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Single State Trackability of Discrete Event Systems

Specific requirements must guide the design of autonomous systems as they are increasingly present in our everyday environment. Their properties must be carefully defined and checked to guarantee safety, security and dependability. In this paper, we adopt a discrete event system modelling framework and focus on properties that are related to diagnosis. A new property called single state trackability is introduced. While available observations may lead to an ambiguous estimate, i.e. several admissible state candidates, this property assesses the possibility of reducing the estimate to a single state without this leading to a dead-end in the continuation of the execution. A single state estimate advantageously facilitates decision making and allows the use of a deterministic planner in the autonomous architecture. We provide a necessary and sufficient condition for single state trackability of a discrete event system and we propose a recursive algorithm to check this property. The algorithm is validated with a set of benchmarks.

Introduction

Self-awareness is one of the essential properties of autonomous systems : it heavily impacts decision making and can be critical for the survival of the system. The ability of a system to react to unexpected events depends on its capacity to evaluate its current state. We focus on systems whose dynamics can be represented with a discrete event modelling formalism.

In this context, state tracking and diagnosis have been the target of many works [1; 2; 3; 4]. In general, observations are not enough to guaranty state observability [5; 6], which means that state estimation is ambiguous and returns several estimates at each time step. Consequently, the number of possible state candidates grows exponentially as time goes by. Most works tackle this problem by selecting a limited number of best candidates according to some preference criterion, for example probabilities like in [7; 8]. Yet, when the real state is not among the selected subset, this may lead to a dead-end in the continuation of the tracking. The solution proposed by [START_REF] Kurien | Back to the future for consistency-based trajectory tracking[END_REF] to this problem is to backtrack and recover the state trajectory that allows estimation to resume.

In this paper, we reduce to an extreme the number of estimates and we propose to keep only one, as in [START_REF] Bouziat | Preferential discrete model-based diagnosis for intermittent and permanent faults[END_REF]. We call such an estimator a single state estimator. The reasons for this are several. First, autonomous architectures have a very limited amount of memory and it is not desirable to store the complete history of the system execution as it grows over time. Second, estimation must be incremental, only based on the previous estimate and the current observation at each time step. Last but not least, a single-state estimate advantageously facilitates decision making and allows the use of deterministic planners, task allocators, etc. in the autonomous architecture. This last point is also a step towards explainability of autonomous systems as autonomous decisions are based on only one estimate.

In [START_REF] Bouziat | Preferential discrete model-based diagnosis for intermittent and permanent faults[END_REF], we analyse whether a single state estimator specified by a set of preferences is subject to dead-ends. When this is the case, modifying the preferences, i.e. the estimation strategy, may solve the dead-end issue [START_REF] Bouziat | Preference-based fault estimation in autonomous robots: Incompleteness and meta-diagnosis -extended abstract[END_REF]. However, there exists systems for which every possible single-state estimator are subject to dead-ends. This means that there is no way to estimate the state of such systems in real time without potentially facing a dead-end in the continuation of the execution. When backtracking is not an option for the considered system (for instance because of real time constraints), the occurrence of a dead-end might cause the loss of the system. In this paper, we aim at characterizing such systems and we define a new property called single state trackability that assesses the existence of a single-state estimator that does not lead to dead-end. Our main contribution is to provide a necessary and sufficient condition for single state trackability of a discrete event system and we propose a recursive algorithm to check this property at design time.

This paper is structured as follows. Related work is covered in Section 2. Section 3 introduces our modeling formalism for discrete event systems and incremental estimators. Then, the property of single state trackability is introduced in Section 4. Investigations are conducted in order to check this property in Section 5. An algorithm for checking this property is proposed in Section 6 and validated on experimental systems in Section 7.

Related work

While the problem of single state trackability is new, the related notions of DES observability and diagnosability have been the subject of several papers. [START_REF] Peter | Observability of discrete event systems[END_REF] addresses observability under partial state and total event observation. The notions of (weak) indistinguishable states account for all future observations, and (weak) observability is achieved when all pairs of states are (weakly) indistinguishable. The notion of coobservability is defined similarly with past observations. Strong coobservability implies that the current state can be uniquely determined from the observation history, which is much stronger than single state trackability.

