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Abstract. The Proportional Fair (PF) scheduler currently implemented
in cellular networks is optimal when the channel conditions are station-
ary. Using measurements, a recent work shows that the conditions for
moving cars can be non stationary and vary along the route. Based on
these observations, the authors of [8] devise an algorithm called (PF)2S
that exploits Signal-to-Noise Ratio (SNR) maps and rate predictions to
improve the utility over the standard PF algorithm. We propose an al-
gorithm which gives a better prediction of the future rate allocation and
has a better utility compared to both the PF and (PF)2S algorithms.
The proposed algorithm employs projected gradient on a relaxed version
of the problem to predict the future allocations. Simulation results show
that non negligible gains in utility over (PF)2S can be achieved by this
algorithm.
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1 Introduction

Connected vehicles are expected to have more stringent QoS requirements than
that of typical mobile users of today. These will include a higher data rate, re-
duced latency, and very low outage. In order to meet these requirements, 5G and
future cellular technologies will operate in a range of spectrum with sufficiently
large bandwidth to accommodate the requests. While increasing the available
wireless resources is indeed necessary, it is also important to design resource
sharing algorithms that can maximize the utilization of these resources.

The scheduling algorithm in 3G systems is based on the Proportional Fair
(PF) scheduler which is obtained as the solution of a utility maximization prob-
lem [6]. It was designed with the objective of being fair to users with different
channel conditions. Indeed, due to the various wireless effects such as shadowing
and fading, data rates of mobile users can vary widely within a zone. By giving
the channel to the user with the highest current data rate, the mobile operator

? This work was partially funded by a contract with Continental Digital Services
France.
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will be unfair to users who find themselves in unfavorable channel conditions over
long periods of time. The PF scheduler alleviates this problem by allocating the
channel to the user with the highest ratio of current data rate to the previous
throughput3 (we will call this ratio the index of a user). Thus, users with com-
paratively low throughput are assigned a higher priority even when they are in
worse channel conditions. The performance and design of the proportional fair
scheduler has been widely investigated for wireless networks [2, 11].

Proportional Fair scheduling algorithms for wireless networks have been widely
investigated in various settings [3, 12, 13, 4]. Most of the literature is based on the
assumption that users experience stationary channel conditions. This was partly
motivated by the fact that a simple index-based allocation algorithm had been
shown to be optimal for stationary channels [7]. This assumptions is not neces-
sarily true for vehicular traffic moving along a given path, as was shown in [8]
using SNR maps obtained by measurements. Indeed, as a car move along a road,
the SNR improves as it moves closer to a base station and then worsens as it
moves away. This implies that SNR is not stationary since its mean varies with
time. The long sojourn time assumption is also not realistic for mobile users,
since vehicles pass the coverage range of the base station in more or less than
one minute. Moreover, if the trajectory of a car is known, one can obtain good
statistical predictions on the SNR that will be experienced by the car. Knowing
the future channel conditions, one can hope to design scheduling algorithms that
can obtain a higher utility compared to the PF algorithm. This improvement in
utility was not possible for stationary channel conditions as knowing the current
position in the trajectory did not bring any new information on the future data
rates.

Several variations of opportunistic scheduling algorithms have been studied
recently using future information [1], [8]. In [1], the authors use a different kind
of proportional fair objective function to ours, and they use future information
by looking at channel state of users in a few small time-slots. Different from
their approach, we do not look at the predicted channel state in few time slots
which may be different between users and difficult to predict correctly due to fast
fading. Instead, we base our allocation on average rate the user will experience
during the time interval this user stays inside the coverage range of the base
station. The average rate in the future is easier to estimate, has a lower error
in prediction, and gives useful information for how much data the user can
receive. In [8], the authors investigate the same objective function to ours, and
propose an improved scheduling algorithm, called (PF)2S (to be explained later),
based on prediction of future rates. In brief, in every time slot the channel is
allocated to the user with highest index which is the ratio of the current data
rate and the total throughput. The main difference with the PF algorithm is
that the total throughput includes the future predicted throughput whereas in
the PF algorithm only the past throughput was used. It was shown that this new

3 The throughput is different from the data rate. While the latter is potential rate at
which a user can be served, the former can be smaller since in some slots a user may
not be served due to the presence of other users.
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index led to improved utility compared to the PF algorithm in non-stationary
environments.

