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Pushing the limits of optical information storage using deep learning

Peter R. Wiecha,1, ∗ Aurélie Lecestre,2 Nicolas Mallet,2 and Guilhem Larrieu2

1CEMES, Université de Toulouse, CNRS, Toulouse, France
2LAAS, Université de Toulouse, CNRS, INP, Toulouse, France

Diffraction drastically limits the bit density in optical data storage. To increase the storage
density, alternative strategies involving supplementary recording dimensions and robust read-out
schemes must be explored. Here, we propose to encode multiple bits of information in the ge-
ometry of subwavelength dielectric nanostructures. A crucial problem in high-density information
storage concepts is the robustness of the information readout with respect to fabrication errors and
experimental noise. Using a machine-learning based approach in which the scattering spectra are
analyzed by an artificial neural network, we achieve quasi error free read-out of sequences of up
to 9 bit, encoded in top-down fabricated silicon nanostructures. We demonstrate that probing few
wavelengths instead of the entire spectrum is sufficient for robust information retrieval and that the
readout can be further simplified, exploiting the RGB values from microscopy images. Our work
paves the way towards high-density optical information storage using planar silicon nanostructures,
compatible with mass-production ready CMOS technology.

Optical information storage promises perennial
longevity, high information densities and low energy
consumption compared to magnetic storage media.1,2

The compact disc, the DVD and the Blu-ray disc broadly
established optical storage in our society.3,4 Those media
are based on storing a single bit per diffraction limited
area (“zero” or “one”). Several concepts have been
proposed to increase the information density in optical
storage. Examples are polarization-sensitive digits,5

near-field optical recording,6 the use of fluorescent
dyes7 or three-dimensional approaches like two-photon
point-excitation8. Yet, all these alternatives suffer from
major drawbacks. Either they are hardly superior
to commercial planar solutions (polarization-sensitive
patterns) or they require very complex storage media
(fluorescence) or sophisticated read-out schemes (near-
field recording, two-photon point-excitation). The most
promising alternative seemed to be holographic memory,
which makes use of the volume of the storage medium,
yet with no commercial product available.9,10

Photonic nanostructures are powerful instruments to
control light at the nanometer scale.11,12 Localized sur-
face plasmons (LSP) in metal nanoparticles13 or Mie-type
resonances in high-index dielectric structures14 offer high
scattering efficiencies, cover the entire visible spectrum
and can be tuned by designing appropriate geometric
features.15,16 In consequence, the idea has been raised
to encode information in the rich scattering spectra of
plasmonic nanostructures, denser than a single bit.17–21

The information density might be further increased by
addressing layer-wise arranged nanostructures via the fo-
cal depth22 or by the light polarization23. A key problem
of such approach is the availability and accuracy of read-
out schemes.18,24 The main difficulty lies in the fact that
different nanostructure geometries can lead to quite sim-
ilar optical responses, which need to be unambiguously
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identified during the information retrieval.18,25 Inevitable
structural defects and experimental noise further compli-
cate the problem. Drawbacks are also associated with
the metallic character of plasmonic nanostructures. One
problem is the limited scalability of the production. An-
other inconvenience with gold (the most common plas-
monic material) is the limitation to wavelengths above
the interband transitions, hence larger than ≈ 520 nm.
Shorter wavelengths cannot be used to encode informa-
tion, which effectively reduces the attainable information
density.

To overcome these limitations, we develop a scheme
for digital information encoding, based on silicon nanos-
tructures. Owing to its high refractive index with
low imaginary part, silicon nanostructures support
low-loss optical resonances, tunable over the entire
visible spectral range.14,16,26 In addition, silicon has
great technological advantages, first of all the mass-
production ready, high-precision complementary metal-
oxide-semiconductor (CMOS) based processing technol-
ogy, its low cost and durability. To reliably retrieve
the stored information, we propose a machine learn-
ing (ML) based approach, in which the scattering spec-
tra are analyzed by an artificial neural network (ANN).
ANNs are computational schemes that can be “trained”
to efficiently solve problems, hard for classical com-
puter arithmetics.27,28 ANNs have many applications for
instance in modern smartphones or in medical image
interpretation.29,30 Besides a few recent examples, ML
is being scarcely applied on problems in nano-optics. In
one work, robust data read-out from holographic memory
was realized using convolutional ANNs.31 The potential
of ANNs has been demonstrated also in classification and
inverse design of nanoparticles.32–34 We train the digital-
information retrieval neural network on the measured
scattering spectra of several hundred fabricated copies of
each nanostructure corresponding to a binary sequence.
On all our experimental datasets encoding up to 9 bit
of information, effectively going beyond the data den-
sity of the Blu-ray disc, the trained ANNs yield a quasi
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FIG. 1. Sketch of the nanostructure geometry and the 1D convolutional artificial neural network. (a) Illustration
of the “4 bit” nanostructure geometry. The digital information is encoded in the four silicon blocks (block: “1”, no block: “0”).
The structure corresponds to the 4 bit digit “1001” (decimal “9”). The L-shaped sidewall is necessary to distinguish symmetric
arrangements via polarized optical spectroscopy. (b) side-view of the fabricated structure layout. (c) Sketches of the different
geometry models used to experimentally encode sequences of 2, 3, 4 or 5 bits in each nanostructure. In all cases, the height
is 90 nm and the L-shaped wall is 60 nm wide. In the 2 bit geometry, the blocks are 120× 240 nm2 large. The 3 bit geometry
uses blocks of 80× 240 nm2. For the 4 bit encoding, the blocks occupy areas of 120× 120 nm2. In the 5 bit geometry, the two
upper blocks measure 150×100 nm2 and the three lower ones have a size of 100×150 nm2. Insets of selected SEM images show
areas of 450 × 450 nm2. (d) sketch of the 1D convolutional neural network used for the classification task. (e) training stage
of the artificial neural network: measured spectra and corresponding digital information are fed into the network. The error is
back-propagated using a variant of the stochastic gradient descent algorithm. (f) the trained network is capable to retrieve the
digital information encoded in the structures via their spectra.

