
HAL Id: hal-02383500
https://laas.hal.science/hal-02383500

Submitted on 27 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Single State Trackability of Discrete Event Systems
Valentin Bouziat, Xavier Pucel, Stéphanie Roussel, Louise Travé-Massuyès

To cite this version:
Valentin Bouziat, Xavier Pucel, Stéphanie Roussel, Louise Travé-Massuyès. Single State Trackability
of Discrete Event Systems. DX’19 – 30th International Workshop on Principles of Diagnosis, Nov
2019, Klagenfurt, Austria. �hal-02383500�

https://laas.hal.science/hal-02383500
https://hal.archives-ouvertes.fr

Single State Trackability of Discrete Event Systems

Valentin Bouziat1 and Xavier Pucel1 and Stéphanie Roussel1 and Louise Travé-Massuyès2
1 ONERA / DTIS, Université de Toulouse, F-31055 Toulouse – France

firstname.lastname@onera.fr
2 LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

louise@laas.fr

Abstract

Specific requirements must guide the design of
autonomous systems as they are increasingly pre-
sent in our everyday environment. Their prop-
erties must be carefully defined and checked to
guarantee safety, security and dependability. In
this paper, we adopt a discrete event system mod-
elling framework and focus on properties that are
related to diagnosis. A new property called sin-
gle state trackability is introduced. While avail-
able observations may lead to an ambiguous esti-
mate, i.e. several admissible state candidates, this
property assesses the possibility of reducing the
estimate to a single state without this leading to
a dead-end in the continuation of the execution.
A single state estimate advantageously facilitates
decision making and allows the use of a determin-
istic planner in the autonomous architecture. We
provide a necessary and sufficient condition for
single state trackability of a discrete event system
and we propose a recursive algorithm to check this
property. The algorithm is validated with a set of
benchmarks.

1 Introduction
Self-awareness is one of the essential properties of au-
tonomous systems : it heavily impacts decision making and
can be critical for the survival of the system. The ability of a
system to react to unexpected events depends on its capacity
to evaluate its current state. We focus on systems whose dy-
namics can be represented with a discrete event modelling
formalism.

In this context, state tracking and diagnosis have been
the target of many works [1; 2; 3; 4]. In general, obser-
vations are not enough to guaranty state observability [5;
6], which means that state estimation is ambiguous and re-
turns several estimates at each time step. Consequently, the
number of possible state candidates grows exponentially as
time goes by. Most works tackle this problem by select-
ing a limited number of best candidates according to some
preference criterion, for example probabilities like in [7;
8]. Yet, when the real state is not among the selected sub-
set, this may lead to a dead-end in the continuation of the
tracking. The solution proposed by [8] to this problem is to
backtrack and recover the state trajectory that allows esti-
mation to resume.

In this paper, we reduce to an extreme the number of es-
timates and we propose to keep only one, as in [9]. We call
such an estimator a single state estimator. The reasons for
this are several. First, autonomous architectures have a very
limited amount of memory and it is not desirable to store the
complete history of the system execution as it grows over
time. Second, estimation must be incremental, only based
on the previous estimate and the current observation at each
time step. Last but not least, a single-state estimate advanta-
geously facilitates decision making and allows the use of de-
terministic planners, task allocators, etc. in the autonomous
architecture. This last point is also a step towards explain-
ability of autonomous systems as autonomous decisions are
based on only one estimate.

In [9], we analyse whether a single state estimator spec-
ified by a set of preferences is subject to dead-ends. When
this is the case, modifying the preferences, i.e. the estima-
tion strategy, may solve the dead-end issue [10]. However,
there exists systems for which every possible single-state
estimator are subject to dead-ends. This means that there
is no way to estimate the state of such systems in real time
without potentially facing a dead-end in the continuation of
the execution. When backtracking is not an option for the
considered system (for instance because of real time con-
straints), the occurrence of a dead-end might cause the loss
of the system. In this paper, we aim at characterizing such
systems and we define a new property called single state
trackability that assesses the existence of a single-state esti-
mator that does not lead to dead-end. Our main contribution
is to provide a necessary and sufficient condition for single
state trackability of a discrete event system and we propose
a recursive algorithm to check this property at design time.

This paper is structured as follows. Related work is cov-
ered in Section 2. Section 3 introduces our modeling for-
malism for discrete event systems and incremental estima-
tors. Then, the property of single state trackability is intro-
duced in Section 4. Investigations are conducted in order to
check this property in Section 5. An algorithm for check-
ing this property is proposed in Section 6 and validated on
experimental systems in Section 7.