The (PF)2S algorithm would have been optimal if the future throughput
could be computed optimally. For this, one requires the exact knowledge of all the
channel conditions in the future. Since this information is not available, (PS)2S
uses allocations like round-robin (and some other heuristics) for the computation
of the future throughput. That is, it is assumed that cars would be served in a
round-robin fashion in future time-slots. Clearly, this may not be true since cars
are actually served using the index policy of (PF)2S. Nevertheless, it was shown
that even without the knowledge of the future throughput, improvements in the
utility were made compared PF.

1.1 Contributions

We present a heuristic algorithm for non stationary channels that improves the
total utility of users compared to the PF and the (PF)2S algorithms. The orig-
inal utility maximization problem being computationally complex, we employ
three techniques to obtain a lower complexity heuristic: (i) we relax the integer
constraints of the original problem; (ii), we shorten the time horizon over which
the problem is solved; and (iii) we compute the solution over macroscopic time
slots instead of microscopic ones.

The relaxation turns the problem into a convex one and allows for its efficient
resolution. Shortening of the time horizon and solving over macroscopic slots
reduces the number of variables in the problem and decreases the computation
time.

Simulation results for a single base station scenario show that improvements
are achieved in different scenarios with vehicles moving at either equal or different
speeds.

1.2 Organisation

In Section 2, we state the assumptions, define the objective function, and give
some background on PF and (PF)2S algorithms. In Section 3, we present the our
heuristic for improving the utility based on estimations of future average data
rate. Section 4 contains the numerical results for scenarios with homogeneous as
well as heterogeneous vehicles. Finally, we end the paper in Section 5 with a few
open problems.

2 Problem formulation

We consider a single base station (BS) that covers a linear stretch of road of
length L (for example L = 1 km) along which vehicles move in one direction.
The users enter the coverage range of that BS at left edge, move at different
velocities, and leave when they arrive at the right edge. Every δ = 2 ms the
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BS4 has to decide which user to serve. Let v be the velocity of the users. The
coverage range can be chopped into N small spatial slots with each spatial slot
corresponding to distance moved in δ. (See Figure 1). We also define a big time
slot of length ∆ = 1 s in which a new car enters the coverage range from the left
with some probability.

Fig. 1. Coverage model for moving vehicles

We shall assume that the data rate received by a user in spatial-slot s depends
on the distance between the BS and s. The data rate depends upon the SNR
which itself can vary along the road. In our numerical experiments, we assume
that the data rate decays exponentially as shown in Fig. 1. The scheduling
algorithm we propose does not require this assumption to work.

Denote by T (T should be large compared to δ) the time horizon over which
the scheduling decisions are made. Let K be number of total users who pass
by the BS in T . Let ri,j be the feasible data rate of user i in time-slot j, and
let αi,j ∈ {0, 1} denote whether user i is served in slot j or not. Denote by
α = {αi,j}i,j allocation matrix, and r = {ri,j}i,j rate matrix. Our objective
is to achieve the proportional-fairness between users, which is described by the
following optimization problem (see, e.g., [2, 8]):

(I)


maxO(α) =

∑K
i=1 log

(∑T
j=1 αijrij

)
subject to

∑K
i=1 αij = 1, j = 1, . . . , T

and αij ∈ {0, 1}

Proportional fairness is a resource allocation algorithm which is a special
case of the general framework of utility maximization problem [10]. It was first
introduced for wired in [6] and has been applied in various wireless settings [2,
11]. In brief, each user stays in the system for a certain duration during which
it receives certain throughput which depends on the allocation decisions of the
scheduler. This allocation can either be continuous in time or in blocks. The

4 For simplicity, the BS will also be called the scheduler. In practice, the scheduler
could be situated further inside the radio network.
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utility of the user is defined as a function its throughput. The network utility
maximization problem is to assign bandwidth or to schedule users in such a
way so as to maximize the sum of the utilities of all the users. For proportional
fairness, the utility is assumed to be logarithmic.