error-free read-out. We demonstrate furthermore that an
accurate retrieval can be achieved using the scattering in-
tensity at only a small number of discrete wavelengths or
even simply the RGB (red-green-blue) color values from
darkfield microscopy images. The latter approach allows
in principle a massively parallel read-out of the stored
data.

I. SILICON NANOSTRUCTURES FOR DIGITAL

INFORMATION ENCODING

As illustrated in figure 1a-b, we use a planar array-
like geometry to encode several bits of information in a
single silicon nanostructure. If a certain position in the
2D array contains a silicon block, the according bit is
set to “1”, otherwise it is “0”. In order to distinguish
symmetric or rotational arrangements (for example 4 bit
“0010” and “0100”), an L-shaped silicon frame is added,
surrounding two sides of the structure. In this way, under

linearly polarized illumination each binary number yields
a unique spectral response.

We fabricate nanostructures encoding between 2 and
5 bits of information each, as illustrated in figure 1c, us-
ing electron-beam lithography (ebeam) and subsequent
dry-etching of commercial silicon-on-insulator substrates
with a silicon overlayer of H = 90nm height. Subsequent
to the etching, the structures are covered by a protective
SiO2 layer of 190 nm height (see figure 1b). For more de-
tails on the fabrication process, see the Methods section.

We fabricate 25 × 25 = 625 copies of each geometry.
Using an automated setup with an XY piezo stage, we
measure the linearly X and Y polarized darkfield spec-
tra of each copy of the structures. All acquired spectra
for the 4 bit case together with representative scanning
electron microscopy (SEM) images are shown in figure 2,
superposed and grouped according to the 16 digital num-
bers. The spectra for the 2, 3 and 5 bit datasets can
be found in the supporting informations (SI), Figs. S4-
S11. We note that the spectra of symmetric structures
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FIG. 2. Experimental darkfield spectra training data-set for 4 bits. Our data comprises measurements from 625
copies for each of the 16 “4 bit” geometries (this makes a total of 625 × 16 × 2 = 20000 acquired spectra). The spectra are
superposed above each other. Blue lines: darkfield scattering for X-polarized light, orange lines: Y -polarization. Insets show
SEM images of one representative copy of the respective nanostructure, the areas are 600×600 nm2 large, the scalebar in “1111”
is 200 nm. The not shown 2 bit dataset consists of 5000, the case of 3 bits comprises 10000 and the 5 bit set contains 40000
scattering spectra (all shown together with SEM images in the supporting informations, (Figs. S4-S11), where also a separate
4 bit dataset and simulations are shown in order to demonstrate the reproducibility (Figs. S12-S14).

are not completely identical for crossed polarizations (see
e.g. “0000”). We attribute this observation to the ebeam
being horizontally rasterscanned in the fabrication pro-
cess, leading to small anisotropies (about 5 − 10%) be-
tween horizontal and vertical features (see SEM images
in SI Figs. S1-S3 and S21). This can in principal be cor-
rected in an automated fashion during the mask design,
as demonstrated in the SI, Figs. S27-S28. On the other
hand, such asymmetries can be even advantageous for
our purpose, because they increase the “uniqueness” of
the individual geometries and their scattering spectra.

II. MACHINE LEARNING BASED DIGITAL

INFORMATION READ-OUT

Our goal is to read the information, encoded in the
geometries of the silicon structures via a far-field optical
measurement scheme. The optical scattering spectrum
is a promising physical quantity to differentiate between
the different structures, in other words to retrieve the bit-
sequences they represent. Here, we propose a machine-
learning approach to the problem. We train an ANN
using sub-sets of the acquired spectra. Subsequently,
we evaluate the accuracy of the read-out by testing the
trained ANN with spectra not used for training.

