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Abstract
In data-based diagnostic applications, large
amounts of data are often available but the data re-
mains unlabelled because labelling would require
too much time and imply prohibitive costs. The
different situations, e.g. normal or faulty, must
hence be learned from the data.
Clustering methods, also qualified as unsuper-
vised classification methods, can then be used to
create groups of samples according to some sim-
ilarity criterion. The different groups can sup-
posedly be associated to different situations. Nu-
merous algorithms have been developed in recent
years for clustering numeric data but these meth-
ods are not applicable to categorical data. How-
ever, in many application domains, categorical
features are key to properly describe the differ-
ent situations. This paper presents DyClee-C, an
extension of the numeric feature based DyClee al-
gorithm to categorical data. DyClee-C is applied
to two data sets: a soybean data set to diagnose the
disease soybean plants and a breast cancer data set
to assess the current diagnosis in terms of recur-
rence events and prognose possible relapse.

1 Introduction
In the digital age, the amount of data that is recorded by
organizations and companies is enormous. If this data is
to have added value, it must be possible to extract relevant
information automatically. This is why data mining meth-
ods appear to be crucial. Among them, clustering methods
have an essential role to play. Indeed, data often remains
unlabelled because labelling would require too much time
and imply prohibitive costs. In diagnostic applications, the
different situations, e.g. normal or faulty, must hence be
learned from the data. Clustering methods, also qualified
as unsupervised classification methods, can then be used to
create groups of samples according to some similarity crite-
rion. The different groups can supposedly be associated to
different situations.

In the field of clustering, many unsupervised learning al-
gorithms exist. Among the most well-known, we find K-
Means [1], [2], DBSCAN [3] and hierarchical ascending
classification (HAC) [4]. These algorithms use a numeric
distance criterion such as the classical Euclidean distance or
the Manhattan distance for high dimensional data sets to de-
termine sample similarity and closest clusters. For this rea-

son, most algorithms are not applicable to categorical data,
that is nominal or ordinal qualitative data. However, cat-
egorical features are key to properly describe the different
situations in many application domains.

As a matter of fact, the metrics quoted above do not make
possible to calculate a distance between two samples de-
scribed by categorical features. Some algorithms have been
developed to overcome this problem, such as K-modes [5],
ROCK [6] or SQUEEZER [7]. All these algorithms use
their own notion of similarity to create clusters.

In this paper, an extension of the DyClee numeric cluster-
ing algorithm is proposed [8], [9], [10]. The method, named
DyClee-C, applies to categorical data. It must be consid-
ered as a building block of the mixed numeric/categorical
DyClee version that is under construction. After the presen-
tation of DyClee-C, DyClee-C is applied to two data sets:
a soybean data set to diagnose the disease soybean plants
and a breast cancer data set to assess the current diagnosis
in terms of recurrence events and prognose possible relapse.

The paper is organized as follows. Section 2 presents the
basic principles and the different steps of the DyClee algo-
rithm. The categorical extension DyClee-C is introduced in
section 3. The tests on the soybean and breast cancer data
sets are presented in section 4. Finally, section 5 provides
conclusions and perspectives of this work 1.

2 DyClee algorithm
The Dynamic Clustering algorithm for tracking Evolving
Environments (DyClee) is an unsupervised learning
method. DyClee implements a distance and density based
algorithm that features several properties like handling non
convex, multi-density clustering with outlier rejection, and
it achieves full dynamicity. All these properties are not gen-
erally found together in the same algorithm and DyClee
hence pushes forward the state of the art in this respect.
The first step qualified as distance-based step operates at
the rate of the data stream and creates micro-clusters putting
together data samples that are close in the sense of the L1-
norm. Micro-clusters are stored in the form of summarized
representations including statistical and temporal informa-
tion. The second step qualified as density-based step uses
a density-based approach applied to the micro-clusters to
create the final clusters. A cluster is defined as a set of
connected micro-clusters where every inside micro-cluster

1This work is part of the CIFRE PhD project no2017/0047 in
collaboration with the company ACTIA. It is also related to the
French Occitanie Region project Evolearn.



presents high density and every boundary micro-cluster ex-
hibits either medium or high density. Figure 1 illustrates
how the DyClee algorithm works.

