
The International Arab Journal of Information Technology, Vol. 15, No. 6, November 2018 951

SynchroState: A SPEM-based Solution for

Synchronizing Activities and Products through

State Transitions

Amal Rochd1, Maria Zrikem1, Thierry Millan2, Christian Percebois2, Claude Baron3, and Abderrahmane

Ayadi1

1Laboratory of Modeling and Information Technologies, University of Cadi Ayyad, Morocco
2Institut de Recherche en Informatique de Toulouse, Université de Toulouse, France

3Laboratoire d’Analyse et d’Architecture des Systèmes, Université de Toulouse, France

Abstract: Software engineering research was always focused around the efficiency of software development processes.

Recently, we noticed an increasing interest in model-driven approaches in this context. Models that were once merely

descriptive, are nowadays playing a productive role in defining engineering processes and managing their lifecycles.

However, there is a problem that has not been considered enough; it is about sustaining consistency between products and the

implicated activities during the process lifecycle. This issue, identified in this paper as the synchronization problem, needs to

be resolved in order to guarantee a flawless execution of a software process. In this paper, we present a SPEM-based solution

named SynchroState that highlights the relationship between process activities and products. SynchroState's goal is to ensure

synchronization between activities and products in order that if one of these two entities undergoes a change, the dependents

entities should be notified and evolved to sustain consistency In order to evaluate SynchroState, we have implemented the

solution using the AspectJ language and validated it through a case study inspired from the ISPW-6 software process example.

Results of this study demonstrate the automation of synchronization of product state following a change in the activity state

during the evolution of the process execution.

Keywords: Synchro state, SPEM, metamodeling, process model, synchronization, aspectJ.

Received April 17, 2015; accepted June 9, 2016

1. Introduction

The evolution of economy on an international scale

requires companies and other organizations to adopt

efficient and adaptable logistic support and information

systems. This need was behind the effort of software

engineering industry to identify and define time-to-

market efficient methods and processes allowing the

design and development of high quality software in

respect of defined deadlines and limited budget. The

increasing complexity of these software products has

led the computing community to master the software

development process and to implement tools for high

productivity development.

These factors are transforming software engineering

process into socio-cultural activity requiring the

management of activities distribution over

geographically dispersed teams working

simultaneously on the same project.

Software process modeling was emerged to address

these concerns. The first attempts to model processes

were with informal languages, such as life cycle

models [20]. The advantage of automation appears

clearly with the use of executable language for the

representation of process. Thus, several studies [6, 18,

21, 32] have been conducted in order to design Process

Modeling Languages (PMLs) [34].

One particular problem in this context is that of

maintaining consistency of the different artefacts

during software engineering process. In fact

collaboration can only be efficient if there is a

mechanism to ensure the consistency of the shared

software components and the propagation of the

changes the specifications and requirements undertake.

While advanced software architectures such as Service

Oriented Architecture (SOA) are essentially based on

the separation of concerns, there will always be

transversal and shared software components that create

dependency between the different activities of software

engineering process. We thus need a dedicated

mechanism keeping track of the evolution of all

involved activities and propagating the different

changes in order to update products states and ensure a

real-time synchronization of activities and products

states.

This paper presents our solution to this particular

problem. This solution, named SynchroState extends

the Software Process Engineering Metamodel (SPEM)

[25], and borrows concepts of Unified Modeling

Language (UML) 2.0 [26], to address the problem of

synchronization between activities and products in a

software development process, i.e., the ability to

952 The International Arab Journal of Information Technology, Vol. 15, No. 6, November 2018

propagate changes from one activity to the

activities/products that depend on and vice versa.

SynchroState extends SPEM metamodel, to represent

development processes and their components.

Moreover, it integrates UML state machines

metamodel to represent the state changes of activities

and products. The Observer design pattern, on its side,

was used to capture these state changes and process

them as events.

These three key elements were incorporated in one

whole metamodel to ensure process synchronization.

This paper is organized as follows: the next section

presents a state of the art on the SPEM metamodel and

its implementations. The third section is devoted to

present our proposed solution of synchronization

between activities and products within a software

development process. The solution comes in the form

of a metamodel named SynchroState. In this section,

we describe the general architecture of the metamodel,

as well as its details and semantics. Section 4 is

dedicated to present the implementation and validation

of our solution. The implementation was elaborated

based on an aspect oriented approach, using the

AspectJ language, and validated through a case study

inspired from the 6th International Software Process

Workshop (ISPW-6) software process example [17]. A

related work description is provided in section 5. The

paper is concluded with a summary of the performed

work, and gives different perspectives that we expect

for the rest of our work.

2. State of Art: Software Process Engineering

Metamodel

SPEM [25] is a metamodel proposed by the Object

Management Group (OMG) that describes the software

production processes. Its objective is to provide tools

and concepts to model, document, present, manage and

make development methods concrete. SPEM is based

on UML by extending it in the form of an UML

profile.

SPEM defines a software development process as a

collaboration between roles that perform activities;

these activities consume products as inputs and

produce others as outputs, as it is represented by the

conceptual model in Figure 1. It also gives a

description of the model content it defines. It is

therefore a separation of the structure of the process

and its content.