2 Related work
While the problem of single state trackability is new, the re-
lated notions of DES observability and diagnosability have
been the subject of several papers. [5] addresses observabil-
ity under partial state and total event observation. The no-
tions of (weak) indistinguishable states account for all future
observations, and (weak) observability is achieved when all

pairs of states are (weakly) indistinguishable. The notion of
coobservability is defined similarly with past observations.
Strong coobservability implies that the current state can be
uniquely determined from the observation history, which is
much stronger than single state trackability.

In [6] only some events are observed, and a system is said
to be observable when an observer that tracks all the possi-
ble states regularly visits states with only one candidate, i.e.
with a bounded period. The notion of delayed observabil-
ity is similar, but allows for the uniquely known state to be
in the past. The definition of resilient observers captures
the principle of robustness to perturbated observations. Ob-
servability requires the knowledge of the exact system state,
which is not necessary for single state trackability. Con-
versely, single state trackability requires that among two
undistinguishable states, one explains all the observations
produced by the other, which is not necessary in observabil-
ity definitions.

Diagnosability, as defined in [11], differs from our ap-
proach by several aspects. First, it targets permanent faults,
while our approach can be applied to estimate the pres-
ence of intermittent faults as well. Second, it requires the
complete construction of a diagnoser that poses a scalabil-
ity problem, that is mitigated in [12]. Finally, it accounts
for a bounded delay between the occurrence of a fault and
its diagnosis. While this idea is interesting and makes for
a realistic requirement, there is no universal way to extend
it to intermittent phenomena. Examples include [13] and
[14], which we found hardly relevant from our point of view
about autonomous systems.

3 State estimation of Discrete Event Systems
In this paper we adopt a modeling approach similar to
model-checking, where states are defined as assignments on
a set of Boolean variables VS. Some variables are observed
and form a set of Boolean variables VO such that VO ⊆ VS.
Variables that are not observed are estimated. We assume
that the system follows discrete dynamics where each time
step lasts the same duration. The set of possible system
states is noted S, and each state s ∈ S is represented by
a Boolean assignment to all variables in VS. Consequently,
S ⊆ 2VS .
Definition 1 (Discrete event system). A discrete event sys-
tem (DES) is represented by a tuple (S,∆, s0) where S is
set of system states, ∆ ⊆ S × S is the transition relation
and s0 ∈ S is the initial state.
Definition 2 (Execution language). For a discrete event sys-
tem (S,∆, s0), the execution languageL(∆) ⊆ S∗ is the set
of state sequences starting with s0 that satisfy ∆:

L(∆) = {(s0, s1, · · · , sn)|
n ∈ N+, i ∈ [0, n− 1], (si, si+1) ∈ ∆}

Notations : Let seq ∈ L(∆) be a state sequence. seq [i]
refers to the ith state of the sequence beginning at initial
state seq [0] = s0. The sequence’s size is denoted |seq |.

An assignment on VO is called an observation and O de-
notes the set of all possible observations. We denote obs the
function from S to O that returns the observation associated
to a state and we naturally extend it from S∗ to O∗ as fol-
lows: |obs(seq)| = |seq | and obs(seq)[i] = obs(seq [i]) for
i ∈ [0, |seq |[.

At each time step the system sends an observation to the
estimator. Formally, the estimator receives as input a se-
quence of observations, and produces a sequence of esti-
mations. At each time step, the estimator selects a unique
estimated state among the set of estimation candidates.
Definition 3 (Observation language). The observation lan-
guage Lobs(∆) ⊆ O∗ of a DES is the set of all consistent
observation sequences.

Lobs(∆) = {obs(seq)|seq ∈ L(∆)}
In our approach, an estimator only takes into account the

previous estimated state and the current observation.
Definition 4 (Set of estimation candidates). Given a DES
(S,∆, s0), a state s ∈ S and an observation o ∈ O, we
define the set of estimation candidates cands(s, o) as the
set of states in which the system could be, assuming it was in
state s at the previous time step, and produces observation
o at the current time step. Formally:

cands(s, o) = {ŝ ∈ S|(s, ŝ) ∈ ∆ and obs(ŝ) = o}

Definition 5 (Estimation function). Let (S,∆, s0) be a
DES. An estimation function is a function estim : (S ×
O) → S that selects a unique estimation candidate, i.e. for
every s ∈ S, and every o ∈ O, if cands(s, o) 6= ∅ then
estim(s, o) ∈ cands(s, o).

