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Abstract: Software engineering research was always focused around the efficiency of software development processes. 

Recently, we noticed an increasing interest in model-driven approaches in this context. Models that were once merely 

descriptive, are nowadays playing a productive role in defining engineering processes and managing their lifecycles. 

However, there is a problem that has not been considered enough; it is about sustaining consistency between products and the 

implicated activities during the process lifecycle. This issue, identified in this paper as the synchronization problem, needs to 

be resolved in order to guarantee a flawless execution of a software process. In this paper, we present a SPEM-based solution 

named SynchroState that highlights the relationship between process activities and products. SynchroState's goal is to ensure 

synchronization between activities and products in order that if one of these two entities undergoes a change, the dependents 

entities should be notified and evolved to sustain consistency In order to evaluate SynchroState, we have implemented the 

solution using the AspectJ language and validated it through a case study inspired from the ISPW-6 software process example. 

Results of this study demonstrate the automation of synchronization of product state following a change in the activity state 

during the evolution of the process execution. 
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1. Introduction 

The evolution of economy on an international scale 

requires companies and other organizations to adopt 

efficient and adaptable logistic support and information 

systems. This need was behind the effort of software 

engineering industry to identify and define time-to-

market efficient methods and processes allowing the 

design and development of high quality software in 

respect of defined deadlines and limited budget. The 

increasing complexity of these software products has 

led the computing community to master the software 

development process and to implement tools for high 

productivity development. 

These factors are transforming software engineering 

process into socio-cultural activity requiring the 

management of activities distribution over 

geographically dispersed teams working 

simultaneously on the same project.  

Software process modeling was emerged to address 

these concerns. The first attempts to model processes 

were with informal languages, such as life cycle 

models [20]. The advantage of automation appears 

clearly with the use of executable language for the 

representation of process. Thus, several studies [6, 18, 

21, 32] have been conducted in order to design Process 

Modeling Languages (PMLs) [34]. 

One particular problem in this context is that of 

maintaining consistency of the different artefacts 

during software engineering process. In fact 

collaboration can only be efficient if there is a 

mechanism to ensure the consistency of the shared 

software components and the propagation of the 

changes the specifications and requirements undertake. 

While advanced software architectures such as Service 

Oriented Architecture (SOA) are essentially based on 

the separation of concerns, there will always be 

transversal and shared software components that create 

dependency between the different activities of software 

engineering process. We thus need a dedicated 

mechanism keeping track of the evolution of all 

involved activities and propagating the different 

changes in order to update products states and ensure a 

real-time synchronization of activities and products 

states. 

This paper presents our solution to this particular 

problem. This solution, named SynchroState extends 

the Software Process Engineering Metamodel (SPEM) 

[25], and borrows concepts of Unified Modeling 

Language (UML) 2.0 [26], to address the problem of 

synchronization between activities and products in a 

software development process, i.e., the ability to 
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propagate changes from one activity to the 

activities/products that depend on and vice versa. 

SynchroState extends SPEM metamodel, to represent 

development processes and their components. 

Moreover, it integrates UML state machines 

metamodel to represent the state changes of activities 

and products. The Observer design pattern, on its side, 

was used to capture these state changes and process 

them as events.  

These three key elements were incorporated in one 

whole metamodel to ensure process synchronization. 

This paper is organized as follows: the next section 

presents a state of the art on the SPEM metamodel and 

its implementations. The third section is devoted to 

present our proposed solution of synchronization 

between activities and products within a software 

development process. The solution comes in the form 

of a metamodel named SynchroState. In this section, 

we describe the general architecture of the metamodel, 

as well as its details and semantics. Section 4 is 

dedicated to present the implementation and validation 

of our solution. The implementation was elaborated 

based on an aspect oriented approach, using the 

AspectJ language, and validated through a case study 

inspired from the 6th International Software Process 

Workshop (ISPW-6) software process example [17]. A 

related work description is provided in section 5. The 

paper is concluded with a summary of the performed 

work, and gives different perspectives that we expect 

for the rest of our work. 

2. State of Art: Software Process Engineering 

Metamodel 

SPEM [25] is a metamodel proposed by the Object 

Management Group (OMG) that describes the software 

production processes. Its objective is to provide tools 

and concepts to model, document, present, manage and 

make development methods concrete. SPEM is based 

on UML by extending it in the form of an UML 

profile. 