Figure 1. Conceptual model of software process engineering

metamodel.

SPEM is structured into seven main packages

associated with merge mechanism [25]. In what

follows, we present a summary of the content of each

package of SPEM:

 Core: the core package contains the basic elements

(in the form of UML class) used in all other

packages. The WorkDefinition class constitutes the

breakdown structure of this package and it

generalizes all work activities of SPEM2.0.

 Process structure: this package describes the basics

of design for all models. It defines the elements

used to represent process models in terms of flow of

activities (Activities) with their use of products

(Work Product Uses) and roles (Role Uses).

 Process Behaviour: this package provides a means

of linking an element of SPEM2.0 process with an

external behavioral model such as UML 2.0

Activity Diagram.

 Managed content: this package provides the

concepts for managing textual descriptions either

independently or in combination with the concepts

of process structures. Examples of such concepts are

ContentDescription and Guidance classes.

 Method content: this package provides concepts

that allow the development of a knowledge base

independent of a process or a particular project,

such as Roles, Tasks and WorkProducts.

 Process with methods: this package is used to

define the required elements to integrate processes

designed with the concepts of the ProcessStructure

package, with an instance of Method Content

package.

 Method plugin: this package provides the

metamodel concepts used to design and manage

reusable and configurable methods, process libraries

and repositories.

The OMG proposes two methods for describing the

execution of a SPEM process model:

 The first method is to set the sequencing between

the process activities, and assign documentation to

each activity, in order to develop a definition and a

project planning [27]. This method suffers from the

lack of control over the assignment of roles to

resources, since SPEM does not define any

relationship between roles and resources of a

process. It does not provide a means to monitor the

status of the products after each activity. Therefore,

this approach cannot be considered as a solution of

SPEM executability.

 The second method consists on establishing a link

between the elements of SPEM process model and

an external behavioral model. For example, one can

describe a process with an UML activity diagram,

and then make the link between the process

elements and their equivalents in the chosen model.

Similarly, this approach has several shortcomings.

SynchroState: A SPEM-based Solution for Synchronizing Activities and ... 953

In fact, SPEM gives no description of the method of

connection between its components and the chosen

behavioral model. Furthermore, the behavioral models

are richer in terms of concepts than SPEM 2.0. So, it is

possible that changes made on the behavioral model

can not be transformed to the SPEM process model,

which leads to the problem of traceability of changes.

Because of the gaps in these implementation

methods, many studies have been devoted to the

resolution of these problems, as xSPEM [4] and

UML4SPM [3], but none of them has addressed

directly the issue of synchronization of products and

activities within a software development process.

Thus, our work is to study the impact of the spread

between products and activities states on the execution

of a software development process. In the next section,

we present our proposed solution to the problem of

synchronization through a metamodel named

SynchroState.

3. The Synchronization Solution

3.1. General Architecture

SynchroState metamodel is based on SPEM 2.0, UML

2.0 and an Observer design pattern metamodel [12].

SPEM 2.0 and UML 2.0 respectively provide

support for the description of a process and support for

state machines and events. On the other hand, the

Observer design pattern metamodel provides a

standardized implementation of a solution to define

interdependence of one to many, so that when an

object state changes, all those who depend on it are

notified and automatically updated [14]. The

SynchroState solution offers new concepts for

synchronizing the various artefacts of a process.

Therefore, SynchroState is a compatible extension with

the SPEM 2.0 standard of process representation.

Figure 2 represents the general architecture of our

metamodel.

Figure 2. General architecture of synchro state.

We propose here to present the Observer metamodel

exhaustively described in [12]. From the solution

proposed by Favre [12] including an implementation of

the design pattern through interfaces, we only keep, for

simplicity of speech, the class diagram showing the

communication links between an observer and an

observed subject. The association between

ConcreteSubject and Property, initially proposed, was

replaced by an association between ConcreteSubject

and StateMachine. In our approach, it is essential to

implement a mechanism to orchestrate the evolution of

status changes. The use of a simple link between

ConcreteSubject and an attribute (property) only

allows to keep the name of the current state and not to

exploit the possibilities of UML 2.0 to represent the

state transition diagrams. We thus have opted in this

approach to connect the ConcreteSubject class through

the state role to a StateMachine that provides automatic

support for all the states and transitions of a

ConcreteSubject. This state role may be an instance of

StateMachine of UML 2.0 metamodel or an instance of

a class that inherits from StateMachine. We made the

choice to consider the State role as an instance of

StateMachine according to UML 2.0.

3.2. Detail and Semantics

SynchroState is an extension of SPEM 2.0 that aims to

represent the fact that the activities and products are

synchronized during the process execution. It merges

concepts and elements of SPEM 2.0 and UML 2.0

architecture and organizes its own elements and

entities as shown in Figure 3.

SynchroState architecture is divided into three main

sections:

 Structure: a process consists of a set of activities

(Activity) and products (WorkProductUse) in

relation with each other. SPEM defined the

relationship between these two entities through the

ProcessParameter entity. The structure section of

SynchroState is simply a resumption of the

relationships between activities and products

proposed by SPEM. This section is not polluted by

any external concept to SPEM.