Figure 1: Overview of DyClee

DyClee only handles numeric data sets making use of
the KD-Tree algorithm for grouping the micro-cluster at
the begining of the density-based step. However, the KD-
tree does not process categorical data. A KD-Tree is a
space-partitioning data structure for organizing points in
a k-dimensional space [11]. KD-Trees are a useful data
structure for several applications, such as nearest neighbor
search. The work presented in this paper aims to propose
a dynamic clustering approach able to manage categorical
data and capture large data dimensions. For this purpose, an
alternative to the KD-Tree is proposed and integrated with
the DyClee method, thus leading to DyClee-C.

3 Categorical extension DyClee-C
The extension to categorical data relies mainly on the re-
moval of micro-clusters and on an alternative solution to
KD-Tree for finding neighbors. Indeed, in DyClee, the hy-
percubes (i.e the micro-clusters) make it possible to repre-
sent a similar population. Centers of micro-clusters (µC)
can be calculated by averaging, for each attribute, all the
samples present in the µC. In the case of categorical
data, we decided to experiment an algorithm that does not
make use of the micro-cluster concept. In consequence, the
distance-based step of DyClee, during which the samples
are assigned to the µCs, is removed and the density-based
step directly deals with the samples. In DyClee, clusters are
formed by searching in each group found by the KD-Tree,
sub-regions of dense and semi-dense micro-clusters. In the
DyClee-C extension, they are formed from the results of
the Locality Sensitive Hashing (LSH) [12] algorithm, [13],
[14]. This method is used in several applications such as
clustering, searching for nearest neighbors in large dimen-
sions and the detection of similar images.

The following sections detail the principles of the LSH
algorithm, how the clusters are formed and they present sev-
eral parameters of the method allowing to refine the cluster-
ing results.

3.1 Locality Sensitive Hashing algorithm
The LSH algorithm is an appropriate alternative to the KD-
Tree since, on the one hand, this algorithm is able to pro-
cess numerical and categorical data, on the other hand this
algorithm is a solution to the problem of the curse of di-
mensionality [15], [16], [17]. LSH makes it possible to re-
duce the dimensionality of large data sets. LSH refers to
a family of hash functions that associate samples in buck-
ets: similar samples (in the sense of a matching measure of
similarity) are assigned to the same bucket while dissimilar
samples are assigned to different bucket. Figure 2 illustrates
this method: classic hash functions assign each sample to a
different bucket while the hash functions belonging to the

family of hash functions of the LSH assign close samples to
the same bucket.

Figure 2: Assignment of samples with hash functions with
the LSH

The intuition behind this family of hash functions is that
the probability that two samples share the same bucket is
related to the distance that separates these two samples. The
greater the distance, the lower the probability that the two
samples share the same bucket [12]. Definition 3.1 gives
the conditions for two samples to share the same bucket.

Definition 3.1. A family of hash functions is called
(d1, d2, p1, p2)− sensitive for all x and y ∈ S, where S is
a set of samples if the two following conditions are fulfilled:

• d(x,y) ≤ d1⇒ Prh∈H[h(x) = h(y)] ≥ p1
• d(x,y) ≥ d2⇒ Prh∈H[h(x) = h(y)] ≤ p2

where d(., .) is the distance between two samples with
values between 0 and 1, h(.) is the result of the hash
function h applied to a sample. p1 and p2 are probability
thresholds for two samples to share the same bucket, with
values between 0 and 1.
To find sample’s neighbors, all samples that share the same
basket as some sample at least once on the t hash tables are
considered neighbors. This technique is used to find groups
in DyClee-C. Figure 3 illustrates the search for nearest
neighbors for a sample. The neighbors of the sample q
(noted q for query point) are all samples that share the same
bucket as the q point at least once. Here, the neighbors of q
are the red and yellow dots.

Figure 3: Searching neighbors with the LSH algorithm

3.2 Identification of clusters with DyClee-C
In DyClee, clusters are created from groups of micro-
clusters found by the KD-Tree. Let M = {µC1, ..., µCz ,



..., µCk }, the set of micro-clusters found with µCz the
z-th micro-cluster and k the number of micro-clusters. D =
{D1, ..., Dz , ...,Dk } is the set of densities corresponding to
micro-clusters withDz the density of the z-th micro-cluster.
G = {G1, ..., Gz , ..., Gl} is the set of micro-cluster groups
detected by the KD-Tree, Gz is the z-th micro-cluster group
and l is the number of micro-cluster groups. Note that the
number of micro-clusters k is generally much bigger than
the number of groups of micro-clusters l. For each group,
the densest micro-cluster subregions are searched. A cluster
is created if a micro-cluster is dense and if its neighbors are
dense or semi-dense inside a group. If a micro-cluster is
outlier, all the samples in this micro-cluster are considered
noise.