We use a one-dimensional convolutional neural net-
work (ConvNet), followed by a fully connected network,
as depicted in figure 1d – an architecture with particular
strength at pattern-recognition tasks.28 The spectra are

fed in the network input layer which consists of one or
two parallel channels, depending on whether a single or
both polarization cases are used. At the “softmax” out-
put layer, each bit sequence is attributed to one neuron.
Details on the network and training parameters as well
as on the preprocessing of the data can be found in the
Methods section. The network loss and the error rate on
the validation set are shown in figure 3a for the first 100
epochs36 of training on the 4 bit dataset.

The read-out scheme is illustrated in Fig. 1f: The scat-
tering spectra of the binary structures are fed into the
trained ANN and forward propagated through the net-
work. The output neuron with the highest activation
indicates the encoded bit sequence. In all cases (2-5 bits
per structure; X or Y or both (“XY”) polarizations), the
trained ANN yields quasi error free read-out accuracy.
In the cases of 4 and 5 bits, one single spectrum of the
test-data was incorrectly interpreted (corresponding to
0.023% and 0.011% for the 4400 (4 bit), respectively 8800
(5 bit) test-structures).

We analyzed the datasets using the “t-SNE” dimension-
ality reduction, in order to estimate the distinguishability
between different geometries, as well as the variance in
copies of identical structures.35 In a t-SNE plot, well sep-
arated scatter points correspond to unambiguously differ-
entiable entities in the dataset, while nearby and overlap-
ping points correspond to very similar data. The results
for the “XY” datasets are shown in figure 3b, the t-SNE
plots for the “X” and “Y” datasets can be found in the SI,
Fig. S15. Each color corresponds to one type of structure,
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FIG. 3. Training convergence and read-out accuracy of the artificial neural network trained on the full

scattering spectra. (a) convergence of the training at the example of 4 bit encoding and spectra of 300 copies per digit for
training. Loss (categorical cross-entropy, top) and validation error rate (bottom) as function of the training epoch for only X

(blue), only Y polarized spectra (orange) and both polarizations (green) as training data. (b) t-SNE35 visualization (see also
text) of the “XY” polarization training sets for 2-5 bits encoded per structure. (c) read-out error as function of the number of
spectra per structure used for the training of the network. All cases of information density per structure yield quasi error-free
read-out using sufficiently large training sets of at most around 60 samples per geometry (5 bit case, purple crosses). As one
would expect, the lower bit densities (blue: 2 bit, orange: 3 bit, green: 4 bit) require even less training samples for an accurate
information retrieval. Solid lines are guides to the eye, proportional to N

−3, which qualitatively describe the convergence of
read-out as function of training set size N .

each dot represents a single measurement. All datasets
are characterized by a very good separation of the differ-
ent spectra in the t-SNE plots, which explains why the
ANN can retrieve the binary information with almost no
errors. Figure 3c shows the readout error as function
of the training samples. As intuitively expected, the re-
quired number of training spectra for error-free operation
increases with the complexity of the geometrical model.
On the other hand, we observed that the main source
for dispersion in the measurements is the position of the
confocal hole with respect to the nanostructure. Hence,
the spectral dispersion could be easily reduced by opti-
mizing the stability of the acquisition scheme. We also
want to emphasize that our conditions are still perfectly
sufficient for a quasi error-free operation in all considered
cases.

To assess the amount of optical data required for an
accurate readout, we train and test ANNs using reduced
spectral information. Figure 4a shows the error rate as
function of the spectral window width ∆λ used for train-
ing and retrieval (on the “XY” datasets). We evaluated
three different positions of the spectral window: Either
at the long wavelength end of the spectra (λ ≤ 850 nm,
orange lines), at short wavelengths (λ ≥ 450 nm, blue
lines), or centered around 650 nm (green lines). While
the short and intermediate wavelengths always yield error
free readout for spectral windows as small as . 100 nm,
we observe that using the red part of the spectra requires
a larger spectral window of up to ≈ 200 nm for high ac-

curacy. We conclude that the red part of the spectra con-
tains the least amount of information, insufficient to un-
ambiguously distinguish between the binary sequences.
This is a direct consequence of the photon energy being
inverse proportional to the wavelength. Furthermore, the
used geometries have no resonances above ≈ 750 nm. Us-
ing larger or higher structures could increase the infor-
mation density in the red by shifting resonances to longer
wavelengths. In a second step, we train a fully connected
ANN (see also Methods) using the scattering intensity
only at a low number of discrete wavelengths, as shown
in figure 4b. Probing three wavelengths is always suffi-
cient to obtain a readout accuracy of > 99%. The error
rates on the worst bit-sequence in the order of 10% can
be reduced below 0.5% by probing at 4 or 5 wavelengths.