2.1 PF-EXP

Remark that the above problem is a discrete problem, which is not convex yet.
Even though the number of options is finite, it is NP-hard to find the optimal
solution (see, e.g., [8]). Nevertheless, a simple heuristic, called PF-EXP [7], can
be obtained by assuming that the number of users is fixed and that the data
rates ri,j are time stationary and ergodic, that is, there is no correlation between
ri,j and ri,j+1.

The PF-EXP algorithm chooses the user with the highest ratio of the current
rate to the observed throughput, that is it chooses the user who is

arg max
i

ri,j
θi,j

, (1)

where θi,j = βjθi,j−1 + (1 − βj)αi,jri,j the weighted sum allocation of user i
until slot j. In the long-run when T goes to ∞, this algorithm was shown to be
optimal for stationary and ergodic channel and fixed number of users [7].

The stationarity assumption is not necessarily true for road traffic when all
users always move along a given path. As can be seen in Fig. 1, when users move
along the line from left to right, their rate first increases and then decreases.
Knowing the position of a vehicle, we can predict the future rate which is not
possible when the rate process is stationary and ergodic. Thus, the PF-EXP
algorithm need not be optimal for a rate process observed by vehicles.

2.2 Predictive Finite-horizon PF Scheduling
((PF)2S)

In [8], a modified PF algorithm based on predicted future rate was proposed.
This algorithms works as follows:

– Predict future rate r̂i,j of cars in every future slot.
– Estimate future allocation α̂. They propose three ways to chose and update

this α̂: (i) round-robin, (ii) blind search and (iii) local search. In our simula-
tions, we use only round-robin because blind search is similar to PF-EXP.
Finally, in each time slot, local search iteratively computes until T and then
allocates according to (2), making it a computationally expensive method.
It is shown in [8] for local search to be effective, the prediction error has to
be low for the whole horizon. If the prediction error is high then local search
can be worse than round robin.

– For each time slot j, compute:

Mi,j =
ri,j∑j−1

t=1 αi,tri,t + α̂i,jri,j +
∑T
t=j+1 α̂i,tr̂i,t

. (2)



6 N. Nguyen et al.

– Choose i∗ = arg maxi∈{1,2,...K}Mi,j .

The index Mi,j looks similar to that of the PF-EXP algorithm but includes
the future allocation. It is related to the gradient of the utility function in (I).
It can be shown that if we can predict correctly α̂, then the optimal solution can
be obtained.

Proposition 1 If there exist α∗ satisfying: α∗i∗,j = 1 and α∗i,j = 0,∀i 6= i∗j ,
where i∗j is

arg max
i∈{1,2,...K}

ri,j∑j−1
t=1 α

∗
i,tri,t + α∗i,jri,j +

∑
t=j+1 α

∗
i,tri,t

. (3)

then α∗ is the optimal solution of (I).

The condition (3) need not always be satisfied. However, when it is, it is
sufficient for α∗ to be optimal solution of problem (I) as stated in Proposition
1.

For this approach of using the future rates to be efficient, one needs a good
estimate of the optimal future throughput. This is not easy because the future
throughput is computed from the optimal solution which itself is hard to com-
pute.

3 Projected gradient approach

We now present a method for estimating the future throughput which improves
the utility compared to the (PF)2S algorithm. The main difficulty of solving (I)
is that the problem is discrete. To simplify it, we relax the integer constraints to
get a convex optimization problem, which is called relaxed problem as described
in (II). The relaxed problem can be solved efficiently using projected gradient
based on the projection on simplex formula given in [5].

Consider the following relaxed problem:

(II)


maxO(α) =

∑K
i=1 log

(∑T
j=1 αijrij

)
subject to

∑K
i=1 αij = 1, j = 1, . . . , T

and αij ∈ [0, 1]

which is very similar to the original problem except that αij can be non-
integer in [0, 1]. Below, we describe the projected gradient formula for the above
relaxed problem.

Denote by D = {α ∈ [0, 1]K×T ,
∑K
i=1 αij = 1 ∀j = 1, 2, ..., T} the feasible

set of the relaxed problem. D is not a simplex yet, therefore we cannot apply
directly the algorithm in [5] and we need to modify it.