In [START_REF] Ozveren | Observability of discrete event dynamic systems[END_REF] only some events are observed, and a system is said to be observable when an observer that tracks all the possible states regularly visits states with only one candidate, i.e. with a bounded period. The notion of delayed observability is similar, but allows for the uniquely known state to be in the past. The definition of resilient observers captures the principle of robustness to perturbated observations. Observability requires the knowledge of the exact system state, which is not necessary for single state trackability. Conversely, single state trackability requires that among two undistinguishable states, one explains all the observations produced by the other, which is not necessary in observability definitions.

Diagnosability, as defined in [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], differs from our approach by several aspects. First, it targets permanent faults, while our approach can be applied to estimate the presence of intermittent faults as well. Second, it requires the complete construction of a diagnoser that poses a scalability problem, that is mitigated in [START_REF] Schumann | Scalable diagnosability checking of event-driven systems[END_REF]. Finally, it accounts for a bounded delay between the occurrence of a fault and its diagnosis. While this idea is interesting and makes for a realistic requirement, there is no universal way to extend it to intermittent phenomena. Examples include [START_REF] Contant | Diagnosis of intermittent faults[END_REF] and [START_REF] De | Diagnosing multiple persistent and intermittent faults[END_REF], which we found hardly relevant from our point of view about autonomous systems.

State estimation of Discrete Event Systems

In this paper we adopt a modeling approach similar to model-checking, where states are defined as assignments on a set of Boolean variables V S . Some variables are observed and form a set of Boolean variables V O such that V O ⊆ V S . Variables that are not observed are estimated. We assume that the system follows discrete dynamics where each time step lasts the same duration. The set of possible system states is noted S, and each state s ∈ S is represented by a Boolean assignment to all variables in V S . Consequently, S ⊆ 2 VS . Definition 1 (Discrete event system). A discrete event system (DES) is represented by a tuple (S, ∆, s 0 ) where S is set of system states, ∆ ⊆ S × S is the transition relation and s 0 ∈ S is the initial state. Definition 2 (Execution language). For a discrete event system (S, ∆, s 0 ), the execution language L(∆) ⊆ S * is the set of state sequences starting with s 0 that satisfy ∆:

L(∆) = {(s 0 , s 1 , • • • , s n )| n ∈ N + , i ∈ [0, n -1], (s i , s i+1 ) ∈ ∆} Notations : Let seq ∈ L(∆) be a state sequence. seq[i]
refers to the i th state of the sequence beginning at initial state seq[0] = s 0 . The sequence's size is denoted |seq|.

An assignment on V O is called an observation and O denotes the set of all possible observations. We denote obs the function from S to O that returns the observation associated to a state and we naturally extend it from S * to O * as follows: |obs(seq)| = |seq| and obs(seq

)[i ] = obs(seq[i ]) for i ∈ [0, |seq|[.
At each time step the system sends an observation to the estimator. Formally, the estimator receives as input a sequence of observations, and produces a sequence of estimations. At each time step, the estimator selects a unique estimated state among the set of estimation candidates. Definition 3 (Observation language). The observation language L obs (∆) ⊆ O * of a DES is the set of all consistent observation sequences.

L obs (∆) = {obs(seq)|seq ∈ L(∆)} In our approach, an estimator only takes into account the previous estimated state and the current observation. Definition 4 (Set of estimation candidates). Given a DES (S, ∆, s 0 ), a state s ∈ S and an observation o ∈ O, we define the set of estimation candidates cands(s, o) as the set of states in which the system could be, assuming it was in state s at the previous time step, and An estimator is completely defined by its estimation function. It receives observations as inputs, and the estimated state is reused at the next time step to compute the next estimation. We assume that the initial system state is known to the estimator. Definition 6 (Estimation sequence). Let (S, ∆, s 0 ) be a DES, estim : (S × O) → S an estimation function, and sobs ∈ L obs (∆) an observation sequence. The estimation sequence for sobs is the unique state sequence sest such that:

• sest[0] = s 0 and

• for i ∈ [1, |sobs|[, if cands(sest[i -1 ], sobs[i ]) = ∅ then sest[i] = estim(sest[i -1 ], sobs[i ])
else sest is undefined.