 State: this section describes the states of

Activity/Work Product Use entities and their

transitions. This is achieved with the introduction of

a simplified state machine metamodel as described

in the UML specification. It allows representing a

multi-state object through its transitions. Each

product/activity state machine keeps track its

current status. This section triggers the orchestration

mechanism through the notify method on the

transition that must operate the observation

mechanisms.

 Orchestration: this section is much more

behavioural; its life cycle begins with the invocation

of the Observer by the transitions, the observer then

triggers the spread by contacting the EventManager

which holds a directory of activities and products

couples in the form of SubscriptionTuple instances.

Once a receiver is selected, the message is sent, the

actioner must then proceed to the alteration of the

product state.

954 The International Arab Journal of Information Technology, Vol. 15, No. 6, November 2018

Figure 3. Detailed architecture of synchro state.

In what follows, we give the details of the elements

composing SynchroState:

SynchroState inherits from SPEM 2.0, and more

specifically from WorkProductUse, Activity, and

ProcessParameter classes of the ProcessStructure

package. The structure proposed by SPEM between

activities and products through the ProcessParameter

entity was kept.

For the activities and products, we defined the

ProductStateMachine and ActivityStateMachine

entities that specialize the StateMachine class of UML

2.0. This metaclass is derived from the UML 2.0

metamodel and more specifically from its

BehaviorStateMachines package. It represents the state

machine of the entity to which it is linked. To capture

only the changes of states, this automaton must consist

of simple states and contain a region composed of

simple states. In addition, only transitions of

SynchroTransition type are permitted. The

SynchroTransition class represents a transition that has

as single action the call for a method that inherits from

the notify operation defined for an instance of the

ClassSubject metaclass. This class inherits from the

Transition class derived from the UML 2.0 metamodel

and from the same BehaviorStateMachines package.

Transitions will be automatically captured and

generate the desired event to begin the orchestration

lifecycle.

The StateMachine association specifies the

automaton describing the set of states and transitions

supported by SynchroWorkProduct and

SynchroActivity. It may be an instance of

StateMachine or an instance of a class that inherits

from StateMachine. This role inherits from

ConcreteSubject::state of the Observer metamodel.

For each state machine, we have the list of possible

states (represented by productStates and

activityStates), and transitions between these states

represented by the StateTransition class, as well as the

current state represented by the currentState

association.

An actioner is associated to each Product state

machine. The actioner allows influencing an object on

the basis of the state changes of the object on which it

depends, without interrupting its flow of execution.

This is a non-intrusive way that will change the state of

the product without requesting it or bring it out of its

normal flow of execution [22].

To explain this interaction, we will refer to the

following scenario: a change in the state of an activity

lead to the trigger of the transition (StateTransition), an

instance of Event is thus created with the identifier of

the activity as header and the new status as content.

This instance is observed by the orchestration

mechanism which takes the event, analyses it, selects

the dependent objects (ProductStateMachine) and

forwards the event to their respective actioners. These

ones will take care of forcing transitions to coherent

states with the initial change.

4. Implementation and Validation

The objective of this section is to present the

implementation of SynchroState on a case that will

demonstrate the propagation of the state change of the

activity to different dependent products.

The achievement of the synchronization solution

cannot have a practical industrial value only if we can

simulate its behaviour on a case study. In this context,

we propose a validation that consists of the

development of a computing solution that resumes the

functioning of the orchestration engine and its

validation through a case, in order to monitor the

execution trace. This step will allow us to highlight the

SynchroState: A SPEM-based Solution for Synchronizing Activities and ... 955

real transitions and propagation of synchronization

events throughout the life cycle of the orchestration.

The implementation of the metamodel has been

achieved using Eclipse Modeling Framework (EMF).

EMF [10, 33] is a modeling framework and code

generation facility for specifying metamodels,

managing models instances, and building tools and

other applications based on a structured data model.

EMF is a Java implementation of the Ecore meta

model [2, 9] which is similar to the MOF standard.

We note that, in order to implement SynchroState

metamodel, we represented it in the form of an Ecore

diagram and presented it according to two different

concerns. The first concern is the description of the

software design artefacts through various entities

representing the products, the activities and their links

through parameters classes and their respective state

machines. While the second concern relates to the

activity of orchestration and synchronization and the

different classes that can meet this need by their

functioning during a process instance. In what follows,

we will refer to the first part by the term Structural

section and the second part by Behavioural section.

4.1. Structural and Behavioural Section

The process structure involves the description of the

various components that constitute it and the

relationships between them. The structural part in the

SynchroState model is constituted of:

 Activity classes: Activity and Activity State

Machine.

 Product classes: Work Product Use and Product

State Machine.

 The intermediate class between activities and

products: Process parameter.

 The metamodel classes of state machines:

StateMachine, State and StateTransition.

This structural section allows us to consolidate our idea

of control and orchestration through state changes.

However, it does not allow us to highlight the

orchestration procedure during the execution of a

process instance. This is ensured in the behavioural

section.