Denote ΠD is the projection on D (see Appendix A). The projected gradient
algorithm follows the below steps:

– Initialize α0 ∈ D arbitrary.
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– From n = 1, 2, 3, ... compute: αn+1 = ΠD(αn+εn∇O(αn)), where εn ∈ (0, 1)
is step size at step n.

– Until αn converges. In our numerical examples, we limited the number of
iterations to 20.

Denote by ∇̃O(α) = ΠD(α+ ε∇O(α))−α with the step size ε ∈ (0, 1) small
enough. If there is a positive step size ε such that the following condition hap-
pens, we have an optimal guarantee of this algorithm, as described the following
proposition.

Proposition 2 If α∗ ∈ D and ∇̃O(α∗) = 0 then α∗ is the optimal value of the
relaxed problem.

3.1 Projected gradient short term objective algorithm (STO1)

Based on the above relaxation, we propose a heuristic which computes the op-
timal solution for the relaxed problem but at a shorter horizon (Step 1 in the
algorithm described below). This is done in order to reduce the computation
time of the solution. Further, instead of computing the allocation for each future
time slot, we compute the average rate allocated over a larger time slot which
corresponds to the time scale at which cars enter and leave the coverage area of
the base station (in Step 1). Note that in δ = 2 ms, a car hardly moves any per-
ceivable distance. So, we expect the average channel conditions to change over a
much larger time scale (around 1 second) instead of every 2 ms. This larger time
scale is also the one in which cars leave and enter the coverage range of the BS.
That, is number of cars in the coverage range changes state at this time scale
rather than every 2 ms.

At each small time slot t, let ai(t) =
∑t
j=1 αijrij be the cumulative rate of

user i until time slot t, and K(t) be the number of users inside the coverage
range.

Our heuristic algorithm follows the steps:
Step 1: In each small slot t, we reduce the dimension of variable α and solve

the following problem using projected gradient:

(III)


max

∑K(t)
i=1 Ui

subject to
∑K(t)
i=1 αit = 1,

and
∑K(t)
i=1 ᾱiτ = 1,

αit, ᾱiτ ∈ [0, 1]

where

Ui = log

(
ai(t− 1) + αitrit +

J∑
τ=1

ᾱiτ ρ̄iτ

)
,

τ is big slot, m = ∆/δ, and ᾱiτ is the future allocation in big slot τ . Note that
αit and ᾱiτ are the decision variables in problem (III). Also, r̄ij is the average

rate in slot j for user i, and ρ̄iτ =
∑τm+t
j=(τ−1)m+t+1 r̄ij , is the total average data
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rate that user i will experience in big slot τ . The value of r̄ij can be predicted
using measurements. We remark that the advantage of using the average value
r̄ij instead of the exact value r̂ij as is done in (2) is that the prediction error of
an average value will be smaller than that of the exact value.

Since the noise is unpredictable in the future, we assume that only the current
rate, rit, and the average rate in the future are known.

Step 2: In each small slot t, give full allocation for the user who has the
largest allocation computed by (αit)i=1,K(t)

. We observe that: when number of

slots is large enough, the optimal is 0-1 almost everywhere, we can show that
when time is continuous the solution is 0-1 everywhere (proof omitted due to
lack of space). So even in this step round over (αit)i, we can hope that we do
not go far from the optimal solution of (III).

The complexity of numerically optimal α computation in step 2 is equal
to 20(J + 1)K̄ log(K̄) where 20 is the number of iteration steps of projected
gradient in Step 1, K̄ is average number of users inside the coverage range, J is
the number of big slots.

The proposed algorithm is the similar in spirit to Stochastic Model Predictive
Control [9].

3.2 Projected gradient short term objective algorithm 2 (STO2)

The STO1 algorithm recomputes the future allocation in every small time slot. In
order to reduce the computational complexity, in STO2, we propose to recompute
the future allocation in every big time slot instead.