Single state trackability

The simple fact that an estimator selects a single state estimate creates scenarios where the estimate can differ from the real system state, and later the system produces an observation that is inconsistent with the previously estimated state. In such scenarios, the set of estimation candidates is empty, the estimation function is then undefined and the estimator is unable to produce an estimation 1 . Formally, if we note s the system state and ŝ the state estimate, if s = ŝ, the system may evolve in a state s and produce an observation obs(s ) = o such that cands(ŝ, o) = ∅. We call such a situation a dead-end, and the observable path is called a dead-end path. • the estimation sequence for sobs is defined: sest = (s 0 , ŝ1 , • • • , ŝk ); • there exists no estimation candidate after observation o, i.e cands( ŝk , o) = ∅.

Dead-end paths illustrate the situation where the estimator assumes something about the system's real state, and discovers later that this assumption was false. This can be a problem if some important decision was made as a consequence of this assumption. Most of the time, it is impossible (and not necessary) to know the full system state to operate it. This is why we introduce the concept of single state trackability, i.e. the ability to estimate the system state and never encounter a dead-end path. 1, described as a Moore automaton [START_REF] Moore | Gedanken-experiments on sequential machines[END_REF] with no input alphabet.

Let the system produce the observation sequence (a, a, b). For the first 3 steps, estimation is trivial as the system can only go through the state sequence (s 0 , s 1 , s 2 ). But for the observation sequence (a, a, b, a), the set of candidates is then cands(s 2 , a) = {s 0 , s 1 }, and a choice needs to be made. Let us consider the two possible estimation functions estim 0 (s 2 , a) = s 0 and estim 1 (s 2 , a) = s 1 , and the two observation sequences (a, a, b, a, a) and (a, a, b, a, b) respectively produced by state sequences (s 0 , s 1 , s 2 , s 0 , s 1 ) and (s 0 , s 1 , s 2 , s 1 , s 2 ).

With estim 0 , the observation sequence (a, a, b, a) is estimated as (s 0 , s 1 , s 2 , s 0 ), however since cands(s 0 , b) = ∅, the observation sequence (a, a, b, a, b) is a dead-end.

With estim 1 , the observation sequence (a, a, b, a) is estimated as (s 0 , s 1 , s 2 , s 1 ), and since cands(s 1 , a) = ∅, the observation sequence (a, a, b, a, a) is a dead-end.

Since all the possible estimation functions encounter dead-ends, the system is not SST.

Checking single state trackability

In this section we introduce some necessary conditions and one equivalent condition for checking single state trackability. Definition 9 (Reachable states). A state ŝ is reachable via the observation sequence sobs ∈ L obs (∆) if and only if there exists a state sequence seq ∈ L(∆) such that obs(seq) = sobs, and seq ends with ŝ. The set of states reachable via sobs is noted reach(sobs).

Note that while the set of observation sequences is infinite, the set of all possible reach(sobs), sobs ∈ L obs (∆) is finite and a subset of 2 S . This set can be enumerated by constructing the so-called powerset automaton with respect to obs. This property is used in Algorithm 2.
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Definition 10 (Non-blocking states (NBS)). Let (S, ∆, s 0 ) be a DES, and sobs ∈ L obs (∆) an observation sequence. A state ŝ is non-blocking for sobs if and only if it is reachable via sobs and for every subsequent observation o, there is an estimation candidate from ŝ. Formally, ŝ ∈ reach(sobs) is non-blocking if and only if:

∀o ∈ O, if sobs.o ∈ L obs (∆) then cands(ŝ, o) = ∅
A state reachable via sobs but which is not non-blocking for sobs is called a blocking state. Note that a state ŝ may be non-blocking for some observation sequence sobs 1 and blocking for another sequence sobs 2 . Non-blocking states are important because estimators must always select them, or they will encounter a dead-end path, as stated in the following propositions.

Proposition 1 (Non blocking state condition). If there exists an observation sequence sobs ∈ L obs (∆) such that reach(sobs) contains only blocking states, then the system is not trackable.

Intuitively, Proposition 1 means that for any estimation function, the estimated sequence for sobs ends with a state in reach(sobs). If it contains only blocking states, then whatever state ŝ ∈ reach(sobs) is chosen, there exists a continuation sobs.o ∈ L obs (∆) that is a dead-end path.