We will study in the following if the bit sequences can
be recovered also using a simpler and faster data ac-
quisition scheme, namely the scattered RGB color ob-
tained from conventional darkfield microscopy images.
Figure 5a shows darkfield images of 3× 3 copies for each
geometry and both polarizations at the example of the
4 bit geometry. The average RGB color is shown in the
upper left corner of each plot. For training we use the
RGB values from the scattered light of each individual
structure in the polarization filtered darkfield image. We
normalize the RGB values to R + G + B = 1 and store
the scattered intensity separately. We create four train-
ing datasets: Three sets with only the normalized RGB
information. One for X, one for Y polarized data and a
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FIG. 4. Accuracy of network trained on reduced spectral information. (a) Training using scattering from spectral
window of reduced width for the 2, 3, 4 and 5 bit datasets (left top to right bottom plot). The scattering intensity was taken
from a window either at the short wavelength side (blue lines), in the center (green lines) or from the red edge of the spectra.
(b) Average (top plot) and worst-digit (bottom pot) read-out accuracy using a network trained on the scattering intensity of
X- and Y -polarized light at a discrete number of wavelengths. The explicit positions of λi for the different cases are given in
the Methods section. t-SNE plots for all reduced spectral information datasets can be found in the SI, Figs. S15.

third dataset combining both polarizations (“XY”). The
forth set contains the XY data and additionally their
intensity values (“XY+I”). We use a fully connected net-
work as depicted in Fig. 5b. Technical details are given
in the Methods section.

Figures 5c and d respectively show “t-SNE” plots for
the different 3 bit datasets and for the “XY” data of the 2,
3, 4 and 5 bit geometries. The partial mixing of scatter-
points in the t-SNE plots of only X or only Y polarized
RGB values suggests that these data are not sufficient
for accurate identification of the structures. This is con-
firmed by the insufficient readout performance of the cor-
responding ANNs, the error rates of several individual
binary numbers are even well above 50% (see Figure 5e
and SI, Fig. S16).

Using the datasets combining both polarizations, the
situation drastically improves. The t-SNE plots (Fig 5d)
now show a clear separation of the different binary num-
bers. The average error rate drops significantly below
10 % in the “XY” case, and can be reduced further below
1% (2-4 bits) and below 3% (5 bits) when the bright-
ness values are also considered. In the 4 bit “XY+I” case
for instance, the largest error rate is observed for dig-
its “0101” and “1100” which scatter light in a resembling
tone and brightness (see also SI Figs S16). The similar-

ity can also be observed in the t-SNE plot (figure 5d),
where the light green and pink dots (structures “5” and
“12”) are partly touching. Such an analysis of the t-SNE
plots allows to identify the most problematic digits (e.g.
“6”, “8”, “29” and “31” in the 5 bit case). By design-
ing nanostructures with a more significant difference in
the scattered colors (e.g. using modern inverse problem
techniques16,37), this limitation could be easily overcome
and the error rate further decreased.

The RGB color information allows to simultaneously
capture many thousands of structures within a single
measurement of a large-area image. In other words it
supports a massively parallel read-out of the information
(see also Methods). Cheap, smartphone-based darkfield
microscopy for the RGB read-out might become feasi-
ble in the near future. Indeed, smartphone-based mi-
croscopy is subject of current research and has undergone
tremendous progress in the recent past.38–40 A further in-
teresting route for improvement are specifically designed
bright-field color scatterers41 for information encoding,
in order to avoid the necessity of a darkfield illumination
scheme. Finally, a cheap multi-laser approach, similar to
a Blu-ray disc reader with several lasers could be used to
capture the scattering intensity simultaneously at several
wavelengths.
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FIG. 5. Neural-network based data read-out via the RGB color values. (a) polarization filtered dark-field color
images of representative 3× 3 arrays of the “4 bit” digit structures. Left: X-polarization, right: Y -polarization. The darkfield
images show areas of 7.5 × 7.5 µm2. The insets show the average RGB color of the 3 × 3 structures. (b) scheme of the fully
connected artificial neural network used for the RGB classification task. (c) t-SNE35 visualization of the “3 bit” training sets for
only X, only Y , X plus Y or X, Y and scattered intensity I (from left to right). Only if using simultaneously both polarizations
(“XY” and “XY+I”), the different bit sequences show a clear separation in the t-SNE plots. (d) t-SNE plots for the XY+I cases
of the 2, 3, 4 and 5 bit training sets (from left to right). (e) information retrieval accuracy of the network, trained on the
different data-sets consisting of only the X-filtered, only the Y -filtered, X+Y filtered and XY + the scattered intensities I.
t-SNE plots for all data-sets can be found in the SI, Fig. S15. In Figs. S17-S18 of the SI, the activations of the softmax output
neurons of the “RGB” network are shown for the whole validation sets of the 4 bit datasets “X” and “XY+I”.

III. TOWARDS HIGHER INFORMATION

DENSITY

Finally, we want to assess if the information density of
the individual nanostructures can be further increased.
As detailed in figure 6a, we therefore examine in the fol-
lowing the case of a geometry encoding 9 bits of informa-
tion, which leads to 512 possible structural arrangements.
We note that the ≈ 20% larger size of the 9 bit structures
compared to the 2-5 bit geometries leads to a red-shift of
the resonances. This effectively increases the information
content at long wavelengths, which is advantageous for
our aim to encode 9 bits per nanostructure.