DyClee offers two approaches to find clusters: the global
approach and the local approach.

In the global approach, a micro-cluster µCz is said
to be dense if Dz is greater than or equal to the two
global density thresholds which are the median and average
density of all micro-clusters D. A micro-cluster µCz is
semi-dense if Dz is greater than or equal to one of the two
global density thresholds. Finally, a micro-cluster µCz

is said to be outlier if Dz is less than or equal to the two
global density thresholds. These conditions are represented
by the inequalities (1), (2), (3), where median(D1, ..., Dk)
and average(D1, ..., Dk) correspond respectively to the
median and average density of micro-clusters in M .

µCzdense⇔ Dz ≥ median(D1, ..., Dk)

∧Dz ≥ average(D1, ..., Dk)
(1)

µCzsemi− dense⇔ Dz ≥ median(D1, ..., Dk)

∨Dz ≥ average(D1, ..., Dk)
(2)

µCzoutlier ⇔ Dz < median(D1, ..., Dk)

∧Dz < average(D1, ..., Dk)
(3)

In the case of DyClee-C, as explained previously, the con-
cept of micro-cluster no longer exists. The notion of density
of a micro-cluster Dz is replaced by the number of neigh-
bors of each categorial sample. The neighbor of a sample
is spotted by a connection. Let O = {O1, ..., Oz , ..., On },
the set of samples with Oz , the z-th sample of O and n the
number of samples. C = {CO1, ..., COz , ..., COn } is the
set of connections of all samples with COz , the number of
connections of Oz . CG = {CG1, ..., CGz , ..., CGl } is the set
of samples connections for all groups of samples found by
the LSH algorithm, with CGz the number of connections of
samples in the group z and l the number of groups of cate-
gorical samples found.
As part of the categorical global approach, a sample Oz is
dense if COz is greater than or equal to the global density
thresholds which are then the median and average of the
number of connections of each sample. Oz is semi-dense
if COz is greater than or equal to the global density thresh-
olds. Finally, Oz is outlier if COz is less than the global
density thresholds. These conditions are represented by the
inequalities (4), (5), (6), where median(CO1, ..., COk) and
average(CO1, ..., COk) correspond respectively to the me-
dian and mean of the set of connections of C.

Ozdense⇔ COz ≥ median(CO1, ..., COk)

∧COz ≥ average(CO1, ..., COk)
(4)

Ozsemi− dense⇔ COz ≥ median(CO1, ..., COk)

∨COz ≥ average(CO1, ..., COk)
(5)

Ozoutlier ⇔ COz < median(CO1, ..., COk)

∧COz < average(CO1, ..., COk)
(6)

Algorithm 1 implements the creation of clusters with
the global approach of DyClee-C. From line 1 to
3, the density thresholds median(CO1, ..., COk) and
average(CO1, ..., COk) are calculated from the set of
connections of all the samples of C. When a dense sample
is detected, his neighbors are searched for and analyzed. If
these are dense neighbors of neighbors are sought. If the
sample is semi-dense, the sample is added to the cluster but
his neighbors are not sought. This approach allows for a
cluster with a dense center and semi-dense cluster edges. A
cluster is created when no new neighbor is detected. The
operation continues with a new sample. Algorithm stops
when all the samples have been analyzed (lines 4 to 24).

Algorithm 1 DyClee-C global approach

Require: Set of samples O, set of connexions of samples
C

1: Oz →Dense such that COz ≥median(CO1, ..., COk)
∧ COz ≥ average(CO1, ..., COk)

2: Oz → Semi − dense such that COz

≥ median(CO1, ..., COk) ∨ COz ≥
average(CO1, ..., COk)

3: Clusters = []
4: while O not empty do
5: toAnalyze = []
6: cluster = []
7: toAnalyze← O.pop()
8: while toAnalyze not empty do
9: for i ∈ toAnalyze do

10: if i→ Dense then
11: Neighbors← LSH.query(i)
12: for neighbor ∈ Neighbors do
13: if (neighbor is Dense ∧ neighbor /∈

cluster) then
14: cluster.add(neighbor)
15: toAnalyze.add(neighbor)
16: else if (neighbor is Semi − dense ∧

neighbor /∈ cluster) then
17: cluster.add(neighbor)
18: end if
19: end for
20: end if
21: end for
22: end while
23: Clusters.add(cluster)
24: O← samples that are not in Clusters
25: end while