An estimator is completely defined by its estimation func-
tion. It receives observations as inputs, and the estimated
state is reused at the next time step to compute the next esti-
mation. We assume that the initial system state is known to
the estimator.
Definition 6 (Estimation sequence). Let (S,∆, s0) be a
DES, estim : (S × O) → S an estimation function, and
sobs ∈ Lobs(∆) an observation sequence. The estimation
sequence for sobs is the unique state sequence sest such
that:
• sest [0] = s0 and
• for i ∈ [1, |sobs|[, if cands(sest [i − 1], sobs[i]) 6= ∅

then sest [i] = estim(sest [i − 1], sobs[i])
else sest is undefined.

4 Single state trackability
The simple fact that an estimator selects a single state es-
timate creates scenarios where the estimate can differ from
the real system state, and later the system produces an ob-
servation that is inconsistent with the previously estimated
state. In such scenarios, the set of estimation candidates is
empty, the estimation function is then undefined and the es-
timator is unable to produce an estimation1. Formally, if we
note s the system state and ŝ the state estimate, if s 6= ŝ,
the system may evolve in a state s′ and produce an observa-
tion obs(s ′) = o such that cands(ŝ, o) = ∅. We call such
a situation a dead-end, and the observable path is called a
dead-end path.
Definition 7 (Dead-end path). Let (S,∆, s0) be a DES,
estim : (S × O) → S an estimation function, sobs ∈
Lobs(∆) an observable sequence of length k, and o ∈ O
a continuation of sobs , i.e. sobs.o ∈ Lobs(∆) ; sobs.o is a
dead-end path if and only if:

1Note that such scenarios happen not only in our single state
approach, but for any approach that does not keep all the estimation
candidates in memory.

s0
a

s1
a

s2

b

Figure 1: A non SST DES with states S = {s0, s1, s2}, and obser-
vations O = {a, b}. ∆ and obs are shown as in a Moore machine.

• the estimation sequence for sobs is defined: sest =
(s0, ŝ1, · · · , ŝk);

• there exists no estimation candidate after observation
o, i.e cands(ŝk , o) = ∅.

Dead-end paths illustrate the situation where the estima-
tor assumes something about the system’s real state, and dis-
covers later that this assumption was false. This can be a
problem if some important decision was made as a conse-
quence of this assumption. Most of the time, it is impos-
sible (and not necessary) to know the full system state to
operate it. This is why we introduce the concept of single
state trackability, i.e. the ability to estimate the system state
and never encounter a dead-end path.
Definition 8 (Single state trackability). A DES is Single
state trackable2 (SST) if and only if there exists an estima-
tion function estim : (S×O)→ S such that no observable
sequence sobs ∈ Lobs(∆) is a dead-end path.

Example 1. Let us consider the DES represented in Fig-
ure 1, described as a Moore automaton [15] with no input
alphabet.

Let the system produce the observation sequence (a, a, b).
For the first 3 steps, estimation is trivial as the system can
only go through the state sequence (s0, s1, s2). But for the
observation sequence (a, a, b, a), the set of candidates is
then cands(s2 , a) = {s0, s1}, and a choice needs to be
made. Let us consider the two possible estimation func-
tions estim0 (s2 , a) = s0 and estim1 (s2 , a) = s1, and the
two observation sequences (a, a, b, a, a) and (a, a, b, a, b)
respectively produced by state sequences (s0, s1, s2, s0, s1)
and (s0, s1, s2, s1, s2).

With estim0 , the observation sequence (a, a, b, a) is esti-
mated as (s0, s1, s2, s0), however since cands(s0 , b) = ∅,
the observation sequence (a, a, b, a, b) is a dead-end.

With estim1 , the observation sequence (a, a, b, a) is es-
timated as (s0, s1, s2, s1), and since cands(s1 , a) = ∅, the
observation sequence (a, a, b, a, a) is a dead-end.

Since all the possible estimation functions encounter
dead-ends, the system is not SST.

5 Checking single state trackability
In this section we introduce some necessary conditions and
one equivalent condition for checking single state trackabil-
ity.
Definition 9 (Reachable states). A state ŝ is reachable via
the observation sequence sobs ∈ Lobs(∆) if and only
if there exists a state sequence seq ∈ L(∆) such that
obs(seq) = sobs , and seq ends with ŝ. The set of states
reachable via sobs is noted reach(sobs).

Note that while the set of observation sequences is infi-
nite, the set of all possible reach(sobs), sobs ∈ Lobs(∆)

2In this paper, “trackable” and “trackability” always refer to
single state trackable and single state trackability respectively.

s0
a

s1

b

s2

b

s3
c

s4
c

Figure 2: A DES in which all transitions are non-blocking, but that
is still not SST.

is finite and a subset of 2S . This set can be enumerated by
constructing the so-called powerset automaton with respect
to obs . This property is used in Algorithm 2.