SPEM defines a software development process as a 

collaboration between roles that perform activities; 

these activities consume products as inputs and 

produce others as outputs, as it is represented by the 

conceptual model in Figure 1. It also gives a 

description of the model content it defines. It is 

therefore a separation of the structure of the process 

and its content. 

 
Figure 1. Conceptual model of software process engineering 

metamodel. 

SPEM is structured into seven main packages 

associated with merge mechanism [25]. In what 

follows, we present a summary of the content of each 

package of SPEM: 

 Core: the core package contains the basic elements 

(in the form of UML class) used in all other 

packages. The WorkDefinition class constitutes the 

breakdown structure of this package and it 

generalizes all work activities of SPEM2.0. 

 Process structure: this package describes the basics 

of design for all models. It defines the elements 

used to represent process models in terms of flow of 

activities (Activities) with their use of products 

(Work Product Uses) and roles (Role Uses). 

 Process Behaviour: this package provides a means 

of linking an element of SPEM2.0 process with an 

external behavioral model such as UML 2.0 

Activity Diagram. 

 Managed content: this package provides the 

concepts for managing textual descriptions either 

independently or in combination with the concepts 

of process structures. Examples of such concepts are 

ContentDescription and Guidance classes. 

 Method content: this package provides concepts 

that allow the development of a knowledge base 

independent of a process or a particular project, 

such as Roles, Tasks and WorkProducts. 

 Process with methods: this package is used to 

define the required elements to integrate processes 

designed with the concepts of the ProcessStructure 

package, with an instance of Method Content 

package. 

 Method plugin: this package provides the 

metamodel concepts used to design and manage 

reusable and configurable methods, process libraries 

and repositories. 

The OMG proposes two methods for describing the 

execution of a SPEM process model: 

 The first method is to set the sequencing between 

the process activities, and assign documentation to 

each activity, in order to develop a definition and a 

project planning [27]. This method suffers from the 

lack of control over the assignment of roles to 

resources, since SPEM does not define any 

relationship between roles and resources of a 

process. It does not provide a means to monitor the 

status of the products after each activity. Therefore, 

this approach cannot be considered as a solution of 

SPEM executability. 

 The second method consists on establishing a link 

between the elements of SPEM process model and 

an external behavioral model. For example, one can 

describe a process with an UML activity diagram, 

and then make the link between the process 

elements and their equivalents in the chosen model. 

Similarly, this approach has several shortcomings. 
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In fact, SPEM gives no description of the method of 

connection between its components and the chosen 

behavioral model. Furthermore, the behavioral models 

are richer in terms of concepts than SPEM 2.0. So, it is 

possible that changes made on the behavioral model 

can not be transformed to the SPEM process model, 

which leads to the problem of traceability of changes. 

Because of the gaps in these implementation 

methods, many studies have been devoted to the 

resolution of these problems, as xSPEM [4] and 

UML4SPM [3], but none of them has addressed 

directly the issue of synchronization of products and 

activities within a software development process. 

Thus, our work is to study the impact of the spread 

between products and activities states on the execution 

of a software development process. In the next section, 

we present our proposed solution to the problem of 

synchronization through a metamodel named 

SynchroState. 

3. The Synchronization Solution 

3.1. General Architecture 

SynchroState metamodel is based on SPEM 2.0, UML 

2.0 and an Observer design pattern metamodel [12].  

SPEM 2.0 and UML 2.0 respectively provide 

support for the description of a process and support for 

state machines and events. On the other hand, the 

Observer design pattern metamodel provides a 

standardized implementation of a solution to define 

interdependence of one to many, so that when an 

object state changes, all those who depend on it are 

notified and automatically updated [14]. The 

SynchroState solution offers new concepts for 

synchronizing the various artefacts of a process. 

Therefore, SynchroState is a compatible extension with 

the SPEM 2.0 standard of process representation. 

Figure 2 represents the general architecture of our 

metamodel. 

 

Figure 2. General architecture of synchro state. 