To illustrate the global approach, two groups found
by the LSH , are shown in Figure 4. The first cat-
egorical group is made up of eight samples G1 =



{1, 2, 3, 4, 5, 6, 7, 8} and the second is composed of
six samples G2 = {9, 10, 11, 12, 13, 14}. The set C =
{5, 3, 1, 3, 2, 1, 2, 1, 2, 5, 2, 3, 3, 1} corresponds to the
connections of all samples. The overall density thresholds,
i.e. the median and the mean of the connections present in
C, are respectively equal to median(CO1, ..., COk) = 2 and
average(CO1, ..., COk) = 2.43. A cluster is composed of
dense samples in the center and semi-dense samples at the
cluster boundaries.

Figure 4: Example of groups of categorical samples de-
tected by the LSH algorithm

For the group CG1, the dense samples are
Dense_CG1 = {1, 2, 4} and the semi-dense samples
are Semi − dense_CG1 = {5, 7}. Samples 1, 2, and 4
are dense because their number of CO1, CO2, and CO4

connections are greater than or equal to the overall density
thresholds. Samples 5 and 7 are semi-dense because their
number of connections CO5 and CO7 is greater than or
equal to one of the global density thresholds. Samples 3,
6, and 8 are outliers because their number of CO3, CO6,
and CO8 connections are less than the overall density
thresholds. The same reasoning is applied for the second
group. The resulting clusters are Cl1 = {1, 2, 4, 5, 7} and
Cl2 = {9, 10, 11, 12, 13}. The clusters found by applying
the global approach are shown in Figure 5.

Figure 5: Clusters found by applying the global approach

In the local approach of DyClee, the density of a Dz

micro-cluster is no longer compared to the median and
mean density of all µCs micro-clusters, but to the median
density and average of the micro-clusters of the group in
which µCz belongs. Let DG = {DG1, ..., DGz , ..., DGl },
all the densities of the groups found by the KD- Tree, DGz ,
the densities of the micro-clusters present in the group Gz

and l the number of groups of micro-clusters. µCz is dense
if Dz is greater than or equal to the local density thresholds,
i.e the median and mean density of the micro-clusters

of the group DGz in which µCz is included. µCz is
semi-dense if Dz is greater than or equal to one of the local
density thresholds. Finally, µCz is outlier if Dz is strictly
less than the local density thresholds. These conditions
are represented by the inequalities (7), (8), (9), where
median(DGz) and average(DGz) correspond respectively
to the median and mean density of micro-clusters belonging
to the group Gz .

µDzdense⇔ Dz ≥ median(DGz)

∧Dz ≥ average(DGz)
(7)

µDzsemi− dense⇔ Dz ≥ median(DGz)

∨Dz ≥ average(DGz)
(8)

µDzoutlier ⇔ Dz < median(DGz)

∧Dz < average(DGz)
(9)

In DyClee-C, the principle of creating clusters by local
approach is unchanged but instead of comparing a sam-
ple’s connections to the median and the average of the
connections of all samples O, COz is compared to the
connection thresholds calculated from the median and the
average of the connections of samples in the CGz group.
The conditions for a sample to be dense, semi-dense and
outlier are given by inequalities (10), (11) and (12). The
pseudo code associated with the local approach is given by
Algorithm 2.

Ozdense⇔ COz ≥ median(CGz)

∧COz ≥ average(CGz)
(10)

Ozsemi− dense⇔ COz ≥ median(CGz)

∨COz ≥ average(CGz)
(11)

Ozoutlier ⇔ COz < median(CGz)

∧COz < average(CGz)
(12)

To illustrate this approach, the example of Figure 6 is
used. The density thresholds change in relation to the
overall approach. Each group has its own density thresh-
olds. Group 1 composed of G1 = {1, 2, 3, 4, 5, 5, 6, 7, 8}
has for median(DG1) = 2 and average(DG1) = 2,25 and
group 2 composed of G2 = {9, 10, 11, 12, 12, 13, 14} has
for median(DG2) = 2.5 and average(DG2) = 2.75. The
Cl1 cluster remains unchanged from the overall approach.
Concerning the Cl2 cluster, samples 9 and 11 are added to
sample 14 and are also considered outliers because CO9 and
CO11 are less than median(DG2) and average(DG2). The
Cl2 cluster is therefore composed of Cl2 = {10, 12, 13}.
Figure 6 illustrates the clusters found by applying the local
approach.