Definition 10 (Non-blocking states (NBS)). Let (S,∆, s0)
be a DES, and sobs ∈ Lobs(∆) an observation sequence. A
state ŝ is non-blocking for sobs if and only if it is reachable
via sobs and for every subsequent observation o, there is an
estimation candidate from ŝ. Formally, ŝ ∈ reach(sobs) is
non-blocking if and only if:

∀o ∈ O, if sobs.o ∈ Lobs(∆) then cands(ŝ, o) 6= ∅

A state reachable via sobs but which is not non-blocking
for sobs is called a blocking state. Note that a state ŝ may
be non-blocking for some observation sequence sobs1 and
blocking for another sequence sobs2 . Non-blocking states
are important because estimators must always select them,
or they will encounter a dead-end path, as stated in the fol-
lowing propositions.

Proposition 1 (Non blocking state condition). If there ex-
ists an observation sequence sobs ∈ Lobs(∆) such that
reach(sobs) contains only blocking states, then the system
is not trackable.

Intuitively, Proposition 1 means that for any estimation
function, the estimated sequence for sobs ends with a state
in reach(sobs). If it contains only blocking states, then
whatever state ŝ ∈ reach(sobs) is chosen, there exists a
continuation sobs.o ∈ Lobs(∆) that is a dead-end path.

Proposition 2 (Non blocking transition condition). Let
sobs ∈ Lobs(∆) be an observation sequence and o ∈ O
an observation such that sobs.o ∈ Lobs(∆). If the system
is single state trackable, then there exists a pair of states
(s1, s2) ∈ ∆ such that s1 is non-blocking for sobs and s2 is
non-blocking for sobs.o.

Proposition 2 extends Proposition 1 to transitions, and
could be extended further to paths of arbitrary length. How-
ever, when constructing the set of all reach(sobs) to check
Proposition 1, and particularly when constructing a transi-
tion between reach(sobs) and reach(sobs.o), it is straight-
forward to verify Proposition 2 on-the-fly. Checking it for
longer paths can be done efficiently in a dynamic program-
ming style algorithm.

Extending the NBS property to paths of any length does
not provide a sufficient condition for trackability. In the
DES presented in Figure 2, it is always possible for a given
observation sequence to associate a state sequence respect-
ing the condition of proposition 2. If we take the obser-
vation sequence (a, b, a, b, c) produced by the non-blocking
state sequence (s0, s1, s0, s2, s4), however, it is impossible
to construct a function estim : (S × O) → S allowing

to borrow this sequence since starting from s0 and receiv-
ing observation b, we would have to choose sometimes s1,
sometimes s2. To provide a necessary and sufficient con-
dition for trackability, we check that not only observable
sequences, but the full observable language is supported by
some estimator.
Definition 11 (Estimator accepted language). Let (S,∆, s0)
be a DES, sobs ∈ Lobs(∆) an observation sequence and
estim : (S×O)→ S an estimation function. The language
accepted by this estimation function, denoted Lobs(estim),
is the set of all possible observation sequences for which
there exists an estimation sequence (i.e. that are not dead-
ends). Formally :

Lobs(estim) = {sobs ∈ Lobs(∆) | (|sobs| > 1)

and ∃sest ∈ L(∆)

s.t. for i ∈ [1, |sobs|], obs(sest [i]) = sobs[i]

and estim(sest [i − 1], sobs[i]) = sest [i]}
It now becomes apparent that finding dead-ends for a

given estimator can be done with an algorithm similar to
the algorithm for checking equality of regular languages.
Proposition 3 (Trackability condition). A DES (S,∆, s0) is
single state trackable if and only if there exists an estimation
function whose accepted language equals the observation
language of the system:

∃ estim : (S ×O)→ S,Lobs(estim) = Lobs(∆)

The proof is straightforward: if proposition 3 is satis-
fied, then the estimation function provides an estimation se-
quence for all elements of Lobs(∆). Thus there are no dead-
ends. The main difficulty lies in finding such an estimation
function, or proving that it does not exist.

To efficiently check trackability, our approach consists in
evaluating partially defined estimation functions. We define
dead-ends for such partial estimation functions, and intro-
duce a proposition that will be used in our algorithm.
Definition 12 (Extension of partial estimation functions).
Let estim : (S × O) → S be an estimation function, and
let pestim be a partial function from (S × O) to S. estim
extends pestim if and only if for every couple (s, o) from
S × O such that pestim(s, o) is defined, then pestim(s, o)
= estim(s, o).