Proposition 2 (Non blocking transition condition). Let sobs ∈ L obs (∆) be an observation sequence and o ∈ O an observation such that sobs.o ∈ L obs (∆). If the system is single state trackable, then there exists a pair of states (s 1 , s 2 ) ∈ ∆ such that s 1 is non-blocking for sobs and s 2 is non-blocking for sobs.o.

Proposition 2 extends Proposition 1 to transitions, and could be extended further to paths of arbitrary length. However, when constructing the set of all reach(sobs) to check Proposition 1, and particularly when constructing a transition between reach(sobs) and reach(sobs.o), it is straightforward to verify Proposition 2 on-the-fly. Checking it for longer paths can be done efficiently in a dynamic programming style algorithm.

Extending the NBS property to paths of any length does not provide a sufficient condition for trackability. In the DES presented in Figure 2, it is always possible for a given observation sequence to associate a state sequence respecting the condition of proposition 2. If we take the observation sequence (a, b, a, b, c) produced by the non-blocking state sequence (s 0 , s 1 , s 0 , s 2 , s 4 ), however, it is impossible to construct a function estim : (S × O) → S allowing to borrow this sequence since starting from s 0 and receiving observation b, we would have to choose sometimes s 1 , sometimes s 2 . To provide a necessary and sufficient condition for trackability, we check that not only observable sequences, but the full observable language is supported by some estimator. Definition 11 (Estimator accepted language). Let (S, ∆, s 0 ) be a DES, sobs ∈ L obs (∆) an observation sequence and estim : (S × O) → S an estimation function. The language accepted by this estimation function, denoted L obs (estim), is the set of all possible observation sequences for which there exists an estimation sequence (i.e. that are not deadends). Formally :

L obs (estim) = {sobs ∈ L obs (∆) | (|sobs| > 1)
and ∃sest ∈ L(∆)

s.t. for i ∈ [1, |sobs|], obs(sest[i ]) = sobs[i] and estim(sest[i -1 ], sobs[i ]) = sest[i]}
It now becomes apparent that finding dead-ends for a given estimator can be done with an algorithm similar to the algorithm for checking equality of regular languages. Proposition 3 (Trackability condition). A DES (S, ∆, s 0 ) is single state trackable if and only if there exists an estimation function whose accepted language equals the observation language of the system:

∃ estim : (S × O) → S, L obs (estim) = L obs (∆)
The proof is straightforward: if proposition 3 is satisfied, then the estimation function provides an estimation sequence for all elements of L obs (∆). Thus there are no deadends. The main difficulty lies in finding such an estimation function, or proving that it does not exist.

To efficiently check trackability, our approach consists in evaluating partially defined estimation functions. We define dead-ends for such partial estimation functions, and introduce a proposition that will be used in our algorithm. Definition 12 (Extension of partial estimation functions). Let estim : (S × O) → S be an estimation function, and let pestim be a partial function from (S × O) to S. estim extends pestim if and only if for every couple (s, o) from S × O such that pestim(s, o) is defined, then pestim(s, o) = estim(s, o).

A partial function that can be extended in an estimation function is called a partial estimation function. Definition 13 (Dead-end for partial functions). Let pestim be a partial estimation function from (S × O) to S, sobs be an observation sequence and sobs.o ∈ L obs (∆) a continuation. sobs.o is a dead-end path for pestim if and only if there exists a state sequence sest = (s 0 , . . . , ŝk ) such that pestim(sest[i-1], sobs[i]) is defined and equals sest[i] for i ∈ [1, |sobs|[, and cands( ŝk , o) = ∅. Proposition 4. If sobs ∈ L obs (∆) is a dead-end for a partial estimation function pestim, then sobs is a dead-end for every estimation function estim : (S ×O) → S that extends pestim.

Algorithm

We describe an algorithm for checking the single state trackability of a system, based on a search for dead-ends for partially defined estimation functions. Our algorithm is organized in two components: the first one produces partially

Generation

Validation Trackable Dead-end pestim Define for (s, o) defined estimation functions and the second one checks if a given partial estimation function satisfies Proposition 3. The algorithm is illustrated in Figure 3.