Step 1: In each big slot τ , we reduce the dimension of variable α and solve
the following problem in each big slot by using projected gradient:

(III)

max
∑K(τ)
i=1 Ui

and
∑K(τ)
i=1 ᾱiτ = 1,

ᾱiτ ∈ [0, 1]

where

Ui = log

(
ai((τ − 1)m) +

J∑
τ=1

ᾱiτ ρ̄iτ

)
.

Here ai((τ − 1)m) is the total received rate by user i just before the start of big
slot τ . The other quantities are same as for algorithm STO1.

Step 2: In each small slot j we shall compute Mij as in (2) where the future
allocation α̂ is the solution ᾱ of problem (III).

By doing this, we reduce the computation almost∆/δ times since we calculate
ᾱ in each big slot only.

4 Numerical results

We now compare the utility of the proposed heuristic with the PF-EXP, (PF)2S
and a greedy algorithm which allocates to user who has the highest current rate,
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that is in each time slot j we choose:

i∗ = arg max
i∈{1,2,...K}

rij .

For the (PF)2S the future allocation was done using the round robin algorithm.
Denote by

OA =

K∑
i=1

log
( T∑
j=1

αAijrij
)
,

the total reward of algorithm A and by ŌA = 1
KO

A its average reward over K
users. GivenA,B two algorithms, then the ratio betweenA,B equals exp(ŌA − ŌB).
The percentage of improvement of algorithm A over B is computed equal to
(exp(ŌA − ŌB)− 1) · 100%.

Due to the logarithm in the objective function, taking a different unit of mea-
sure for the rate will give a different percentage improvement between algorithms.
Although logarithm is an increasing function, we can know which algorithm is
better than the other, but we will not get a consistent percentage improvement
across different units of measure. Therefore, by taking the difference as above
we construct a consistent criterion for comparison.

The road length is taken to be L = 1000 m with 0 at the leftmost edge. The
closest point on the road to the BS is at x = 500 m. The data rate at position
x along the road is given by:

r(x) = η · (1 + κ exp (|x− 500|/σ) , (4)

where κ ≥ 0 is a real number and η is uniform random variable whose range will
be in [0.8, 1.2] unless stated otherwise. A sample path of r(x) is shown in Fig.
2. This function has the highest mean at the mid-point of the segment and the
lowest mean at the two end points.

We emphasize the algorithm itself is independent of the rate function. We
chose the above rate function for convenience.

The time horizon T was 4000000 small time slots which is 8000 secs or a
little over two hours. The big slot length ∆ for our projected gradient short
term objective algorithm was taken as 1 sec or equivalently 500 small time slots.

4.1 Homogeneous vehicle velocities

First, we show the results when all vehicles move with the same velocity which
is taken to be v = 25 m/s. That is, there are N = 20000 spatial small slots in
the coverage range and J = 40 big slots. A new car enters through the left edge
in every big slot (i.e., every second) with probability p.

Figure 3 shows the average utility obtained by a vehicle for each of the four
algorithms as a function of the probability of arrival of car in each big slot. Fig-
ure 4 shows the percentage improvement of three other algorithms compared to
PF-EXP. The proposed algorithm does better than PF-EXP and more impor-
tantly better than (PF)2S. Although, we have shown the greedy algorithm for
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Fig. 2. Sample path of data rate at various positions along the road. σ = 100, κ = 1
and η ∈ [0.8, 1.2].

comparison, we emphasize that greedy is not practically implemented because
it can be very unfair to users that have heterogeneous rates. In the simulated
scenario, all vehicles move along the same road and observe statistically identical
but position dependent conditions during their stay. These conditions are rather
favorable for the greedy algorithm.

Fig. 3. Average reward per car. Homoge-
neous velocities.

Fig. 4. Percentage improvement over PF-
EXP. Homogeneous velocities.

4.2 Comparison with the upper bound

Next, again for homogeneous velocities, we also include the solution of the re-
laxed problem (II) but for a smaller road length and shorter horizon because
it is computationally expensive. The parameters for this setting are: L = 100
m, J = 40 big slots, T = 500 s, and the other parameters are the same as in
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the homogeneous case. We assume that the relaxed algorithm knows the future
arrivals and the future rate exactly whereas the other algorithms do not know
this information. The solution to the relaxed problem gives an upper bound to
the optimal solution of the original problem in (I).

