18,
51(7):186–191, 2018.

[LHCJ04] M. Lhommeau, L. Hardouin, B. Cottenceau, and
L. Jaulin. Interval analysis and dioid: application
to robust controller design for timed event graphs.
Automatica, 40(11):1923–1930, 2004.

[Max91] MaxPlus. Second order theory of min-linear sys-
tems and its application to discrete event systems.
In Proceedings of the 30th IEEE Conference on
Decision and Control. CDC’91, 1991.
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