The generation component recursively produces partial estimation functions pestim and sends them for validation. The validation component has 3 outcomes: "Trackable" means the system is trackable with the current pestim; "Dead-end" means the current pestim has a dead-end; "Define for (s, o)" means pestim for the input pair (s, o). According to the validation result, the generation component may return or recursively produce other partial estimation functions.

Estimation function generation

The generation component provides the GenEstim function described in Algorithm 1 that starts the algorithm and calls the validation function. At the first iteration, the generation component produces the empty partial estimation function (i.e. defined on ∅), and sends it to the validation component.

If the validation component returns "Trackable", it means that the current partial estimation function pestim defines an estimator that accepts L obs (∆), and that the pairs for which pestim is undefined are not used for estimation. Thus, every extension of pestim satisfies Proposition 3, and the system is single state trackable. We can stop the algorithm and return true.

If the validation component returns "Dead-end", it means that there exists a dead-end path for pestim. By Proposition 4, no extension of this partial function can satisfy Proposition 3. We just stop the recursion.

If the validation component returns "Define for (s, o)", it means that there exists a pair (s, o) such that s is reachable, that cands(s, o) contains several candidates, and that pestim is undefined for (s, o). In this case, we need to check if there exists an estimation option for (s, o) that satisfies Proposition 3, so we recursively generate them.

Since the algorithm recursively explores all the estimation options, if at the end it has found no partial estimation function pestim that satisfies Proposition 3, then we are certain that the system is not single state trackable.

Estimation function validation

The validation component contains a function CheckEstim that checks whether the language accepted by a given partial estimation function is equal to the observation language of the system. The algorithm is based on a slight modification of the classical algorithm for testing regular language equality [START_REF] Cassandras | Introduction to discrete event systems[END_REF] in order to account for cases where there are several estimation candidates, and the partial estimation function is undefined.

The approach is to simulate the execution of the estimator and the system, while ensuring that they are synchronized on the same observation sequences. Since for every observation sequence sobs, there exists (at most) one unique estimation sequence, we only need to keep track of a single switch CHECKESTIM(Σ, pestim, s 0 , {s 0 }) : return false estimator state. Thus the estimator state reached via an observation sequence sobs is associated with the set of system states reach(sobs) (see Definition 9).

The algorithm recursively explores pairs (estSt, sysSts) where sysSts = reach(sobs) for some sobs ∈ L obs (∆), and where estSt ∈ sysSts. To ensure termination, a global variable "visited" stores the pairs that have already been explored. The algorithm looks for sequences sobs for which the estimator is not defined, so the termination condition is met only if no such sequence exists. In this case, the languages are equal, and we return "Trackable" (lines 11 to 13).

At each iteration, CheckEstim calculates the observations that can be produced by the system (line 14). Then for every such observation, it calls the NextEstStates(estSt, o) (line 16) function defined as follows. If pestim is defined for (estSt, o), it returns {pestim(estSt, o)} else it returns cands(estSt, o). The algorithm then tests the number of possible estimator states: If estNxts = ∅ (line 19): this means that, if sobs is the observation sequence that led to this recursive call, sobs.o is a dead-end path (see Definition 7), we (recursively) return "Dead-end".

If estNxts = {estNxt} (line 21): this means that for the current pair (estSt, o), either there is a unique successor or that pestim is defined. In this case we continue the search with a recursive call.

If |estNxts| > 1< (line 28): there are several estimation candidates, and pestim is undefined for (estSt, o). We (recursively) return "Define for (estSt, o)" so that the generation component will generate estimation functions defined for this pair.

Performance

The performance of the algorithm described above can be significantly enhanced with a few mechanisms. A preliminary check is added to verify propositions 1 and 2 for every set of states that can be reached via some observable sequence.

In our experiments, the main source of complexity is the number of partial estimation functions to be tested. The only mechanism we have to prune partial estimation functions is to find dead-end paths as early as possible.

First, in Algorithm 1, upon detection of a Dead-End, one can try to remove from pestim estimation triplets that are not used in the dead-end path, and memorize this trimmed partial estimation function. This way, by Proposition 4, we return Trackable can test at line 10 whether some extensions are future functions that extend the one we just memorized, and spare some calls to Algorithm 2.