Having 512 different geometries to distinguish, the
main difficulty is now the requirement of a large dataset.
Unfortunately, while no constraints exist concerning
mass-production fabrication, on our scientific equipment,
acquiring scattering spectra from several hundreds of
copies per geometry would imply many months of work-

load. But there are no general technical constraints and
using dedicated, fully automated setups would enable a
rapid experimental acquisition of very large datasets. In
our case, in order to obtain a sufficiently large dataset, we
numerically expand a representative set of experimental
spectra from 4 copies of each nanostructure by generat-
ing 300 random superpositions of these 4 spectra. We
additionally introduce a random intensity deviation of
up to ±10%. The result of this numerical data expan-
sion is shown at selected examples in figure 6b (see SI,
Figs. S26 and S29-S32 for the whole experimental dataset
and more examples).

We train networks on 9 bit readout using either the full
spectra or the scattering intensity at a discrete number
of wavelengths (using simultaneously X and Y polariza-
tion). The techniques are identical to the above cases
of 2-5 bits per nanostructure (see also Methods). In the
left of figure 6c, the readout accuracy using full spectra
is shown as a function of training samples per geometry.
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FIG. 6. 9 bit per nanostructure information encoding. (a) geometry of a silicon nanostructure encoding 3 × 3 = 9

bits (512 possible combinations). Each silicon block occupies an area of 105× 105 nm2. The L-shaped sidewall is 45 nm wide.
The height is 90 nm. An SEM image of a fabricated structure is given in the inset, where the scalebar is 200 nm. The shown
example represents the decimal number “321”. (b) selected examples, illustrating the training data generation by a numerical
expansion of the experimental spectra. SEM images show areas of 550× 550 nm2. We fabricated 4 copies of each possible 9 bit
nanostructure. Via random superposition of the experimental scattering spectra of these 4 copies, we generate a large set of
spectra, allowing us to train and test the performance of the binary information readout ANN (see also SI Fig. S23 for more
details). (c) accuracy of the ANN trained on the experimental 9 bit data using the full spectra (left, the solid line is a guide to
the eye) or scattering intensities at a limited number of discrete wavelengths (right). In both cases, X and Y polarized data is
used simultaneously. (d) evaluation of the robustness of 9 bit read-out with respect to noise on fully numerical data. We use
simulated scattering spectra for all 9 bit geometries with different amounts of random noise (see SI Fig. S33 for details on the
training data generation). Example spectra for noise levels from (i) 10% to (iv) 25% are shown at the example of structure
“001011010” (decimal 90). The plot on the right shows the readout error rate on the numerical data as function of noise level
(training on the full spectra of both polarizations). (e) scattering deviation relative to the isolated structure as function of
the distance between two digit encoding structures for focused illumination. For the estimation of the feasible information
density, 10% deviation from the unperturbed spectrum are assumed to be tolerable (red dashed horizontal line). This leads to
an information density (green indicator) around 40% higher than the Blu-ray disc (blue indicator). The 4 bit structures yield
about 75% of the Blu-ray density.

Quasi error-free operation is obtained for training-sets
as small as about 20 spectra per digit. Using a discrete
number of probed wavelengths (Fig. 6c, right), very low
error rates of ≈ 2% can be obtained by probing only three

discrete wavelengths. Using 4 or 5 probed wavelengths
improves the error far below 1%.

In order to assess how larger variations and noise influ-
ence the readout performance, we use a dataset of fully
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numerical simulations of the 512 geometries (see Meth-
ods). This synthetic data allows to adjust the distortions
and noise of the spectra in a quantifiable way, which is
shown schematically in the left of figure 6d. The read-
out accuracy of an ANN, trained on simulated spectra,
is shown on the right of Fig. 6d. Significant error rates
start to occur at noise levels around 15%. The average
error rate with 20% noise is still at a reasonable value
of 4.16%. For the worst digit though, the error rate is
as high as 35% in this case, which could be improved
by designing optically “more unique” nanostructures for
pathological cases. Some examples of false and correct
classifications as well as an analysis of the error rate at
several noise levels are given in the SI Figs. S34-S35. A
comparison of the experimental data with simulations of
different noise levels, a t-SNE plot of the experimental 9
bit dataset and further analysis on the impact of noise
can be found in SI Fig. S22 and S24-S26.