A partial function that can be extended in an estimation
function is called a partial estimation function.
Definition 13 (Dead-end for partial functions). Let pestim
be a partial estimation function from (S ×O) to S, sobs be
an observation sequence and sobs.o ∈ Lobs(∆) a continu-
ation. sobs.o is a dead-end path for pestim if and only if
there exists a state sequence sest = (s0, . . . , ŝk) such that
pestim(sest[i−1], sobs[i]) is defined and equals sest[i] for
i ∈ [1, |sobs|[, and cands(ŝk, o) = ∅.
Proposition 4. If sobs ∈ Lobs(∆) is a dead-end for a par-
tial estimation function pestim, then sobs is a dead-end for
every estimation function estim : (S×O)→ S that extends
pestim.

6 Algorithm
We describe an algorithm for checking the single state track-
ability of a system, based on a search for dead-ends for par-
tially defined estimation functions. Our algorithm is orga-
nized in two components: the first one produces partially

Generation Validation
Trackable

Dead-end

pestim

Define for (s, o)

Figure 3: Algorithm structure.

defined estimation functions and the second one checks if a
given partial estimation function satisfies Proposition 3. The
algorithm is illustrated in Figure 3.

The generation component recursively produces partial
estimation functions pestim and sends them for valida-
tion. The validation component has 3 outcomes: “Track-
able” means the system is trackable with the current pestim;
“Dead-end” means the current pestim has a dead-end; “De-
fine for (s, o)” means pestim for the input pair (s, o). Ac-
cording to the validation result, the generation component
may return or recursively produce other partial estimation
functions.

6.1 Estimation function generation
The generation component provides the GenEstim function
described in Algorithm 1 that starts the algorithm and calls
the validation function. At the first iteration, the generation
component produces the empty partial estimation function
(i.e. defined on ∅), and sends it to the validation component.

If the validation component returns “Trackable”, it means
that the current partial estimation function pestim defines an
estimator that accepts Lobs(∆), and that the pairs for which
pestim is undefined are not used for estimation. Thus, every
extension of pestim satisfies Proposition 3, and the system
is single state trackable. We can stop the algorithm and re-
turn true.

If the validation component returns “Dead-end”, it means
that there exists a dead-end path for pestim . By Proposition
4, no extension of this partial function can satisfy Proposi-
tion 3. We just stop the recursion.

If the validation component returns “Define for (s, o)”,
it means that there exists a pair (s, o) such that s is reach-
able, that cands(s, o) contains several candidates, and that
pestim is undefined for (s, o). In this case, we need to check
if there exists an estimation option for (s, o) that satisfies
Proposition 3, so we recursively generate them.

Since the algorithm recursively explores all the estima-
tion options, if at the end it has found no partial estimation
function pestim that satisfies Proposition 3, then we are cer-
tain that the system is not single state trackable.

6.2 Estimation function validation
The validation component contains a function CheckEstim
that checks whether the language accepted by a given partial
estimation function is equal to the observation language of
the system. The algorithm is based on a slight modification
of the classical algorithm for testing regular language equal-
ity [16] in order to account for cases where there are several
estimation candidates, and the partial estimation function is
undefined.

The approach is to simulate the execution of the estimator
and the system, while ensuring that they are synchronized
on the same observation sequences. Since for every obser-
vation sequence sobs , there exists (at most) one unique es-
timation sequence, we only need to keep track of a single

Algorithm 1 Generation component: GENESTIM function

1: Input
2: Σ = (S,∆, s0): a DES
3: Output
4: boolean: Σ is single state trackable
5: function GENESTIM(Σ, pestim)
6: switch CHECKESTIM(Σ, pestim, s0, {s0}) :
7: case Trackable : return true
8: case Dead-end : return false
9: case Define for (s,o) :

10: for c in cands(s, o) do
11: ext← pestim ∪ ((s, o), c)
12: if GENESTIM(Σ, ext) then return true
13: end for
14: return false

estimator state. Thus the estimator state reached via an ob-
servation sequence sobs is associated with the set of system
states reach(sobs) (see Definition 9).

The algorithm recursively explores pairs (estSt , sysSts)
where sysSts = reach(sobs) for some sobs ∈ Lobs(∆),
and where estSt ∈ sysSts . To ensure termination, a global
variable “visited” stores the pairs that have already been ex-
plored. The algorithm looks for sequences sobs for which
the estimator is not defined, so the termination condition is
met only if no such sequence exists. In this case, the lan-
guages are equal, and we return “Trackable” (lines 11 to
13).

At each iteration, CheckEstim calculates the observations
that can be produced by the system (line 14). Then for every
such observation, it calls the NextEstStates(estSt , o)
(line 16) function defined as follows. If pestim is defined
for (estSt , o), it returns {pestim(estSt , o)} else it returns
cands(estSt , o). The algorithm then tests the number of
possible estimator states: If estNxts = ∅ (line 19): this
means that, if sobs is the observation sequence that led to
this recursive call, sobs.o is a dead-end path (see Definition
7), we (recursively) return “Dead-end”.