Behavioural section is not linked with the structure

of the engineering process. It considers, in an abstract

way, two behaviours:

 The subscription of an object (A) to receive events

from an object (B).

 The propagation of an event from the object (B) to

the object (A).

This section completes the structure by exposing the

various entities responsible for the propagation of the

event.

We distinguish the Observer entity that captures the

state transitions and contacts the EventManager to

select the corresponding receivers, through the

subscription of products to activities, and send the

event to the actioners responsible of altering the state

of the product accordingly.

In what follows, we will explain the implemented

mechanisms to ensure consistency between these two

sections and perform the orchestration.

4.2. Orchestration by Aspects

The implementation should not be done to the

detriment of the integrity of the metamodel, especially

the structural section, and should therefore be included

in a non-intrusive way. Indeed, a hard-integration

mechanism will compromise the abstract and general

aspect and will constrain the process according to a

given selection process.

In this context, we propose the use of the Aspect-

Oriented Programming (AOP) [28] as non-intrusive

means to create connections between the different

components of the metamodel and provide automation

support.

Aspect-oriented programming is a paradigm that

allows the injection of transverse behaviour during the

execution of a software component. By transverse

behaviour, we mean any set of instructions invoked in

different components and layers of software and that

compromise the separation of concerns [13]. We cite

as an example, the different logging instructions that

allow to trace the various functions calls and errors

tracing, without any constraint of separation between

software components and layers. For the

implementation of these aspects, we have chosen to

use AspectJ [1]: an aspect weaver independent of any

framework and non-intrusive in the source code of the

application.

AspectJ is an extension to Java that provides

additional keywords for AOP concepts. AspectJ

defines aspects accompanied by their integration rules

that are expressed in the form of pointcuts. It also

provides a process for weaving aspects with business

services of the application, so that the behaviour of an

aspect is triggered at all points where this aspect is

applicable. AspectJ is among the first aspect-oriented

languages and it holds great potential [1, 19]. This

language has already been tested in a similar context,

which concerns automating the monitoring of process

execution in systems engineering [16].

4.3. Implementation and Validation

The implementation of the orchestration layer proceeds

as follows: for each participating entity in the

synchronization lifecycle, we propose to create an

aspect which is responsible for controlling the

invocation of the relevant class and to perform the

required processing. In general, each aspect proceeds

by the following steps:

956 The International Arab Journal of Information Technology, Vol. 15, No. 6, November 2018

 Reception of the invocation event.

 Interpretation of input data.

 Selection of the receiver entity and communication

of results.

All these activities occur in different aspects, even if

the methods invoked in the metamodel classes

represent only empty shells, aspects behave as joints

for the structure of the process.

To highlight this implementation, we will present

the various implemented aspects and their respective

roles in the order of their invocations:

 Activity: the execution of an activity is our starting

point. Thus, the Activity class is provided with an

empty method called perform () that represents the

work to be performed. The ActivityAspect aspect

captures the invocation of this method and performs

outside of model classes, the necessary actions. At

the end of the execution, this aspect invokes the

state change in the ActivityStateMachine state

machine.

 Activity state machine: the reception of a state

change event (empty method alterState ())

automatically triggers the ActivityStateAspect

aspect which begins by considering the current

state, the nature of the invocation and takes the

decision to choose the next state of the activity.

Then, it invokes the corresponding observer.

 The observer: the observer receives state change

notifications from the activities state machines.

Once notified, the ObserverAspect aspect is

automatically triggered, its role is to create an event

that includes the sender as header and the new state

of the activity as subject and transmit it to the event

manager.

 The event manager: when invoking the manager, its

aspect EventManagerAspect takes control. Its role is

to check the couples of available subscriptions, then

in the basis of the dispatching activity, choose the

receivers among the products actioners (Action) and

communicate the event object to them.

 Actioners: the actioners are invoked through the

empty method triggerAction(). The execution of this

method triggers the ActionAspect aspect that

interprets the received event (state change of an

activity) and takes the decision to change the state

of the product accordingly.

Our case study consists in the example of the

development process described in Figure 4. This

process was inspired and described by the famous

example of software process ISPW-6 [17]. It consists

of four activities: schedule and assign tasks, modify

design, review design and modify code. Each of these

activities takes as input products, and produces others.

Figure 4. Example of a development process.

For each activity, we defined three states: ready, in

progress and achieved, while the products take the

states: unavailable and available. The general logic is

to illustrate that the dependent project must transit

automatically from the unavailable state to the

available state, at the end of the execution of the

activity. This example is intended to underscore the

monitoring of the execution trace and the actual

invocations of different aspects.

From now on, we shall use the term Aspect (with a

capital A) for AspectJ's aspects to avoid any

misunderstanding.

In order to examine the execution process, we shall

present the content of each Aspect through a graphic

flow chart representing its algorithm. We shall

represent the behaviour of the aspect without showing

the corresponding class for the sake of clarity.

 Synchro process aspect: the execution life cycle

starts with the SynchroProcessAspect. This aspect is

in charge of checking which activities are ready to

trigger and proceed with the execution. We can

consider it as an entry point to the execution. Its

behaviour is described in the flowchart of Figure 5.