Second, there exist partial estimation functions for which there are both dead-end paths and undefined pairs. In these cases, in Algorithm 2, we may return either "Dead-end" or "Define for (s, o)" according to the order of traversal at line 15. Instead of immediately returning "Define for (s, o)", we store it in memory, and pursue the search for a deadend. When we encounter a dead-end we immediately return it. When the recursive search finishes without finding any dead-end, if we have encountered an undefined pair (s, o) we return "Define for (s, o)" otherwise we return "Trackable". This favors early dead-end detection.

The properties of blocking states of Propositions 1 and 2 can also be used to reduce the search space: in Algorithm 1 at line 10, one can skip blocking states as they will definitely lead to a dead-end.

Experiments

We tested our approach on an example inspired from the autonomous robotics framework PLEXIL [START_REF] Verma | Plan execution interchange language (plexil) for executable plans and command sequences[END_REF]. This framework is organised around the concept of actions, that have a complex hierarchical workflow. We use a simplified sequential action workflow described in Example 2. Example 2. We consider a robotics framework where robot plans consist in a sequence of actions. The workflow of an action is illustrated in Figure 4. We consider a robot with a plan composed of two sequential actions: move and inspect, whose states are represented by variables mv and ins. The robot's health status is described by three Boolean variables hnav, hsens and hpow representing respectively whether the navigation, sensor and power supply functions perform normally at each time step. Another Boolean variable pert indicates whether the robot is subject to perturbations (slippery terrain, obstacle, wind) at each time step. We note move = W to express that the move action is in state W , and denote Y (v) the value at the previous time step for variable v ∈ {mv, ins, hnav, hsens, hpow, pert}. We use the function start

(v) = K that means Y (v) = K ∧ v = K.
The system behaviour is described by the automata for each action, plus the following constraints:

mv ∈ {W, Ao, Ad} → ins = W (1) mv ∈ {C, F } → ins = C (2) start(mv = F o) → ins = Ao (3) start(mv = F d) → ins = Ad (4) start(mv = Ad) → (¬hnav ∨ ¬hpow ∨ pert) (5) start(mv = F ) → ¬hpow (6) start(ins = Ad) → (¬hsens ∨ ¬hpow ∨ pert) (7) start(ins = F ) → ¬hpow (8) hnav ∨ hsens → hpow (9) 
Action ins must remain in W while action mv executes (1).

If mv fails or is cancelled, ins is cancelled [START_REF] Zaytoon | Overview of fault diagnosis methods for discrete event systems[END_REF]. ins starts at the moment when mv finishes (3), (4). A delay in mv (resp. ins) can be explained by a navigation (resp. sensor) or power supply problem, or a perturbation (5) (resp. (

)).

A failure in mv or ins can only be explained by a problem in the power supply (6), [START_REF] Kurien | Back to the future for consistency-based trajectory tracking[END_REF]. A problem in the power supply propagates to the sensor and navigation (9).

Variables mv and ins are observable, i.e. the state of each action is known. Variables hnav, hsens, hpow and pert are estimated. The set of states S is the set of valuations for all variables, the obs function restricts a valuation to variables mv and ins. For example, the initial state (mv = W, ins = W, hnav, hsens, hpow, pert) yields the observation (mv = W, ins = W ).

Our algorithm is implemented in Scala, and executed on an Intel R Xeon(R) W-2123, 3.60GHz 8 core processor, with memory limited to 4 gigabytes. The system as described in Example 2 is trackable, so we introduced some modifications to make it non-trackable. We made actions show the same observation in their "Ao" and "Ad" states. We also modelled the example systems from [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF] (Valve controller) and [START_REF] Williams | A model-based approach to reactive self-configuring systems[END_REF] (Valve driver).

Results are presented in Table 1 and show that nontrackable systems are detected very quickly. This is due to our preliminary check described in section 6.3 that catches it early. While propositions 1 and 2 are not sufficient to ensure trackability, they catch many cases. For trackable systems, the computation time is related to the number of partial estimation functions tested. Note that it can be made faster by taking into account operational requirements to limit the space of estimation functions to explore.