If estNxts = {estNxt} (line 21): this means that for the
current pair (estSt , o), either there is a unique successor or
that pestim is defined. In this case we continue the search
with a recursive call.

If |estNxts| > 1< (line 28): there are several estima-
tion candidates, and pestim is undefined for (estSt , o). We
(recursively) return “Define for (estSt , o)” so that the gener-
ation component will generate estimation functions defined
for this pair.

6.3 Performance
The performance of the algorithm described above can be
significantly enhanced with a few mechanisms. A prelimi-
nary check is added to verify propositions 1 and 2 for every
set of states that can be reached via some observable se-
quence.

In our experiments, the main source of complexity is the
number of partial estimation functions to be tested. The only
mechanism we have to prune partial estimation functions is
to find dead-end paths as early as possible.

First, in Algorithm 1, upon detection of a Dead-End, one
can try to remove from pestim estimation triplets that are
not used in the dead-end path, and memorize this trimmed
partial estimation function. This way, by Proposition 4, we

Algorithm 2 Validation component: CHECKESTIM func-
tion

1: Input
2: Σ = (S,∆, s0) : a DES
3: estim: a partial estimation function
4: estSt ∈ S : the estimator state
5: sysSts ⊆ S : the possible system states
6: Output
7: “Trackable”, “Dead-End” or “Define for (s, o)”
8: Global
9: visited ∈ S × 2S ← ∅

10: function CHECKESTIM(Σ, estim, estSt , sysSts)
11: if (estSt , sysSts) ∈ visited then
12: return Trackable
13: visited ← visited ∪ (estSt , sysSts)
14: nextObs ← {obs(s′)|∃s ∈ sysSts, (s, s′) ∈ ∆}
15: for o in nextObs do
16: estNxts ← NEXTESTSTATES(estSt , o)
17: sysNxts ← {s′ | obs(s′) = o∧
18: ∃s ∈ sysSts, (s, s′) ∈ ∆}
19: if estNxts = ∅ then
20: return Dead-end
21: else if estNxts = {estNxt} then
22: rec←
23: CHECKESTIM(Σ, estim, estNxt , sysNxts)
24: switch rec :
25: case Dead-End : return Dead-End
26: case Define for (s, o) : return Define for

(s, o)

27: case Trackable : continue
28: else
29: return Define for (estSt , o)

30: end for
31: return Trackable

can test at line 10 whether some extensions are future func-
tions that extend the one we just memorized, and spare some
calls to Algorithm 2.

Second, there exist partial estimation functions for which
there are both dead-end paths and undefined pairs. In these
cases, in Algorithm 2, we may return either “Dead-end” or
“Define for (s, o)” according to the order of traversal at line
15. Instead of immediately returning “Define for (s, o)”,
we store it in memory, and pursue the search for a dead-
end. When we encounter a dead-end we immediately return
it. When the recursive search finishes without finding any
dead-end, if we have encountered an undefined pair (s, o)
we return “Define for (s, o)” otherwise we return “Track-
able”. This favors early dead-end detection.

The properties of blocking states of Propositions 1 and 2
can also be used to reduce the search space: in Algorithm 1
at line 10, one can skip blocking states as they will definitely
lead to a dead-end.

7 Experiments
We tested our approach on an example inspired from the
autonomous robotics framework PLEXIL [17]. This frame-
work is organised around the concept of actions, that have
a complex hierarchical workflow. We use a simplified se-
quential action workflow described in Example 2.

C W Ao Fo

F Ad Fd

Figure 4: The workflow of an action, that can be (W)aiting,
(C)ancelled, (A)ctive (o)k, (F)inished (o)k, (F)ailed, (A)ctive
(d)elayed, or (F)inished (d)elayed.

Example 2. We consider a robotics framework where robot
plans consist in a sequence of actions. The workflow of an
action is illustrated in Figure 4. We consider a robot with
a plan composed of two sequential actions: move and in-
spect, whose states are represented by variables mv and
ins. The robot’s health status is described by three Boolean
variables hnav, hsens and hpow representing respectively
whether the navigation, sensor and power supply functions
perform normally at each time step. Another Boolean vari-
able pert indicates whether the robot is subject to perturba-
tions (slippery terrain, obstacle, wind) at each time step. We
note move = W to express that the move action is in state
W , and denote Y (v) the value at the previous time step for
variable v ∈ {mv, ins, hnav, hsens, hpow, pert}. We use
the function start(v) = K that means Y (v) 6= K ∧v = K.
The system behaviour is described by the automata for each
action, plus the following constraints:

mv ∈ {W,Ao,Ad} → ins = W (1)
mv ∈ {C,F} → ins = C (2)

start(mv = Fo)→ ins = Ao (3)
start(mv = Fd)→ ins = Ad (4)
start(mv = Ad)→ (¬hnav ∨ ¬hpow ∨ pert) (5)
start(mv = F)→ ¬hpow (6)

start(ins = Ad)→ (¬hsens ∨ ¬hpow ∨ pert) (7)
start(ins = F)→ ¬hpow (8)
hnav ∨ hsens→ hpow (9)