We propose here to present the Observer metamodel 

exhaustively described in [12]. From the solution 

proposed by Favre [12] including an implementation of 

the design pattern through interfaces, we only keep, for 

simplicity of speech, the class diagram showing the 

communication links between an observer and an 

observed subject. The association between 

ConcreteSubject and Property, initially proposed, was 

replaced by an association between ConcreteSubject 

and StateMachine. In our approach, it is essential to 

implement a mechanism to orchestrate the evolution of 

status changes. The use of a simple link between 

ConcreteSubject and an attribute (property) only 

allows to keep the name of the current state and not to 

exploit the possibilities of UML 2.0 to represent the 

state transition diagrams. We thus have opted in this 

approach to connect the ConcreteSubject class through 

the state role to a StateMachine that provides automatic 

support for all the states and transitions of a 

ConcreteSubject. This state role may be an instance of 

StateMachine of UML 2.0 metamodel or an instance of 

a class that inherits from StateMachine. We made the 

choice to consider the State role as an instance of 

StateMachine according to UML 2.0. 

3.2. Detail and Semantics 

SynchroState is an extension of SPEM 2.0 that aims to 

represent the fact that the activities and products are 

synchronized during the process execution. It merges 

concepts and elements of SPEM 2.0 and UML 2.0 

architecture and organizes its own elements and 

entities as shown in Figure 3. 

SynchroState architecture is divided into three main 

sections: 

 Structure: a process consists of a set of activities 

(Activity) and products (WorkProductUse) in 

relation with each other. SPEM defined the 

relationship between these two entities through the 

ProcessParameter entity. The structure section of 

SynchroState is simply a resumption of the 

relationships between activities and products 

proposed by SPEM. This section is not polluted by 

any external concept to SPEM. 

 State: this section describes the states of 

Activity/Work Product Use entities and their 

transitions. This is achieved with the introduction of 

a simplified state machine metamodel as described 

in the UML specification. It allows representing a 

multi-state object through its transitions. Each 

product/activity state machine keeps track its 

current status. This section triggers the orchestration 

mechanism through the notify method on the 

transition that must operate the observation 

mechanisms. 

 Orchestration: this section is much more 

behavioural; its life cycle begins with the invocation 

of the Observer by the transitions, the observer then 

triggers the spread by contacting the EventManager 

which holds a directory of activities and products 

couples in the form of SubscriptionTuple instances. 

Once a receiver is selected, the message is sent, the 

actioner must then proceed to the alteration of the 

product state. 
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Figure 3. Detailed architecture of synchro state. 

 

In what follows, we give the details of the elements 

composing SynchroState: 

SynchroState inherits from SPEM 2.0, and more 

specifically from WorkProductUse, Activity, and 

ProcessParameter classes of the ProcessStructure 

package. The structure proposed by SPEM between 

activities and products through the ProcessParameter 

entity was kept. 

For the activities and products, we defined the 

ProductStateMachine and ActivityStateMachine 

entities that specialize the StateMachine class of UML 

2.0. This metaclass is derived from the UML 2.0 

metamodel and more specifically from its 

BehaviorStateMachines package. It represents the state 

machine of the entity to which it is linked. To capture 

only the changes of states, this automaton must consist 

of simple states and contain a region composed of 

simple states. In addition, only transitions of 

SynchroTransition type are permitted. The 

SynchroTransition class represents a transition that has 

as single action the call for a method that inherits from 

the notify operation defined for an instance of the 

ClassSubject metaclass. This class inherits from the 

Transition class derived from the UML 2.0 metamodel 

and from the same BehaviorStateMachines package.  

Transitions will be automatically captured and 

generate the desired event to begin the orchestration 

lifecycle. 

The StateMachine association specifies the 

automaton describing the set of states and transitions 

supported by SynchroWorkProduct and 

SynchroActivity. It may be an instance of 

StateMachine or an instance of a class that inherits 

from StateMachine. This role inherits from 

ConcreteSubject::state of the Observer metamodel. 

For each state machine, we have the list of possible 

states (represented by productStates and 

activityStates), and transitions between these states 

represented by the StateTransition class, as well as the 

current state represented by the currentState 

association. 

An actioner is associated to each Product state 

machine. The actioner allows influencing an object on 

the basis of the state changes of the object on which it 

depends, without interrupting its flow of execution. 

This is a non-intrusive way that will change the state of 

the product without requesting it or bring it out of its 

normal flow of execution [22]. 

To explain this interaction, we will refer to the 

following scenario: a change in the state of an activity 

lead to the trigger of the transition (StateTransition), an 

instance of Event is thus created with the identifier of 

the activity as header and the new status as content.  

This instance is observed by the orchestration 

mechanism which takes the event, analyses it, selects 

the dependent objects (ProductStateMachine) and 

forwards the event to their respective actioners. These 

ones will take care of forcing transitions to coherent 

states with the initial change. 