Figures 5 and 6 plot the average reward per car and percentage improvement
for the five algorithms with respect to PF-EXP. It is seen that the proposed
algorithm is quite close to the upper bound in this scenario.

Fig. 5. Average reward per car. Includes
the upper bound from the solution of (II).
Small setting of homogeneous velocities.

Fig. 6. Percentage improvement over PF-
EXP. Small setting of homogeneous veloc-
ities.

4.3 Heterogeneous vehicle velocities

Finally, we show the results when a fraction q of vehicles move with v0 = 25 m/s
and the other fraction with v1 = 12.5 m/s. Note that the proposed algorithm
takes the larger of the two values of N computed with the two velocities. The
faster class of cars will be called class 0. Here, the horizon, T , is a little over 2
hours.

For this scenario, the probability of new a arrival is fixed at p = 2/9 in figure
7, 8 and at p = 4/9 in figure 9, 10. Thus a new car of class 0 arrives with
probability p · q and with probability p(1 − q) a new car of class 1 arrives. A
new car enters through the left edge in every big slot (i.e., every second) with
probability p.

Figure 7 (resp. Fig. 9) shows the average utility obtained by a vehicle for
each of the four algorithms as a function q for probability of new arrival p = 2/9
(resp. p = 4/9). Figure 8 (resp. Fig. 10) shows the percentage improvement of
three other algorithms compared to PF-EXP for the two probabilities of arrival
as before. As before, the proposed algorithm does better than both PF and
(PF)2S.
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Fig. 7. Average reward per car. Hetero-
geneous velocities. p = 2/9.

Fig. 8. Percentage improvement over PF-
EXP. Heterogeneous velocities. p = 2/9.

Fig. 9. Average reward per car. Hetero-
geneous velocities. p = 4/9.

Fig. 10. Percentage improvement. Het-
erogeneous velocities. p = 4/9.

5 Future work

The results in this paper were obtained on a simplified scenario of one base sta-
tion serving only cars traveling on one road. Our immediate goal is to evaluate
the performance of the proposed algorithm in more complex scenarios with a
network of multiple base stations and different classes or mobile (e.g., pedestri-
ans) and stationary users. The algorithm will be designed to be run in either a
coordinated or a distributed manner.

Other directions of research include: investigation of the tradeoff between
the reduction of complexity (e.g., by changing the size of the horizon and the
big slots) and the quality of the heuristic; integration of users with different
classes of QoS requirements including latency, jitter, or periodic communication
constraints; and computation of analytical bounds on the sub optimality of the
proposed algorithm.
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A Projection on feasible set D

In fact D is a Cartesian product of J simplexes: D = D1 ×D2 · · · ×DJ where

Dj = {aj = (αij)i=1,K ∈ [0, 1]K ,

K∑
i=1

αij = 1}

for all j = 1, 2, ..., J .
Then (Dj)j are simplexes, so we can compute the projection on Dj following [5].
The projection on D can be computed by the simple following lemma:
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Lemma 1 If Y = (yij)i=1,K,j=1,J ∈ RK×J , then

ΠD(Y ) = ΠD1
(Y1)×ΠD2

(Y2)× · · · ×ΠDJ
(YJ),

where Yj = (yij)i=1,K .

Proof. (of the lemma 1) Denote by Z = ΠD1
(Y1)×ΠD2

(Y2)× · · · ×ΠDJ
(YJ).

It is obvious to check that for any X ∈ DK×J then 〈Y − Z,X − Z〉 ≤ 0.

As describe in [5], the complexity of finding ΠDj
is equal to K log(K) by observa-

tion in practice, and equal to O(K2) in the worst case. Therefore the complexity
of finding projection on D = D1×D2 · · ·×DJ is equal to JK log(K) in practice.

B Modeling as an optimal control problem

As aforementioned, in this part we prove 0-1 everywhere property of the solution
of the continuous time for the original problem.