Action ins must remain in W while action mv executes (1).
If mv fails or is cancelled, ins is cancelled (2). ins starts
at the moment when mv finishes (3), (4). A delay in mv
(resp. ins) can be explained by a navigation (resp. sensor)
or power supply problem, or a perturbation (5) (resp. (7)).
A failure in mv or ins can only be explained by a problem
in the power supply (6), (8). A problem in the power supply
propagates to the sensor and navigation (9).

Variables mv and ins are observable, i.e. the state of
each action is known. Variables hnav, hsens, hpow and
pert are estimated. The set of states S is the set of valu-
ations for all variables, the obs function restricts a valua-
tion to variables mv and ins. For example, the initial state
(mv = W, ins = W,hnav, hsens, hpow, pert) yields the
observation (mv = W, ins = W).

Our algorithm is implemented in Scala, and executed on
an Intel R© Xeon(R) W-2123, 3.60GHz 8 core processor,
with memory limited to 4 gigabytes. The system as de-
scribed in Example 2 is trackable, so we introduced some
modifications to make it non-trackable. We made actions
show the same observation in their “Ao” and “Ad” states.

Model States Succ. Result Time (s)
Example 2 112 13.7 yes 66
Example 2-modified 112 13.7 no 0.4
Valve controller 209 15.5 no 0.4
Valve driver 51 22.3 yes 56

Table 1: Computation times for checking trackability. Column
“States” indicates the number of states in the system, “Succ.” the
average number of outgoing transitions for each state, “Result”
whether the system is trackable, and “Time” the computation time
in seconds.

We also modelled the example systems from [11] (Valve
controller) and [7] (Valve driver).

Results are presented in Table 1 and show that non-
trackable systems are detected very quickly. This is due to
our preliminary check described in section 6.3 that catches it
early. While propositions 1 and 2 are not sufficient to ensure
trackability, they catch many cases. For trackable systems,
the computation time is related to the number of partial es-
timation functions tested. Note that it can be made faster
by taking into account operational requirements to limit the
space of estimation functions to explore.

8 Conclusion
This paper motivates and defines single state trackability
for partially observed discrete event systems. This property
states that it is possible to track the execution of a system
by keeping a unique state in memory, without ever losing
consistency with its dynamics. Some related conditions are
provided along with an algorithm for checking this prop-
erty. Experimental results exemplify this algorithm applied
to autonomous robots. The algorithm is a proof of concept
of the approach but could be improved in many ways, for
instance by defining specific heuristics to make it more effi-
cient. Larger benchmarks should also be tested.

Through this paper, single state trackability is achieved
by finding one estimation function whose observation lan-
guage matches that of the system. In general, as there might
be many such functions, we could look for the best estima-
tion function in regard to other properties, for example esti-
mation correctness for some variables or at some instants.

Work about observability and diagnosability often ac-
count for a possible bounded delay between events and their
observation or diagnosis. If we could account for delay in
the estimation process, we could address a more general sin-
gle state trackability definition. The theoretical study of the
complexity of the single state trackability existence is also
part of our prospects.

In addition, we are convinced that our work is strongly
linked with controller synthesis [18], in particular when
framed in the game theory framework [19; 20]. These links
suggest future work for precise comparison and possible en-
hancement with ideas from these different areas.

Finally, automatic or semi-automatic synthesis of estima-
tion functions is a direct application of this work, for exam-
ple by representing estimation function with compact lan-
guages such as in [9].

References
[1] WM Wonham, Kai Cai, and Karen Rudie. Supervi-

sory control of discrete-event systems: A brief history.
Annual Reviews in Control, 2018.

[2] Janan Zaytoon and Stéphane Lafortune. Overview of
fault diagnosis methods for discrete event systems. An-
nual Reviews in Control, 37(2):308–320, 2013.

[3] Alban Grastien, Marie-Odile Cordier, and Christine
Largouët. Incremental diagnosis of discrete-event sys-
tems. In Proceedings of the 29th International Work-
shop on Principles of Diagnosis DX’05, Pacific Grove,
CA, USA, 2005.