4. Implementation and Validation 

The objective of this section is to present the 

implementation of SynchroState on a case that will 

demonstrate the propagation of the state change of the 

activity to different dependent products. 

The achievement of the synchronization solution 

cannot have a practical industrial value only if we can 

simulate its behaviour on a case study. In this context, 

we propose a validation that consists of the 

development of a computing solution that resumes the 

functioning of the orchestration engine and its 

validation through a case, in order to monitor the 

execution trace. This step will allow us to highlight the 
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real transitions and propagation of synchronization 

events throughout the life cycle of the orchestration. 

The implementation of the metamodel has been 

achieved using Eclipse Modeling Framework (EMF).  

EMF [10, 33] is a modeling framework and code 

generation facility for specifying metamodels, 

managing models instances, and building tools and 

other applications based on a structured data model. 

EMF is a Java implementation of the Ecore meta 

model [2, 9] which is similar to the MOF standard. 

We note that, in order to implement SynchroState 

metamodel, we represented it in the form of an Ecore 

diagram and presented it according to two different 

concerns. The first concern is the description of the 

software design artefacts through various entities 

representing the products, the activities and their links 

through parameters classes and their respective state 

machines. While the second concern relates to the 

activity of orchestration and synchronization and the 

different classes that can meet this need by their 

functioning during a process instance. In what follows, 

we will refer to the first part by the term Structural 

section and the second part by Behavioural section. 

4.1. Structural and Behavioural Section 

The process structure involves the description of the 

various components that constitute it and the 

relationships between them. The structural part in the 

SynchroState model is constituted of: 

 Activity classes: Activity and Activity State 

Machine. 

 Product classes: Work Product Use and Product 

State Machine. 

 The intermediate class between activities and 

products: Process parameter. 

 The metamodel classes of state machines: 

StateMachine, State and StateTransition. 

This structural section allows us to consolidate our idea 

of control and orchestration through state changes.  

However, it does not allow us to highlight the 

orchestration procedure during the execution of a 

process instance. This is ensured in the behavioural 

section. 

Behavioural section is not linked with the structure 

of the engineering process. It considers, in an abstract 

way, two behaviours: 

 The subscription of an object (A) to receive events 

from an object (B). 

 The propagation of an event from the object (B) to 

the object (A). 

This section completes the structure by exposing the 

various entities responsible for the propagation of the 

event. 

We distinguish the Observer entity that captures the 

state transitions and contacts the EventManager to 

select the corresponding receivers, through the 

subscription of products to activities, and send the 

event to the actioners responsible of altering the state 

of the product accordingly. 

In what follows, we will explain the implemented 

mechanisms to ensure consistency between these two 

sections and perform the orchestration. 

4.2. Orchestration by Aspects 

The implementation should not be done to the 

detriment of the integrity of the metamodel, especially 

the structural section, and should therefore be included 

in a non-intrusive way. Indeed, a hard-integration 

mechanism will compromise the abstract and general 

aspect and will constrain the process according to a 

given selection process. 

In this context, we propose the use of the Aspect-

Oriented Programming (AOP) [28] as non-intrusive 

means to create connections between the different 

components of the metamodel and provide automation 

support. 

Aspect-oriented programming is a paradigm that 

allows the injection of transverse behaviour during the 

execution of a software component. By transverse 

behaviour, we mean any set of instructions invoked in 

different components and layers of software and that 

compromise the separation of concerns [13]. We cite 

as an example, the different logging instructions that 

allow to trace the various functions calls and errors 

tracing, without any constraint of separation between 

software components and layers. For the 

implementation of these aspects, we have chosen to 

use AspectJ [1]: an aspect weaver independent of any 

framework and non-intrusive in the source code of the 

application. 

AspectJ is an extension to Java that provides 

additional keywords for AOP concepts. AspectJ 

defines aspects accompanied by their integration rules 

that are expressed in the form of pointcuts. It also 

provides a process for weaving aspects with business 

services of the application, so that the behaviour of an 

aspect is triggered at all points where this aspect is 

applicable. AspectJ is among the first aspect-oriented 

languages and it holds great potential [1, 19]. This 

language has already been tested in a similar context, 

which concerns automating the monitoring of process 

execution in systems engineering [16]. 