When user i moves in the road, his position changes continuously, denote
by xi(t) position of that user. The rate changes in the way we explain above
according to position of the user, denoted by ri(xi(t)). Assume that the BS can
allocate in continuous time, we denote by ai(t) is the allocation for user i at time
t, we relaxed the integer constraint so that ai(t) ∈ [0, 1] then we get a continuous
control optimization:

(V I)

{
max

∑K
i=1 log

(
1
T

∫ T
0
αi(t)r(t, xi(t))dt

)
such that αi ∈ SK∀t,∀i,

On other hand we have Mayer form with the terminal cost function as follows:max
∑K
i=1 log

(
yi(T )

)
,

ẏi(t) = αi(t)r(t, xi(t))dt, yi(0) = 0∀i,
ẋ(t) = v(t)∀i,

We can solve (VI) to get the optimal solution by using maximum principle. The
solution of (VI) can be not unique, but one of its solution has the integer form
as described in the following proposition:

Proposition 3 The solution of the problem (I) is of the form: for every t,
αi∗(t) = 1 and αj(t) = 0 for all j 6= i∗(t), where

i∗(t) = arg max
i

r(t, xi(t))

yi(T )
.

C Proofs

Proof. (proof of proposition 2) The optimal is obtained by proving that for any
α ∈ D,

∇O(α∗)(α∗ − α) ≤ 0.
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Because of lemma 1, we will reduce the proof on D1. Assuming O is convex
function on D1, we shall prove that if α∗ = (α∗i )i=1,...,K ∈ D1 satisifes

ΠD1(α∗ + ε∇(α∗)) = α∗ (5)

where ε positive, then

∇O(α∗)(α∗ − α) ≥ 0, for any α ∈ D1

i.e, α∗ is global optimal of O. Indeed, without loss of generality, we assume that

α∗1 + ε
∂O

∂α∗1
≥ α∗2 + ε

∂O

∂α∗2
≥ ... ≥ +α∗M + ε

∂O

∂α∗M
≥ ... ≥ α∗K + ε

∂O

∂α∗K

where M is the largest index such that

1

M

M∑
i=1

(
α∗i + ε

∂O

∂α∗i
− 1
)
≤ α∗M + ε

∂O

∂α∗M .

Denote by τ = 1
M

∑M
i=1

(
α∗i + ε ∂O∂α∗

i
− 1
)
, by proposition 10 in [5] we have:

ΠD1(α∗+ ε ·∇(α∗)) =
(
α∗1 + ε ∂O∂α∗

1
− τ, α∗2 + ε ∂O∂α∗

2
− τ, ..., α∗M + ε ∂O

∂α∗
M
− τ, 0, ..., 0

)
.

Using (5) to compare term by term we get:

1. α∗M+1 = · · · = α∗K = 0,

2. α∗M+1 + ε ∂O
∂α∗

M+1
≤ τ, · · · , α∗K + ε ∂O∂α∗

K
≤ τ . Now, from the first item we have

α∗M+1 = · · · = α∗K = 0. It implies ε ∂O
∂α∗

M+1
≤ τ, · · · , ε ∂O∂α∗

K
≤ τ ,

3. ε ∂O∂α∗
1

= · · · = ε ∂O
∂α∗

M
= τ .

Thus,

ε∇O(α∗)(α∗ − α) =

K∑
i=1

ε
∂O

∂α∗i
(α∗i − αi)

=

M∑
i=1

ε
∂O

∂α∗i
(α∗i − αi) +

K∑
i=M+1

ε
∂O

∂α∗i
(α∗i − αi),

=

M∑
i=1

τ(α∗i − αi) +

K∑
i=M+1

ε
∂O

∂α∗i
(α∗i − αi),

=

K∑
i=1

τα∗i −
K∑
i=1

ταi +

K∑
i=M+1

(
ε
∂O

∂α∗i
− τ
)
(α∗i − αi),

= τ − τ +

K∑
i=M+1

(
ε
∂O

∂α∗i
− τ
)
(0− αi)

≥ 0.

The last sum less than 0 since all its terms are greater than or equal to 0.

Proof. (proof of proposition 1) In fact the condition (3) implies that ∇̃O(α∗) = 0
and from proposition 2 we have conclusion.