[4] Alban Grastien, J Rintanen Anbulagan, Jussi Rinta-
nen, Elena Kelareva, et al. Diagnosis of discrete-event
systems using satisfiability algorithms. In Proceedings
of the 22nd AAAI Conference on Artificial Intelligence,
volume 22, page 305, Vancouver, British Columbia,
2007.

[5] Peter J Ramadge. Observability of discrete event sys-
tems. In Proceedings of the 25th IEEE Conference
on Decision and Control CDC’86, pages 1108–1112,
Athens, Greece, 1986. IEEE.

[6] C. M. Ozveren and A. S. Willsky. Observability of
discrete event dynamic systems. IEEE Transactions
on Automatic Control, 35(7):797–806, July 1990.

[7] C. Brian Williams and P Nayak. A model-based ap-
proach to reactive self-configuring systems. In Pro-
ceedings of the 13th AAAI Conference on Artificial In-
telligence, Portland, Oregon, 02 1996.

[8] James Kurien and P Pandurang Nayak. Back to the fu-
ture for consistency-based trajectory tracking. In Pro-
ceedings of the 17th AAAI Conference on Artificial In-
telligence, pages 370–377, Austin, Texas, USA, 2000.

[9] Valentin Bouziat, Xavier Pucel, Stéphanie Roussel,
and Louise Travé-Massuyès. Preferential discrete
model-based diagnosis for intermittent and perma-
nent faults. In Proceedings of the 29th International
Workshop on Principles of Diagnosis DX’18, Warsow,
Poland, August 2018. CEUR Workshops Proceedings.

[10] Valentin Bouziat, Xavier Pucel, Stéphanie Roussel,
and Louise Travé-Massuyès. Preference-based fault
estimation in autonomous robots: Incompleteness and
meta-diagnosis - extended abstract. In Proceedings
of the 18th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2019), pages
1841–1843, Montreal, Canada, May 2019.

[11] Meera Sampath, Raja Sengupta, Stéphane Lafortune,
Kasim Sinnamohideen, and Demosthenis Teneketzis.
Diagnosability of discrete-event systems. IEEE Trans-
actions on automatic control, 40(9):1555–1575, 1995.

[12] Anika Schumann, Yannick Pencolé, et al. Scalable di-
agnosability checking of event-driven systems. In Pro-
ceedings of the 20th International Joint Conference on
Artificial Intelligence IJCAI’00, volume 7, pages 575–
580, Hyderabad, India, 2007.

[13] Olivier Contant, Stéphane Lafortune, and Demosthe-
nis Teneketzis. Diagnosis of intermittent faults. Dis-
crete Event Dynamic Systems, 14(2):171–202, 2004.

[14] Johan De Kleer. Diagnosing multiple persistent and
intermittent faults. In Proceedings of the 21th Inter-
national Joint Conference on Artificial Intelligence IJ-
CAI’19, Pasadena, CA, USA, June 2009.

[15] Edward F. Moore. Gedanken-experiments on sequen-
tial machines. In Claude Shannon and John McCarthy,
editors, Automata Studies, pages 129–153. Princeton
University Press, Princeton, NJ, 1956.

[16] Christos G Cassandras and Stephane Lafortune. Intro-
duction to discrete event systems. Springer Science &
Business Media, 2009.

[17] Vandi Verma, Tara Estlin, Ari Jónsson, Corina Pasare-
anu, Reid Simmons, and Kam Tso. Plan execu-
tion interchange language (plexil) for executable plans
and command sequences. In Proceedings of the
8th International Symposium on Artificial Intelligence,
Robotics and Automation in Space iSAIRAS’05, Mu-
nich, Germany, 2005.

[18] Cédric Pralet, Gérard Verfaillie, Michel Lemaître, and
Guillaume Infantes. Constraint-based controller syn-
thesis in non-deterministic and partially observable
domains. In Proceedings of the 2010 Conference on
ECAI 2010: 19th European Conference on Artificial
Intelligence, pages 681–686, Amsterdam, The Nether-
lands, 2010.

[19] Doyen Laurent and Jean-François Raskin. Games with
imperfect information: Theory and algorithms. In Lec-
tures in Game Theory for Computer Scientists, page
185–212, Cambridge, 2011.

[20] Dietmar Berwanger and Anup Basil Mathew. Infi-
nite games with finite knowledge gaps. Inf. Comput.,
254(P2):217–237, June 2017.

	Introduction
	Related work
	State estimation of Discrete Event Systems
	Single state trackability
	Checking single state trackability
	Algorithm
	Estimation function generation
	Estimation function validation
	Performance

	Experiments
	Conclusion