4.3. Implementation and Validation 

The implementation of the orchestration layer proceeds 

as follows: for each participating entity in the 

synchronization lifecycle, we propose to create an 

aspect which is responsible for controlling the 

invocation of the relevant class and to perform the 

required processing. In general, each aspect proceeds 

by the following steps: 
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 Reception of the invocation event. 

 Interpretation of input data. 

 Selection of the receiver entity and communication 

of results. 

All these activities occur in different aspects, even if 

the methods invoked in the metamodel classes 

represent only empty shells, aspects behave as joints 

for the structure of the process. 

To highlight this implementation, we will present 

the various implemented aspects and their respective 

roles in the order of their invocations: 

 Activity: the execution of an activity is our starting 

point. Thus, the Activity class is provided with an 

empty method called perform () that represents the 

work to be performed. The ActivityAspect aspect 

captures the invocation of this method and performs 

outside of model classes, the necessary actions. At 

the end of the execution, this aspect invokes the 

state change in the ActivityStateMachine state 

machine. 

 Activity state machine: the reception of a state 

change event (empty method alterState ()) 

automatically triggers the ActivityStateAspect 

aspect which begins by considering the current 

state, the nature of the invocation and takes the 

decision to choose the next state of the activity. 

Then, it invokes the corresponding observer. 

 The observer: the observer receives state change 

notifications from the activities state machines. 

Once notified, the ObserverAspect aspect is 

automatically triggered, its role is to create an event 

that includes the sender as header and the new state 

of the activity as subject and transmit it to the event 

manager. 

 The event manager: when invoking the manager, its 

aspect EventManagerAspect takes control. Its role is 

to check the couples of available subscriptions, then 

in the basis of the dispatching activity, choose the 

receivers among the products actioners (Action) and 

communicate the event object to them. 

 Actioners: the actioners are invoked through the 

empty method triggerAction(). The execution of this 

method triggers the ActionAspect aspect that 

interprets the received event (state change of an 

activity) and takes the decision to change the state 

of the product accordingly. 

Our case study consists in the example of the 

development process described in Figure 4. This 

process was inspired and described by the famous 

example of software process ISPW-6 [17]. It consists 

of four activities: schedule and assign tasks, modify 

design, review design and modify code. Each of these 

activities takes as input products, and produces others.  

 

Figure 4. Example of a development process. 

For each activity, we defined three states: ready, in 

progress and achieved, while the products take the 

states: unavailable and available. The general logic is 

to illustrate that the dependent project must transit 

automatically from the unavailable state to the 

available state, at the end of the execution of the 

activity. This example is intended to underscore the 

monitoring of the execution trace and the actual 

invocations of different aspects. 

From now on, we shall use the term Aspect (with a 

capital A) for AspectJ's aspects to avoid any 

misunderstanding. 

In order to examine the execution process, we shall 

present the content of each Aspect through a graphic 

flow chart representing its algorithm. We shall 

represent the behaviour of the aspect without showing 

the corresponding class for the sake of clarity. 

 Synchro process aspect: the execution life cycle 

starts with the SynchroProcessAspect. This aspect is 

in charge of checking which activities are ready to 

trigger and proceed with the execution. We can 

consider it as an entry point to the execution. Its 

behaviour is described in the flowchart of Figure 5. 

  

Figure 5. Flow execution of synchro state process aspect. 

The algorithm starts with initializing the activities 

list with the content of the model and preparing the 

stopping conditions (the number of finished activities 

equals the number of available activities). The 

algorithm keeps checking for available activities as 

long as this condition is not yet met. Each time an 
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activity is executed, it results with the change of its 

output products to their final state, and, by doing so, 

they become available to other activities to be 

triggered. The hidden risk is that the user did not check 

for deadlocks in his model, i.e., a situation where input 

products keep unavailable whatever activities are 

executed. 

For each activity, we check the availability of all its 

input products. In case these products are available, we 

proceed to trigger the activity, and then we mark it as 

done, as a mean to update the stopping condition. 

We should stress at this level that triggering the 

activity is done by summoning its method trigger and 

not directly its aspect. The aspect will be automatically 

summoned through the execution of the target method. 

 Activity aspect, Activity state aspect and 

TransitionAspect: once an activity triggered, it 

executes its inner operations and then summons its 

state machine in order to alter its state. The state 

machine (through the algorithm of its Aspect) 

checks for the next state then triggers the transition. 

TransitionAspect does nothing but encapsulates the 

details of the transition, i.e., the concerned activity 

and the state, and summons the observer to start the 

synchronization process. 