Figure 5. Flow execution of synchro state process aspect.

The algorithm starts with initializing the activities

list with the content of the model and preparing the

stopping conditions (the number of finished activities

equals the number of available activities). The

algorithm keeps checking for available activities as

long as this condition is not yet met. Each time an

SynchroState: A SPEM-based Solution for Synchronizing Activities and ... 957

activity is executed, it results with the change of its

output products to their final state, and, by doing so,

they become available to other activities to be

triggered. The hidden risk is that the user did not check

for deadlocks in his model, i.e., a situation where input

products keep unavailable whatever activities are

executed.

For each activity, we check the availability of all its

input products. In case these products are available, we

proceed to trigger the activity, and then we mark it as

done, as a mean to update the stopping condition.

We should stress at this level that triggering the

activity is done by summoning its method trigger and

not directly its aspect. The aspect will be automatically

summoned through the execution of the target method.

 Activity aspect, Activity state aspect and

TransitionAspect: once an activity triggered, it

executes its inner operations and then summons its

state machine in order to alter its state. The state

machine (through the algorithm of its Aspect)

checks for the next state then triggers the transition.

TransitionAspect does nothing but encapsulates the

details of the transition, i.e., the concerned activity

and the state, and summons the observer to start the

synchronization process.

Figure 6 shows the details of these steps through a

flow chart.

Figure 6. Lifecycle of an activity state change.

 Orchestration lifecycle: the orchestration process

starts at this point. The first thing the observer does

is summon the event manager to check for every

ProductAction subscribed to the encapsulated

activity. In fact, the EventManager has a set of

TupleSubscription that contains mapping between

output products and their producing activities.

As soon as the EventManager selects the concerned

Actions, it sends the encapsulated message (Activity

and new state) to each action in order to trigger

Product state change.

Figure 7 shows the orchestration lifecycle as a flow

chart.

Figure 7. Orchestration life cycle.

 Product state aspect: at this point, we are at the end

of the activity execution lifecycle. The

ProductStateAspect receives the directives from the

ActionAspect and proceeds with changing the

product's state.

If the product is switched to its final state and becomes

available, it will update the process by making

dependent activities ready.

We established posts at each aspect to trace

execution. We propose Figure 8 the execution trace in

the console.

Figure 8. The execution trace.

The execution trace shows the routing in accordance

with the life cycle of the orchestration stated earlier in

this paper. Thus, we can notice the activities state

change that led to the trigger of the event at the level of

the observer. We also note the three steps of event

routing at the level of the EventManager. It is at this

level that we can confirm the ability of the mechanism

to handle cases with multiple activities and products

through the directory of activity-product subscription.

Even though the solution was validated through a

case study inspired from the ISPW-6 [17], there are,

however, threats to its validity. The first point of

concern is the linearity of software engineering process

as considered by SynchroState. In fact, the solution

958 The International Arab Journal of Information Technology, Vol. 15, No. 6, November 2018

should be aware of the complication introduced by

collaboration among actors with different cultural and

technical backgrounds. This diversity opens software

engineering projects to multiple threats originating

from the misinterpretation of requirements and the

development of misaligned products and services. In

this context, we intend to manage this threat by

integrating process test and validation mechanisms

inside the core engine of the solution, in order to

provide a test driven engineering environment allowing

us to react in time to such problems.

Another significant threat resides in is the sample

size of the study case. This study had only four

activities, while in real world it could be more, and

especially in the case of large complex projects. This

parameter raised the possibility that we would not be

observing real-world software development behaviours

with their attendant complexities. The case study that

we used is applicable to laboratory settings but not

necessarily representative of real-world software

development processes. To address this threat, we are

currently attempting full-scale case study in order to

have deep perception of SynchroState relevance in a

professional setting in the future.

5. Related works

The main contribution of this paper is to provide

synchronization support to software development

processes. Our choice of SPEM is based on the fact

that it provides support for the systematic development

and management of development processes as well as

for the adaptation of processes to specific project

context [24]. SPEM’s ability to separate content from

structure and its semantic richness made it the basis of

many modern software engineering approaches, such

as xSPEM [4], UML4SPM [3], eSPEM [11]. These

solutions focus on the execution of SPEM based

models, and do not deal with the synchronization

problem within software development processes.

This synchronization problem is generally identified

in systems engineering processes. In fact, there are

some interesting works on the subject such as using

Data-driven Process Structure in order to manage

dependencies between the elementary processes

participating to the engineering project.

In [23], the authors give the example of adding or

removing a component from the system, this

information has to be broadcasted to the different sub-

processes in order to be taken into consideration and to

adapt accordingly. This synchronization is performed

at runtime which makes the proposed solution practical

and enhances its added value. In our proposed solution,

we propose to go even deeper and to apply

synchronization for each state transition of activities

and products in the distributed software engineering

process.