The methods for generating clusters in DyClee-C have
been detailed in the previous section. Several parameters
allow the user to improve clustering results by adding some
knowledge to the data. These parameters are detailed below.



Algorithm 2 DyClee-C local approach

Require: Set of samples O, set of connexions of samples
C, Set of groups of samples CG

1: Oz → Dense such that COz ≥ median(CGz) ∧ COz

≥ average(CGz)
2: Oz → Semi − dense such that COz ≥ median(CGz)
∨ COz ≥ average(CGz)

3: Clusters = []
4: while O not empty do
5: toAnalyze = []
6: cluster = []
7: toAnalyze← O.pop()
8: while toAnalyze not empty do
9: for i ∈ toAnalyze do

10: if i→ Dense then
11: Neighbors← LSH.query(i)
12: for neighbor ∈ Neighbors do
13: if (neighbor is Dense ∧ neighbor /∈

cluster) then
14: cluster.add(neighbor)
15: toAnalyze.add(neighbor)
16: else if (neighbor is Semi − dense ∧

neighbor /∈ cluster) then
17: cluster.add(neighbor)
18: end if
19: end for
20: end if
21: end for
22: end while
23: Clusters.add(cluster)
24: O← samples that are not in Clusters
25: end while

Figure 6: Clusters found by applying the local approach

3.3 Settings of Dyclee-C

The final clusters are found using one of the two ap-
proaches described in the previous section. These
results can be refined with optional parameters. In
this section, three parameters are described. The first
is called Unclassed_accepted, the second is called
minimum_samples and the last parameter presented is
called n_clusters. These parameters are tuned in function
of the problem encountered and evaluated with cluster
validity methods [18] like those they are presented in
section 4.
In DyClee, clusters are composed of dense (center) and
semi-dense (edge of the cluster) micro-clusters. Outliers are
considered unrepresentative and their samples are rejected
(considered noise). Depending on the context, it may be
interesting not to consider outliers but, on the contrary,

to assign all the data to a cluster. When the parameter
Unclassed_accepted is activated, all the samples must be
assigned to a cluster, i.e. there is no outlier rejection.

The second parameter is called minimum_samples and
allows you to set the minimum number of samples that a
cluster must contain to be considered as a final cluster. In-
deed, depending on the application, small clusters may not
be representative. In the case where a nominal situation has
to be analysed, small clusters can represent abnormal situa-
tions. These clusters are no longer considered as final clus-
ters and the samples assigned to them are marked as noise.
The equation (13) allows you to set the size that clusters
must have to be considered as final clusters.

|Clz| ∨

∑l
i=0 |Cli|
|Cl|

(13)

with |Clz| the size of the cluster z to be evaluated and |Cl|
is the number of cluster groups.

The use of the parameter is illustrated in Figure 7
with three clusters Cl = {Cl1, Cl2, Cl3}. Cluster 1 is
given by Cl1 = {1, 2, 3, 4, 5, 6, 7, 8}, cluster 2 by Cl2 =
{9, 10, 11, 12, 13, 14} and the third by Cl3 = {15, 16, 17}.
To be considered as final clusters, all Cl clusters must have
a size greater than the threshold defined in the equation (14):

Threshold =
|Cl1|+ |Cl2|+ |Cl3|

|Cl|
=

8 + 6 + 3

3
= 5, 67

(14)
The Cl1 and Cl2 clusters are larger than 5.67 (respec-

tively 8 and 6) and are therefore considered final clusters.
On the other hand, since the Cl3 cluster has a size equal
to 3, the samples that compose it (15, 16 and 17) are
considered as noise (in the Figure 7 in grey).

Figure 7: Left: parameter minimum_samples disabled.
Right: parameter minimum_samples enabled

The last parameter is called n_clusters and allows you
to consider the most important n clusters as final clusters.
Samples belonging to the remaining clusters are assigned to
the final n clusters. Let be A = {A1, ..., Ai, ..., Am}, all
the categorical attributes of the set of samples O, with m
the number of attributes. c = {c1, ..., cz , ..., cl} is the set
of cluster centers Cl with cz the cluster center Clz . A cz
center is defined by cz = {cz1, ..., czi, ..., czm} with czi, the
i-th component of the z center. The terms of an attribute Ai

are noted Mod(Ai) = {mi1, ..., mij , ..., mip} with mij , the
j-th term of the attribute Ai and p, the number of terms of



the attribute Ai. The frequency of a modality mij is noted
fr(mij). The i component of the cz center is defined as
the most frequent modality of the Ai attribute (see equation
(15).