We finally compare the information density of the 9 bit
nanostructures to the state-of-the art flat optical stor-
age medium, the “Blu-ray disc”. The Blu-ray requires
67500 nm2 per bit, while our approach scales with the
structure-spacing and uses (3 ·105+45+spacing)2/9 nm2

(see Methods, section V F). In figure 6e we analyze the in-
fluence of a close neighbor on the scattering from a 9 bit
nanostructure. Assuming a tolerable deviation of 10%
compared to the isolated nanostructure’s spectrum, a
spacing of 300 nm would still allow an accurate read-out,
yielding around 40% higher information density than the
Blu-ray (see also SI Fig. S36-S37). With a 300 nm spac-
ing, the 4 bit encoding nanostructures result in 75% of
the Blu-ray information density. Using properly designed
sets of photonic nanostructures with highly distinguish-
able optical responses, the accuracy and robustness of
the method can be further optimized. Also, by increasing
the structure height to red-shift the resonances, the area
covered by each nanostructure could be reduced. The
information per structure could possibly be increased up
to 11 or 12 bits (2048, respectively 4096 structure geome-
tries). Larger binary sequences seem however difficult for
an accurate read-out, due to the power-scaling by which
the number of structure geometries increases (2Nbit). A
further means to improve the read-out accuracy and its
robustness might be to include the angle of incidence as
probing parameter. In order to exploit all three spatial
dimensions of the storage medium, multi-layer arrange-
ments might be possible.22,23

IV. CONCLUSIONS

In summary, we demonstrated on experimental data,
that deep neural networks can be effectively trained for
the optical retrieval of digital information, encoded in the
geometry of photonic nanostructures. We demonstrated
on geometries encoding up to 9 bits per diffraction lim-
ited area, that the optical scattering spectra are more
than sufficient for an accurate recovery of the encoded

data. We showed that probing at a few discrete wave-
lengths or even simply using the RGB color information
obtained from standard darkfield microscopy images, is a
precise read-out scheme, potentially possible on very sim-
ple and cheap equipment. The latter approach would al-
low a massively parallel retrieval of the information. The
robustness can easily be improved by tailoring nanostruc-
ture geometries with high color-contrast.42

Our work paves the way towards high density planar
optical information storage using simple far-field char-
acterization combined with concepts of machine learn-
ing. Re-writeable storage media might be created around
the recently developed technology on catalytic magne-
sium metasurfaces for dynamic structural color.43 Our
approach can be easily generalized to other classifica-
tion tasks in nano-optics, including biological applica-
tions and problems in plasmonics.
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V. METHODS

A. Nanofabrication of planar Si structures

The silicon nanostructures were patterned on silicon
on insulator (SOI) substrate (90 nm active Si layer on
30 nm buried oxide) following a large scale top-down ap-
proach. Electron beam lithography was used to pattern
80 nm thick layer of an inorganic negative-tone resist,
namely hydrogen silsesquioxane (HSQ). After exposure,
HSQ was developed by immersion in 25% tetramethy-

lammonium hydroxide (TMAH) for one minute.44 HSQ
patterns were subsequently transferred to the silicon sub-
strate down to the buried oxide by anisotropic reactive
ion etching (RIE). Then, the structures were embedded
in a 200 nm thick HSQ layer, deposited by spin coating in
order to perfectly planarize the sample in a nanometrical
range.45 Finally, the HSQ layer (SiOxHy) was converted
into a SiOx layer by rapid thermal annealing at 600◦C /
2 min under nitrogen ambiance, leading to a final SiOx

thickness layer of 190 nm.

B. Confocal darkfield microscopy

The scattering spectra were acquired out on a confocal
dark-field microscope (Horiba XploRA). A white lamp
was focused on the sample by a ×50 dark-field objec-
tive (NA 0.5, condenser: NA 0.8 − 0.95). The backscat-
tered light was filtered by a confocal hole (diameter of
100 µm) and a polarization filter and dispersed by a grat-
ing (300 grooves mm−1) on a Peltier-cooled CCD. The ac-
quisition time was ta = 0.2s. All spectra were normalized
by the spectrum of the lamp. While the spectra used for
the results shown in the main text were measured at an
acquisition time of ta = 0.2 s, a second dataset was mea-
sured with ta = 0.5 s, leading to similar results (see SI,
Figs. S12-S14). We therefore assume that even shorter
acquisition times would be sufficient for a robust data
recognition.

The polarization filtered dark-field images were taken
using the same ×50 darkfield microscope objective, with
a color CCD camera at a resolution of 1392 × 1040 and
an exposure time of texp = 0.05 s. Each structure is per-
ceived as a colored dot on the microscopy image, covering
≈ 20 – 50 pixels, from which we take the average RGB
value.

C. Expansion of 9 bit experimental training data

set

Due to technical constraints of our measurement setup,
we are not able to acquire in reasonable time, scattering
spectra of several hundreds of all 512 possible 9 bit en-
coding nanostructures. In order to nevertheless assess
the feasibility of experimental 9 bit readout via our ma-
chine learning based approach, we fabricate 4 copies of
the 9 bit structures. To obtain the required much larger
amount of spectra of each geometry, we subsequently cre-
ate new spectra σnew(λ) from random superpositions of
the 4 experimental spectra σi(λ) of each nanostructure
type. Our condition in this approach is, that the random
weights wi of the four different spectra sum up to one,
hence

σnew(λ) =

4∑

i=1

wiσi(λ), with

4∑

i=1

wi = 1 . (1)
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Finally, we multiply the spectrum by a random coefficient
C between 0.9 and 1.1, to emulate larger intensity fluc-
tuations. In this way we generate 300 semi-experimental
spectra with which we train the artificial neural networks
for the decoding of the digital information.