We should mention that we are considering the

synchronization problem during the software

engineering process execution. Yet, there is another

approach to this problem: Considering flexible

software architecture able to deal with changes in

specifications and requirements of its different

components. There are in fact some significant works

that focuses on the structure of the software through

the definition of basic (or even atomic) collaborative

software components and the identification of a model

to manage their evolution during runtime. One

significant work in this context is the definition of

Living models in the context of change driven software

engineering [7]. Even if this approach seems focusing

on the after development phase of software

engineering, it can have a great impact on our problem,

through minimizing the complexity of each component

and considering the final product as the collaboration

of multiple micro services, then the approach of

change-driven engineering will be of good use in order

to minimize the impact of specifications change. Still

this solution doesn't address the main problem of this

paper: The ability to manage change during software

engineering process through synchronizing the states

of the different activities and products.

Nevertheless, in a former work, we presented a

solution to the synchronization problem named Synch

SPEM [29, 30, 31]. SynchSPEM uses the holonic

paradigm [5] in order to define products and activities

states as the different variations of the structural and

informational properties values. The main objective of

this approach is to provide a quantifiable way to assess

state transitions within a product or activity through

evaluation of structure and content. The mapping

between activities and products is insured through an

abstract mechanism named CheckListMatrix that is

used in order to check compliance of activities to

products. This entity has been provided as a guideline

presenting the dependencies between activities and

products based on their production/consumption

relationships. SynchSPEM is related to SPEM through

merging the structural packages and the content

packages separately. State changes are captured

through the definition of events; these events are

analysed through the CheckListMatrix in order to

decide which products have to be updated. The process

of propagation of the state transition is part of an

overall automation mechanism called orchestration.

This mechanism has been designed and developed

using Kermeta [8] metamodeling language and its

aspect oriented programming abilities.

Our work on SynchSPEM showed us that the key

point to synchronization is to identify and manage state

definition and state transition of activities and

products. In this context, we choose to focus our work

on this feature and return to a more simple

representation of the process, we then abandoned the

holonic representation of the elements structure and

SynchroState: A SPEM-based Solution for Synchronizing Activities and ... 959

content, in order to hold a unified view of the process

through merging WorkProduct and Activity concepts,

and provide a simple process definition view

expressing the relationship between activities and

products as defined in SPEM. We also enhanced the

representation of elements states through a full

integration of the state machine model linked to

products and activities in order to trace their respective

transitions. The structure of the orchestration

mechanism is a part of the whole metamodel and its

automation is insured through a non-intrusive software

layer developed through the AspectJ programming

language.

Lastly, while the former approach, SynchSPEM, is

based on the detection of state transitions through

separating structure from content and evaluating their

respective properties, SynchroState uses a more

practical way by defining state machines that monitor

activities through aspect oriented mechanisms. On

another hand, the SynchroState fully integrates the

synchronization mechanism inside the metamodel,

while in SynchSPEM, it was presented as an outside

mechanism designed and developed using Kermeta

language.

6. Conclusions

Software engineering is becoming more and more

aware of the importance of optimizing the various

processes and activities involved in the product

implementation. In this context, many works have

focused on modeling concepts, partial or total

automation of some processes, the execution control,

and consistency insurance through synchronization.

We propose in this paper a solution to the problem

of synchronization between activities and products

within a software development process, called

SynchroState. SynchroState is a metamodel that

extends SPEM 2.0, while integrating key concepts of

UML 2.0. Its objective is to ensure that any state

change of an activity should be routed to its input and

output products. Similarly, any change in a product

should be noticed by the activities that depend on it.

This synchronization effort is highly important as it

ensures the consistency of the engineering process. We

implemented the solution using EMF and provided

automation through integrating aspect oriented

mechanisms as articulations, to this end we used

AspectJ language.

This implementation allowed us to validate the

solution by running it on a process example. The

execution of this case study showed the propagation of

state transitions from activities to products and the

ability of the solution to keep process consistency

through updating the process components.

To the best of our knowledge, there is currently no

other research work that deals with the synchronization

problem except for our former work SynchSPEM that

deals with the issue of capturing activities state

transitions and propagating changes from activities to

products in order to avoid deviations during software

development process. However, SynchroState

represents a more elegant solution to the

synchronization problem that integrates structure and

automation in one whole metamodel.

Currently, we are working on the integration of

SynchroState into a software project management tool

plugged into integrated development environments in

order to provide a high level process control and

monitoring.

We are also working on the interoperability with

another process engineering modeling solution named

SysPEM [15, 16] developed in the context of systems

engineering. SysPEM allows describing process

concepts and controlling the execution flow. Our

objective is to find a way to interface SynchroState

with SysPEM in order to enhance its ability to validate

products requirements through synchronization.

References

[1] Apel S. and Batory D., “How AspectJ is

Used: An Analysis of Eleven AspectJ Programs,”

Journal of Object Technology, vol. 9, no. 1, pp.

117-142, 2008.

[2] Bánfai B., Ulrich B., Török Z., Natarajan R., and

Ireland T., “Implementing an HL7 Version 3

Modeling Tool from an Ecore Model,” in

Proceedings of Medical Informatics in a United

and Healthy Europe, Washington, pp. 157-161,

2009.

[3] Bendraou R., Gervais M., and Blanc X.,

“UML4SPM: An Executable Software Process

Modeling Language Providing High-Level

Abstractions,” in Proceedings of 10th IEEE

International Enterprise Distributed Object

Computing Conference, Hong Kong, pp. 297-

306, 2006.