Conclusion

This paper motivates and defines single state trackability for partially observed discrete event systems. This property states that it is possible to track the execution of a system by keeping a unique state in memory, without ever losing consistency with its dynamics. Some related conditions are provided along with an algorithm for checking this property. Experimental results exemplify this algorithm applied to autonomous robots. The algorithm is a proof of concept of the approach but could be improved in many ways, for instance by defining specific heuristics to make it more efficient. Larger benchmarks should also be tested.

Through this paper, single state trackability is achieved by finding one estimation function whose observation language matches that of the system. In general, as there might be many such functions, we could look for the best estimation function in regard to other properties, for example estimation correctness for some variables or at some instants.

Work about observability and diagnosability often account for a possible bounded delay between events and their observation or diagnosis. If we could account for delay in the estimation process, we could address a more general single state trackability definition. The theoretical study of the complexity of the single state trackability existence is also part of our prospects.

In addition, we are convinced that our work is strongly linked with controller synthesis [START_REF] Pralet | Constraint-based controller synthesis in non-deterministic and partially observable domains[END_REF], in particular when framed in the game theory framework [19; 20]. These links suggest future work for precise comparison and possible enhancement with ideas from these different areas.

Finally, automatic or semi-automatic synthesis of estimation functions is a direct application of this work, for example by representing estimation function with compact languages such as in [START_REF] Bouziat | Preferential discrete model-based diagnosis for intermittent and permanent faults[END_REF].
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 721 Figure 1: A non SST DES with states S = {s0, s1, s2}, and observations O = {a, b}. ∆ and obs are shown as in a Moore machine.
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 2 Figure 2: A DES in which all transitions are non-blocking, but that is still not SST.
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Algorithm 1

 1 Generation component: GENESTIM function 1: Input 2: Σ = (S, ∆, s 0 ): a DES 3: Output 4: boolean: Σ is single state trackable 5: function GENESTIM(Σ, pestim) 6:

case

  Define for (s,o) : 10: for c in cands(s, o) do 11: ext ← pestim ∪ ((s, o), c) 12:if GENESTIM(Σ, ext) then return true 13:

Algorithm 2

 2 Validation component: CHECKESTIM function 1, "Dead-End" or "Define for (s, o)" 8: Global 9: visited ∈ S × 2 S ← ∅ 10: function CHECKESTIM(Σ, estim, estSt, sysSts) 11: if (estSt, sysSts) ∈ visited then 12: return Trackable 13: visited ← visited ∪ (estSt, sysSts) 14: nextObs ← {obs(s )|∃s ∈ sysSts, (s, s ) ∈ ∆} 15: for o in nextObs do 16: estNxts ← NEXTESTSTATES(estSt, o) 17: sysNxts ← {s | obs(s ) = o ∧ 18: ∃s ∈ sysSts, (s, s ) ∈ ∆} 19: if estNxts = ∅ then 20: return Dead-end 21: else if estNxts = {estNxt} then 22: rec ← 23: CHECKESTIM(Σ, estim, estNxt, sysNxts) 24: switch rec : 25: case Dead-End : return Dead-End 26: case Define for (s, o) : return Define for (s, o)

Figure 4 :

 4 Figure 4: The workflow of an action, that can be (W)aiting, (C)ancelled, (A)ctive (o)k, (F)inished (o)k, (F)ailed, (A)ctive (d)elayed, or (F)inished (d)elayed.

  Definition 8 (Single state trackability). A DES is Single state trackable 2 (SST) if and only if there exists an estimation function estim : (S × O) → S such that no observable sequence sobs ∈ L obs (∆) is a dead-end path. Example 1. Let us consider the DES represented in Figure

Table 1 :

 1 Computation times for checking trackability. Column "States" indicates the number of states in the system, "Succ." the average number of outgoing transitions for each state, "Result" whether the system is trackable, and "Time" the computation time in seconds.

	Model	States Succ. Result Time (s)
	Example 2	112	13.7	yes	66
	Example 2-modified 112	13.7	no	0.4
	Valve controller	209	15.5	no	0.4
	Valve driver	51	22.3	yes	56

Note that such scenarios happen not only in our single state approach, but for any approach that does not keep all the estimation candidates in memory.

In this paper, "trackable" and "trackability" always refer to single state trackable and single state trackability respectively.