D. Electrodynamical simulations

Simulated dataset

The 9 bit geometry model used for the fully numeri-
cally simulated dataset is identical to the experimental
structures (see figure 6a). It consists of 3 × 3 silicon
blocks of each 105×105 nm2 lateral size and 90 nm height.
Two sides are surrounded by an L-shaped block of 45 nm
width.

We numerically simulate the scattering spectra un-
der X and Y polarized plane wave illumination for all
512 possible geometries using the Green Dyadic Method
(GDM). In order to assess the robustness against dif-
ferent amount of perturbation and noise in the spectra,
we numerically add noise to the simulated data via a
sequence of random modifications. The noise addition
steps are illustrated in the supporting informations, fig-
ure S33. First we add random noise, apply a random
positive offset as well as a scaling factor. Then we multi-
ply the spectra with a linear function of random slope and
finally apply a wavelength-shift. In order to do so, in the
first place we simulated the spectra on an extended wave-
length range. Thanks to this procedure, we are capable
of adjusting the magnitude of the random variations to
yield more or less strongly distorted results. Figure 6d
shows several randomized spectra for noise magnitudes
between 10% (i) and 25% (iv).

Green Dyadic Method

The numerical simulations for the 9-bit structures are
performed using the Green Dyadic Method (GDM), a
frequency-domain approach based on the concept of a
generalized propagator.46 In particular, we use an own
implementation in python, “pyGDM”.47

In the GDM the volume of a nanostructure is dis-
cretized with N cubic meshpoints of edge length d.
To each of these mesh-points, a dipolar response is at-
tributed. As detailed e.g. in reference48, this leads to a
system of 3N coupled equations

E0 = M ·E, (2)

which, by inversion of M, allows to relate any incident
electric field E0 to the induced field E inside the particle.
M is composed of 3× 3 sub-matrices

Mij = I δij − αi(ω)G(ri, rj , ω). (3)

I is the Cartesian unitary tensor, δij the Kronecker delta
function and, in cgs units,

αi(ω) =
ǫi(ω)− ǫenv(ω)

4π
vi . (4)

In the latter equation, vi is the volume of the cubic dis-
cretization cells hence vi = d3. We use the dispersion
of silicon from Palik49 for ǫi. The structures are placed
in a homogeneous environment (ǫenv = 1.45 for SiO2) at
30 nm above a silicon substrate.
G in Eq. (3) is the Green’s Dyad, coupling the cu-

bic meshpoints i and j. It is composed of a vacuum
term (accounting for the homogeneous environment) and
a surface term (accounting for the substrate):

G(ri, rj , ω) = G0(ri, rj , ω) +Gsurf(ri, rj , ω) (5)

which can be found in literature.48 At ri = rj the Green’s
Dyad G0 diverges, hence a normalization scheme is ap-
plied:

G0(ri, ri, ω) = IC(ω) . (6)

For a cubic mesh we use48

C(ω) = −
4π

3

1

ǫenv(ω)vi
. (7)

We invert equation (2) using LU-decomposition, the scat-
tering cross-sections can be calculated from the near-field
E inside the particle.50

E. Training artificial neural networks for far-field

scattering based classification

The artificial neural networks are implemented in
python using the tensorflow package.51

Digit retrieval using scattering spectra – 1D ConvNet

Preprocessing of scattering spectra Prior to the train-
ing of the ANN, we pre-process the acquired scattering
spectra. After background subtraction and normaliza-
tion to the spectrum of the white lamp, we apply the
following, further processing steps on our data. We first
apply a median filter with 6 nm kernel size to elimi-
nate spikes from the spectra. Subsequently we apply a
smoothing filter based on moving averages with a 15 nm
kernel to reduce the noise. We finally apply a down-
sampling procedure using an order 8 Chebyshev type I
filter by which we reduce the number of wavelengths to
99 per spectrum.

Network architecture The scattering spectra based
network for information retrieval is a one-dimensional
convolutional network followed by a fully connected part.
The ConvNet consists of three layers using the “leaky
ReLU” activation function. The first layer with 64 fil-
ters per channel uses a kernel of size 7. The second and
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third layers both have 32 filters with kernels of size 5
and 3, respectively. Each 1D convolutional layer is fol-
lowed by a max pooling layer with kernel size 2 as well
as by a batch normalization.52 The fully connected net-
work consists of two layers with 64 and 32 neurons, em-
ploying a “tanh” activation. For the ConvNet part, we
apply an “L2” regularization, for the fully connected part
a dropout regularization scheme with 80% keep proba-
bility. During training the output layer neuron whose
index corresponds to the input binary number is set to
“1” while the other neuron activations are kept at “0”. We
train the network as depicted in Fig. 1d using a variant
of the stochastic gradient descent algorithm (“Adam”, for
details see Ref. 53) with a batch size of 64. We use the
categorical cross-entropy loss, a learning rate of 0.0001
and train the network for 200 epochs. In the case of the
9 bit structures we train the network for 2000 epochs.