[4] Bendraou R., Combemale B., Crégut X., and

Gervais M., “Definition of an Executable SPEM

2.0,” in Proceedings of 14th Asia-Pacific

Software Engineering Conference, Aichi, pp.

390-397, 2007.

[5] Bendriss S., Benabdelhafid A., Boukachour J.,

and Boudebous D., “Métamodèle de Référence

Holonique Pour La Gestion De La Traçabilité Du

Produit Dans La Chaine Logistique,” in

Proceedings of 5ème Colloque International

Conception et Production Intégrées, 2007.

[6] Borgonon L., Barcelona M., García-García J.,

Alba M., and Escalona M., “Software Process

Modeling Languages: A Systematic Literature

Review,” Information and Software Technology,

vol. 56, no. 2, pp. 103-116, 2014.

[7] Breu R., Agreiter B., Farwick M., Felderer M.,

Hafner M., and Innerhofer-Oberperfler F.,

960 The International Arab Journal of Information Technology, Vol. 15, No. 6, November 2018

“Living Models-Ten Principles for Change-

Driven Software Engineering,” International

Journal Software and Informatics, vol. 5, no. 1-2,

pp. 267-290, 2011.

[8] Drey Z., Faucher C., Fleurey F., Mahé V. and

Vojtisek D., Kermeta Language Reference

Manual, Manuscript available online

http://www.kermeta.org, Last Visited, 2015.

[9] Eclipse.org, EMF Java doc.

http://download.eclipse.org/modeling/emf/emf/ja

vadoc/2.7.0/org/eclipse/emf/ecore/package-

summary.html, Last Visited, 2015.

[10] Eclipse Modeling Framework Project (EMF),

Eclipse Foundation [Online], Available:

http://www.eclipse.org/modeling/emf, Last

Visited, 2015.

[11] Ellner R., Al-Hilank S., Drexler J., Jung M., Kips

D., and Philippsen M., “eSPEM-A SPEM

Extension for Enactable Behavior Modeling,” in

Proceedings of the 6th European conference on

Modelling Foundations and Applications, Paris,

pp. 116-131, 2010.

[12] Favre L., Model Driven Architecture for

Reverse Engineering Technologies: Strategic

Directions and System Evolution, Premier

Reference Source, 2010.

[13] Furong L., Wei S., and Zhigang J., “Modeling

Aspect-Oriented Extension Software

Architecture,” in Proceedings of International

Symposium on Computer Science and

Computational Technology, Shanghai, 2008.

[14] Gamma E., Design Patterns: Elements of

Reusable Object-oriented Software, Addison-

Wesley, 1995.

[15] Jakjoud A., Zrikem M., Baron C., and Ayadi A.,

“SysPEM: A SysML and SPEM based Process

Modelling Language for Systems Engineering,”

International Journal of Services Operations and

Informatics, vol. 7, no. 4, pp. 330-348, 2013.

[16] Jakjoud A., Zrikem M., Baron C., and Ayadi A,

“SysPEM: Toward a Consistent and Unified

System Process Engineering Metamodel,”

Journal of Intelligent Manufacturing, vol. 25, no.

2, pp. 1-18, 2014.

[17] Kellner M., Feiler P., Finkelstein A., Katayama

T., Osterweil L., Penedo M., and Rombach D.,

“ISPW-6 Software Process Example,” in

Proceedings of the 1st International Conference

on the Software Process, CA, pp. 176, 1991.

[18] Kuhrmann M., Méndez Fernández D., and

Steenweg R., “Systematic Software Process

Development: Where Do We Stand Today?,” in

Proceedings of International Conference on

Software and System Process, San Francisco, pp.

166-170, 2013.

[19] Laddad R., Aspectj in Action: Enterprise AOP

with Spring Applications, Manning Publications

Company, 2009.

[20] Madachy R., Software Process Dynamics, John

Wiley and Sons, 2008.

[21] Mili H., Tremblay G., Jaoude G., Lefebvre É.,

Elabed L., and Boussaidi G., “Business Process

Modeling Languages: Sorting Through the

Alphabet Soup,” ACM Computing Surveys, vol.

43, no. 1, 2010.

[22] Mishra T., Garg D., and Gore M., “A

Publish/Subscribe Communication Infrastructure

for VANET Applications,” in Proceedings of

International Conference on Advanced

Information Networking and Applications,

Singapore, pp. 442-446, 2011.

[23] Müller D., Reichert M., and Herbst J., “A new

Paradigm for the Enactment and Dynamic

Adaptation of Data-driven Process Structures,” in

Proceedings of Advanced Information Systems

Engineering, Montpellier, pp. 48-63, 2008.

[24] Münch J., Armbrust O., Kowalczyk M., and Sotó

M., Software Process Definition and

Management, Springer Science and Business

Media, 2012.

[25] Niknafs A. and Asadi M., “Towards a Process

Modeling Language for Method Engineering

Support,” in Proceedings of Congress Computer

Science and Information Engineering, Los

Angeles, pp. 674-681, 2009.