Figure 6 shows the details of these steps through a 

flow chart. 

 

Figure 6. Lifecycle of an activity state change. 

 Orchestration lifecycle: the orchestration process 

starts at this point. The first thing the observer does 

is summon the event manager to check for every 

ProductAction subscribed to the encapsulated 

activity. In fact, the EventManager has a set of 

TupleSubscription that contains mapping between 

output products and their producing activities. 

As soon as the EventManager selects the concerned 

Actions, it sends the encapsulated message (Activity 

and new state) to each action in order to trigger 

Product state change. 

Figure 7 shows the orchestration lifecycle as a flow 

chart. 

 

Figure 7. Orchestration life cycle. 

 Product state aspect: at this point, we are at the end 

of the activity execution lifecycle. The 

ProductStateAspect receives the directives from the 

ActionAspect and proceeds with changing the 

product's state. 

If the product is switched to its final state and becomes 

available, it will update the process by making 

dependent activities ready. 

We established posts at each aspect to trace 

execution. We propose Figure 8 the execution trace in 

the console. 

 
Figure 8. The execution trace. 

The execution trace shows the routing in accordance 

with the life cycle of the orchestration stated earlier in 

this paper. Thus, we can notice the activities state 

change that led to the trigger of the event at the level of 

the observer. We also note the three steps of event 

routing at the level of the EventManager. It is at this 

level that we can confirm the ability of the mechanism 

to handle cases with multiple activities and products 

through the directory of activity-product subscription. 

Even though the solution was validated through a 

case study inspired from the ISPW-6 [17], there are, 

however, threats to its validity. The first point of 

concern is the linearity of software engineering process 

as considered by SynchroState. In fact, the solution 
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should be aware of the complication introduced by 

collaboration among actors with different cultural and 

technical backgrounds. This diversity opens software 

engineering projects to multiple threats originating 

from the misinterpretation of requirements and the 

development of misaligned products and services. In 

this context, we intend to manage this threat by 

integrating process test and validation mechanisms 

inside the core engine of the solution, in order to 

provide a test driven engineering environment allowing 

us to react in time to such problems. 

Another significant threat resides in is the sample 

size of the study case. This study had only four 

activities, while in real world it could be more, and 

especially in the case of large complex projects. This 

parameter raised the possibility that we would not be 

observing real-world software development behaviours 

with their attendant complexities. The case study that 

we used is applicable to laboratory settings but not 

necessarily representative of real-world software 

development processes. To address this threat, we are 

currently attempting full-scale case study in order to 

have deep perception of SynchroState relevance in a 

professional setting in the future. 

5. Related works 

The main contribution of this paper is to provide 

synchronization support to software development 

processes. Our choice of SPEM is based on the fact 

that it provides support for the systematic development 

and management of development processes as well as 

for the adaptation of processes to specific project 

context [24]. SPEM’s ability to separate content from 

structure and its semantic richness made it the basis of 

many modern software engineering approaches, such 

as xSPEM [4], UML4SPM [3], eSPEM [11]. These 

solutions focus on the execution of SPEM based 

models, and do not deal with the synchronization 

problem within software development processes. 

This synchronization problem is generally identified 

in systems engineering processes. In fact, there are 

some interesting works on the subject such as using 

Data-driven Process Structure in order to manage 

dependencies between the elementary processes 

participating to the engineering project. 

In [23], the authors give the example of adding or 

removing a component from the system, this 

information has to be broadcasted to the different sub-

processes in order to be taken into consideration and to 

adapt accordingly. This synchronization is performed 

at runtime which makes the proposed solution practical 

and enhances its added value. In our proposed solution, 

we propose to go even deeper and to apply 

synchronization for each state transition of activities 

and products in the distributed software engineering 

process. 

We should mention that we are considering the 

synchronization problem during the software 

engineering process execution. Yet, there is another 

approach to this problem: Considering flexible 

software architecture able to deal with changes in 

specifications and requirements of its different 

components. There are in fact some significant works 

that focuses on the structure of the software through 

the definition of basic (or even atomic) collaborative 

software components and the identification of a model 

to manage their evolution during runtime. One 

significant work in this context is the definition of 

Living models in the context of change driven software 

engineering [7]. Even if this approach seems focusing 

on the after development phase of software 

engineering, it can have a great impact on our problem, 

through minimizing the complexity of each component 

and considering the final product as the collaboration 

of multiple micro services, then the approach of 

change-driven engineering will be of good use in order 

to minimize the impact of specifications change. Still 

this solution doesn't address the main problem of this 

paper: The ability to manage change during software 

engineering process through synchronizing the states 

of the different activities and products. 