Discrete wavelengths and RGB digit retrieval – Fully
connected network

Discrete wavelengths: Selection and preprocessing

The intensity values at specific wavelengths are extracted
from the scattering spectra, acquired with white light il-
lumination. We average the intensity over a small win-
dow of 3 neighboring values to reduce the impact of noise.
Following spacings between wavelengths are used

• first wavelength: λ1 = 500nm

• 2 wavelengths: λ2 = 630 nm

• 3 wavelengths: ∆λ = 95nm

• 4 wavelengths: ∆λ = 75nm

• 5 wavelengths: ∆λ = 60nm

Because we found that the red part of the spectra
contains very little information (see also figure 4a), we
set the longest wavelength to be not larger than about
740 nm in order to ideally probe the regions of the spec-
tra, which contain the most information on the encoded
bit sequence.

RGB: Preprocessing of darkfield images We auto-
matically process the polarization filtered darkfield mi-
croscopy images by considering all pixels with a bright-
ness of at least 3× the background level. Using this pro-
cedure, each structure results in a dot of 30-50 pixels in
the darkfield images. Our dataset is composed of the av-
erage RGB values of the ensemble of pixels corresponding
to each nanostructure. We normalize the RGB values to
R+G+B = 1 and separately store the scattered intensity
(hence the brightness).

Network architecture For the RGB datasets as well
as for the read-out using the scattering intensity at dis-
crete wavelengths, we use a fully connected network. The
scattering intensity at the wavelengths λi or the R, G, B
values (and optionally the intensity) are the input to the
network, which itself consist of three layers with “tanh”

activation in the following order: 128, 256 and 64 artifi-
cial neurons. We use L2 regularization and dropout with
80% keep probability on the entire ANN. The 16 neu-
rons in the “softmax” output layer represent the binary
numbers encoded in the nanostructures. We train the
network on data from 300 samples per geometry, using
the original SDG algorithm and the categorical cross-
entropy loss function. The batch size is 64. The learning
rate is 1.0 with a ×0.96 decay each 1000 steps (≈ every
13 epochs).

F. Considerations on the practical implementation

of readout schemes and their performance

Blu-ray bit density for comparison with the nanostructure
size

The Blu-ray has a length and width per digit of 150 nm,
respectively 130 nm, with 320 nm line spacing, leading to
a required area per bit of A1bit = (320+130) ·150 nm2 =
67500 nm2. On the other hand, our “9 bit” structures
with block edges of 105 nm and an outer wall width of
45 nm require (3 ·105+45+spacing)2 nm2 per 9 bits. For
300 nm spacing, this yields 48400 nm2 per bit.

Multi-wavelength based readout

Using multiple lasers in a system similar to a Blu-ray
reader, it would be possible to probe the scattering inten-
sity at different wavelengths. As in the case of Blu-ray,
the lasers could be scanning a rotating storage medium
and acquire the spectral information in a sequential man-
ner (for instance first a blue laser scans the structure,
then a green and at last a red laser). The performance
of such a system would be basically limited by the con-
straints of the available technology and should be compa-
rable to the Blu-ray disc, except that 9 bit of information
(instead of a single bit) could be read at every passage of
the laser system.

RGB based readout

With our experimental setup, using a ×50, NA 0.5 ob-
jective, we capture darkfield images covering areas of
240 × 180 µm2. Assuming 700 × 700 nm2 per digit in-
cluding spacing, we could capture around 80, 000 struc-
tures per image. In the case of 5 encoded bit per geom-
etry, these nanostructures would encode approximately
0.44Mbit of information. The Blu-ray disc at its 1×
datarate yields 36Mbit/s, so around 100 images per sec-
ond would be necessary to yield similar performance with
our approach. Throughout this study, we used an expo-
sure time of texp = 0.05 s, which, under otherwise perfect
conditions, would correspond to 20 images per second.
This is still about 5 times below Blu-ray performance.
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Our setup however is far from ideal for this specific
readout task. Using high-NA and low magnification ob-
jectives, the captured area could easily be significantly
enlarged. For instance a ×20, NA 0.75 microscope ob-
jective would cover a 2.5 × 2.5 times larger area than
our microscope, which would lead to 2.75Mbit per im-
age (again using the 5 bit structures). Also the exposure
time could easily be strongly decreased using very bright
light sources and optimized CCD cameras. Assuming
texp = 0.01s (which is still a very conservative guess),
this would then enable a readout rate of 275MBit/s.

G. Data availability

The data that support the plots within this paper and
other findings of this study are available from the cor-

responding author upon reasonable request The exper-
imental and simulated scattering datasets are available
under https://doi.org/10.6084/m9.figshare.7326842.v1.

H. Code availability

The authors declare that all software used to obtain
the results of this work are publicly accessible as open-
source software: python including scipy, tensorflow, as
well as pyGDM47, our own implementation of the Green
Dyadic Method. Our scripts can be made accessible from
the corresponding author upon reasonable request.
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