[26] OMG Unified Modeling Language TM (OMG

UML), Superstructure -Version 2.2 with Change

bars - OMG Document Number: formal/2009-02-

03-Standard Document URL:

http://www.omg.org/spec/UML/2.2/Superstructe,

Last Visited, 2009.

[27] Object Management Group, Inc, Software

Process Engineering Metamodel (SPEM) 2.0,

Specification, 2008.

[28] Rashid A., Cottenier T., Greenwood P.,

Chitchyan R., Meunier R., Coelho R., Südholt

M., and Joosen W., “Aspect-oriented Software

Development in Practice: Tales from Aosd-

Europe,” Computer, vol. 43, no. 2, pp. 19-26,

2010.

[29] Rochd A., Zrikem M., Ayadi A., Percebois C.,

Millan T., and Baron C., “SynchSPEM:

Implementing and Validating SynchSPEM: A

Solution for Synchronizing Activities and

Products within a Software Engineering

Process,” in Proceedings of International

Conference on Multimedia Computing and

Systems, Marrakech, pp. 1071-1076, 2014.

[30] Rochd A., Zrikem M., Ayadi A., Millan T.,

Percebois C., and Baron C., “SynchSPEM: A

Synchronization Metamodel between Activities

and Products within a SPEM-based Software

Development Process,” in Proceedings of

International Conference on Computer

Applications and Industrial Electronics, Penang,

pp. 471-476, 2011.

SynchroState: A SPEM-based Solution for Synchronizing Activities and ... 961

[31] Rochd A., Zrikem M., Ayadi A., Percebois C.,

Millan T., and Baron C., “Towards a

Synchronization Model between Activities and

Products within a Software Development

Process,” in Proceedings of International

Conference on Multimedia Computing and

Systems, Marrakech, pp. 477-482, 2014.

[32] Steenweg R., Kuhrmann M., and Méndez

Fernández D., “Software Engineering Process

Metamodels,” Technical Report, TUM, 2012.

[33] Steinberg D., Budinsky F., and Paternostro M.,

EMF: Eclipse Modeling Framework, Pearson

Education, 2009.

[34] Zamli K., “Process Modeling Languages: a

Literature Review,” Malaysian Journal of

Computer Science, vol. 14, no. 2, pp. 26-37,

2001.

Amal Rochd is a Ph.D. candidate in

the field of Software engineering.

She started her career as a software

engineer, by participating in the

creation and implementation of web,

e-gov and mobile projects in

different technologies such as J2EE

and .Net while maintaining research activities in the

fields of model driven engineering and software

process engineering. Later, she was certified as a

technico-functional consultant on Openbravo ERP, and

worked on ERP projects on behalf of different

customers. In addition of model driven engineering,

Amal's research interests lie in data sciences and

machine learning paradigms.

Maria Zrikem is research professor

in Computer Science at the National

School of Applied Sciences (ENSA)

of the CADI AYYAD University of

Marrakech (Morocco). She teaches

combinatorial optimization, exact

and approximate methods

(metaheuristics) of resolution, advanced algorithms

(complexity analysis, advanced data structures,

algorithms of the graph) and real-time systems. His

current researchs are around the metaheuristics, the

engineering systems and the study of power in the

supply chains. She is author and (co-) of many

international articles.

Thierry Millan is Associate

Professor of computer science at the

University of Toulouse since 2000.

He was always interested in software

engineering and databases. He

worked on OCL interpreters,

modelling, metamodeling dynamic

typed language, persistence and database systems

(relational and NoSQL). Today his main research tries

to combine NoSQL database and MDE repositories to

provide an efficient solution for saving and handling

metamodels and models.

Christian Percebois is professor of

computer science at the University

of Toulouse since 1992. He was

always interested in software

engineering. He worked on Lisp and

Prolog interpreters, garbage

collecting for symbolic

computations, asynchronous backtrackable

communications in parallel logic languages, abstract

machine construction through operational semantics

refinements, typing in object-oriented programming

and multiset rewriting techniques in order to

coordinate concurrent objects. Today his main research

tries to combine formal methods and software

engineering, in particular for graph rewriting systems.

Claude Baron is full professor in

computer sciences at the National

Institute of Applied Sciences (INSA)

of the University of Toulouse

(France). She teaches systems

engineering, system design and

modelling, and system reliability for

real time and critical embedded software systems in

master programs. She also is in charge of International

Cooperation at the master level for INSA Toulouse.

Her current research is focusing on systems

engineering, collaborative engineering and project

management in engineering projects. She develops her

research activities in the LAAS-CNRS laboratory in

Toulouse. She is the author of many international

articles, (co)authored several books and received

several awards for her results.

Abderrahman Ayadi is research

professor in theoretical and

simulation physics at the National

School of Applied Sciences (ENSA)

of the CADI AYYAD University of

Marrakech (Morocco). He teaches

Physics, programming and

Networks. He creates and develops research activities

in Laboratory of Modelling and Information

Technologies, University of Cadi Ayyad, Morocco.

His current researches are around the engineering

systems, and he is author and (co-) of many

international articles.