Nevertheless, in a former work, we presented a 

solution to the synchronization problem named Synch 

SPEM [29, 30, 31]. SynchSPEM uses the holonic 

paradigm [5] in order to define products and activities 

states as the different variations of the structural and 

informational properties values. The main objective of 

this approach is to provide a quantifiable way to assess 

state transitions within a product or activity through 

evaluation of structure and content. The mapping 

between activities and products is insured through an 

abstract mechanism named CheckListMatrix that is 

used in order to check compliance of activities to 

products. This entity has been provided as a guideline 

presenting the dependencies between activities and 

products based on their production/consumption 

relationships. SynchSPEM is related to SPEM through 

merging the structural packages and the content 

packages separately. State changes are captured 

through the definition of events; these events are 

analysed through the CheckListMatrix in order to 

decide which products have to be updated. The process 

of propagation of the state transition is part of an 

overall automation mechanism called orchestration. 

This mechanism has been designed and developed 

using Kermeta [8] metamodeling language and its 

aspect oriented programming abilities.  

Our work on SynchSPEM showed us that the key 

point to synchronization is to identify and manage state 

definition and state transition of activities and 

products. In this context, we choose to focus our work 

on this feature and return to a more simple 

representation of the process, we then abandoned the 

holonic representation of the elements structure and 
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content, in order to hold a unified view of the process 

through merging WorkProduct and Activity concepts, 

and provide a simple process definition view 

expressing the relationship between activities and 

products as defined in SPEM. We also enhanced the 

representation of elements states through a full 

integration of the state machine model linked to 

products and activities in order to trace their respective 

transitions. The structure of the orchestration 

mechanism is a part of the whole metamodel and its 

automation is insured through a non-intrusive software 

layer developed through the AspectJ programming 

language. 

Lastly, while the former approach, SynchSPEM, is 

based on the detection of state transitions through 

separating structure from content and evaluating their 

respective properties, SynchroState uses a more 

practical way by defining state machines that monitor 

activities through aspect oriented mechanisms. On 

another hand, the SynchroState fully integrates the 

synchronization mechanism inside the metamodel, 

while in SynchSPEM, it was presented as an outside 

mechanism designed and developed using Kermeta 

language. 

6. Conclusions 

Software engineering is becoming more and more 

aware of the importance of optimizing the various 

processes and activities involved in the product 

implementation. In this context, many works have 

focused on modeling concepts, partial or total 

automation of some processes, the execution control, 

and consistency insurance through synchronization. 

We propose in this paper a solution to the problem 

of synchronization between activities and products 

within a software development process, called 

SynchroState. SynchroState is a metamodel that 

extends SPEM 2.0, while integrating key concepts of 

UML 2.0. Its objective is to ensure that any state 

change of an activity should be routed to its input and 

output products. Similarly, any change in a product 

should be noticed by the activities that depend on it.  

This synchronization effort is highly important as it 

ensures the consistency of the engineering process. We 

implemented the solution using EMF and provided 

automation through integrating aspect oriented 

mechanisms as articulations, to this end we used 

AspectJ language.  

This implementation allowed us to validate the 

solution by running it on a process example. The 

execution of this case study showed the propagation of 

state transitions from activities to products and the 

ability of the solution to keep process consistency 

through updating the process components. 

To the best of our knowledge, there is currently no 

other research work that deals with the synchronization 

problem except for our former work SynchSPEM that 

deals with the issue of capturing activities state 

transitions and propagating changes from activities to 

products in order to avoid deviations during software 

development process. However, SynchroState 

represents a more elegant solution to the 

synchronization problem that integrates structure and 

automation in one whole metamodel. 

Currently, we are working on the integration of 

SynchroState into a software project management tool 

plugged into integrated development environments in 

order to provide a high level process control and 

monitoring. 

We are also working on the interoperability with 

another process engineering modeling solution named 

SysPEM [15, 16] developed in the context of systems 

engineering. SysPEM allows describing process 

concepts and controlling the execution flow. Our 

objective is to find a way to interface SynchroState 

with SysPEM in order to enhance its ability to validate 

products requirements through synchronization. 
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