czi = max(fr(mi1, ..., fr(mij), ..., fr(mip)). (15)

When the n_clusters parameter is active, the distance be-
tween samples not in the final n clusters is calculated and
samples are assigned to the nearest center. Figure 8 takes the
example of Figure 7. In this example, the two most impor-
tant clusters are considered as final clusters (Cl1 and Cl2).
Samples 15, 16 and 17 of Cl3 are reassigned to the nearest
clusters. Samples 15 and 17 are therefore assigned to the
Cl1 cluster and sample 16 to the Cl2 cluster.

Figure 8: Left: parameter n_clusters disabled. Right: pa-
rameter n_clusters enabled with n = 2

The section 4 presents the different tests performed on the
DyClee-C.

4 Evaluation
DyClee-C was tested on well-known UCI Machine Learn-
ing data sets in the clustering domain like Zoo, Congres-
sional Voting Records, Soybean and Breast Cancer. The
two latter data sets have been selected to be reported in this
paper because they correspond to a diagnosis problem. As
they have a large number of dimensions, it allows to test
how DyClee-C handles data sets with many categorical at-
tributes. DyClee-C was compared to the K-modes cluster-
ing algorithm [5]. Note that an initialization method for the
centers of clusters that is not present in the Huang paper
is also tested. Indeed, this new method was introduced by
[19] 11 years after the original paper. Training phases have
been realized on a part of the data sets to find correct com-
binations of parameters. To evaluate clusters, three validity
measures are used: the purity, recall and the precision. Pu-
rity is the ratio between the sum of the number of elements
correctly assigned in each class i (noted TPi) and the num-
ber of samples in the data set. This measure is described in
the equation (16) where TPi is the real positive rate of the
ith class, k is the number of classes and N is the number of
samples in the data set.

Purity =

∑k
i=0 TPi

N
(16)

The recall corresponds to the ratio between the number of
elements correctly assigned to the ith class and the number
of elements belonging to the ith class (noted TPi + FNi).
This measure is described in the equation (17) with Ri, the

recall of the ith class, TPi, the real positive rate in the ith
class and FNi class, the false negative rate in the ith class.
A false negative is a result where the model incorrectly pre-
dicts the negative class.

Ri =
TPi

TPi + FNi
(17)

The last measure is the precision which corresponds to the
ratio between the number of elements correctly assigned to
the ith class and the number of elements assigned to the ith
class (noted TPi + FPi). This measure is described in the
equation (18), with Pi, the accuracy of the ith, TPi class,
the true positive rate for the ith and FPi class, the false
positive rate for the ith class. A false positive is a result
where the model incorrectly predicts the positive class.

Pi =
TPi

TPi + FPi
(18)

4.1 Soybean data set
The first data set is the "Soybean" [20]. This data set con-
sists of 47 soybean plants with 35 categorical attributes and
4 classes. Attributes correspond to the characteristics of the
plant (size of the seed, leaves,...). The classes correspond
to diseases specific to soybean plants. Two tests with two
different settings were performed on this data set. The first
one was done with the parameter Unclassed_accepted
enabled. The parameter of K-Modes corresponding to the
number of clusters is k_clusters = 4. Original classes of
the "Soybean" data set, results of DyClee-C and K-Modes
algorithms with both initializations [5], [19]) are shown in
Table 1.

C1 C2 C3 C4

Soybean 17 10 10 10
DyClee-C 26 10 10 1

K-Modes (Huang) 16 14 10 7
K-Modes (Cao) 17 10 10 10

Table 1: Clusters found by DyClee-C and K-Modes for the
Soybean data set

Results in Table 1 show that classes C2 and C3 were
perfectly detected by both algorithms tested. However,
the C1 and C4 clusters were poorly formed by DyClee-C
while K-Modes found the right classes. The reason behind
the DyClee-C misclassification is that DyClee-C do not
compute the distance between every samples. Indeed, the
Locality Sensitive Hashing consider as nearest neighbors
samples that share the same bucket at least once (section
3.1). As K-Modes method measures the dissimilarity
between the whole data set, the Huang’s algorithm is more
precise. Moreover, K-Modes method needs the number
of clusters as a parameter. As an unsupervised clustering
algorithm, this kind of information is normally not known
in advance. Purity, recall and precision measures for
DyClee-C and K-Modes algorithms are shown in Table 2.

Purity Recall Precision
DyClee-C 70% 77% 85%

K-Modes (Huang) 78% 55% 52%
K-Modes (Cao) 100% 100% 100%



Table 2: Purity, recall and precision scores of DyClee-C and
K-Modes algorithm for the Soybean data set

As K-Modes method found correct classes, purity, recall
and precision measures corresponding are equal to 100%.
The second test highlights outliers and their influence on
DyClee-C’s results. Parameters enabled for this test are
Unclassed_accepted and minimum_samples. The latter
makes it possible to eliminate samples belonging to clusters
with a size smaller than the average cluster size.

C1 C2 C3 C4

Soybean 10 9 9 6
Result 10 9 9 6

Table 3: Clusters found by DyClee-C for the Soybean data
set with outliers removed

Table 3 represents the classes of the "Soybean" data
set and the clusters found by DyClee-C when the outliers
detected by the parameter minimum_samples are not
taken into account. The results show that in this config-
uration, all classes were found by DyClee-C. The three
validity measures associated to this result are equal to 100%.

4.2 Breast Cancer data set
The second data set is the "Breast Cancer" [21]. This data
set consists of 286 instances and 9 categorical attributes
and 2 classes. An instance corresponds to a patient and
each attribute is an information about the patient and his
pathology (age, which breast has the tumor, the degree of
the malignancy,...). Some attributes have missing values
and are represented by a "?" in the data set. These special
values are considered as a modality for the test. Classes are
instances which have a no recurrence events and recurrence
events. Parameters enabled of DyClee-C for this test are
Unclassed_accepted and n_clusters = 2. The parameter
of K-Modes corresponding to the number of clusters is
k_clusters = 2. Original classes of the "Breast Cancer"
data set, results of DyClee-C and K-Modes (with both
initializations) are shown in Table 4.

C1 C2

Breast Cancer 201 85
DyClee-C 207 79

K-Modes (Huang) 149 137
K-Modes (Cao) 183 103

Table 4: Clusters found by DyClee-C and K-Modes for the
Breast Cancer data set

DyClee-C have detected better groups than the K-Modes
algorithm. Few samples have been misclassified by
DyClee-C while they are more samples in the wrong class
with the K-Modes algorithm. Purity, recall and precision
measures for DyClee-C and K-Modes algorithms are shown
in Table 5.

Purity Recall Precision
DyClee-C 72% 63% 63%

K-Modes (Huang) 70% 45% 45%
K-Modes (Cao) 70% 53% 52%

Table 5: Purity, recall and precision scores of DyClee-C and
K-Modes algorithm for the Breast Cancer data set

While purity score is slightly higher for DyClee-C than
K-Modes, the method presented in this paper is clearly bet-
ter for recall and precision score than the Huang’s algorithm.

5 Conclusions and perspectives
In this article, an extension of DyClee, a dynamic cluster-
ing algorithm for digital data, is presented. This extension,
called DyClee-C, allows you to apply the basic concepts
of DyClee to categorical data. The KD-Tree has been re-
placed by the LSH algorithm, which makes it possible to
form groups of categorical samples with large dimensions.
The two approaches, global and local density, to generate
clusters have been modified to capture categorical data. The
concept of micro-cluster density is replaced by the number
of neighbours of a sample, i.e. connections. Thus, a sample
with a certain number of connections is more dense than a
sample with few connections. Three parameters have been
adapted in order to refine the clusters obtained. The first one
allows you to have no noise, the second one only keeps clus-
ters with a size larger than the average cluster size and the
last one allows you to consider the most important n clusters
as final clusters.

For the tests, DyClee-C has been compared to the K-
Modes algorithm on two well-known data sets. The Breast
Cancer data set shows that DyClee-C is able to detect
classes even if the samples have missing modalities. The
Soybean data sets illustrates the capacity of DyClee-C to de-
tect outliers. The obtained results are promising and show
that clustering can be used for diagnosis purposes even for
data bases with categorical features. However, as classes
were known in advance, results are biaised. Indeed, an un-
supervised classification algorithm is applied to a dataset
which labels are not known. Subsequently, further tests and
comparisons with other algorithms are to be carried out.

In the future, we plan to develop a mixed version of Dy-
Clee to manage both numerical and categorical data.
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