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Feedback Nash Equilibrium for Randomly
Switching Differential-Algebraic Games

Aneel Tanwani Quanyan Zhu

Abstract—As a subclass of stochastic differential games with
algebraic constraints, this article studies dynamic noncooper-
ative games where the dynamics are described by Markov
jump differential-algebraic equations (DAEs). Theoretical tools,
which require computing the extended generator and deriv-
ing Hamilton-Jacobi-Bellman (HJB) equation for Markov jump
DAEs, are developed. These fundamental results lead to pure
feedback optimal strategies to compute the Nash equilibrium in
noncooperative setting. In case of quadratic cost and linear dy-
namics, these strategies are obtained by solving coupled Riccati-
like differential equations. Under an appropriate stabilizability
assumption on system dynamics, these differential equations
reduce to coupled algebraic Riccati equations when the cost
functionals are considered over infinite-horizon. As a first case-
study, the application of our results is studied in the context of
an economic system where different suppliers aim to maximize
their profits subject to the market demands and fluctuations
in operating conditions. The second case-study refers to the
conventional problem of robust control for randomly switching
linear DAEs, which can be formulated as a two-player zero sum
game and is solved using the results developed in this paper.

Index Terms—Noncooperative games; differential-algebraic
dynamical systems; piecewise deterministic Markov processes;
infinitesimal generators; generalized HJB equation; coupled Ric-
cati equations; minimax robust control; Leontief input-output
models.

I. INTRODUCTION

Noncooperative dynamic games provide a framework for
interaction of several decision makers, or players, competing
against each other for maximizing or minimizing their respec-
tive objective functions. The reader may consult the books
[5], [15] to get an overview of the extensive work done in this
field, and its relevance to control theoretic problems. Different
from the conventional setup of dynamic games, many practical
applications require us to incorporate algebraic constraints on
the state trajectories and the action variables (control inputs).
For example, in electric power systems, multiple generators
are constrained by algebraic power flow constraints arising
from Kirchhoff’s circuit laws. Similarly, in economic sys-
tems, interdependencies between different industries or regions
within an economy are captured using algebraic Leontief
input-output models [22], [26]. These examples provide the
motivation to study dynamic noncooperative games where the
evolution of the states is described by differential-algebraic
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equations (DAEs), which comprise ordinary differential equa-
tions (ODEs) and algebraic equations. In addition, we allow
the differential and algebraic constraints to change randomly
with time, and this switching in system dynamics is governed
by a finite state Markov chain, giving rise to piecewise-
deterministic Markov DAEs. The switching can represent the
structural changes in the system dynamics and constraints for
several applications of interest, such as power systems [14].

This article investigates decentralized decision-making and
control for the aforementioned class of dynamical systems.
Each player designs an optimal controller to minimize its cost,
which is defined by taking the expected value of a continuous
functional over all sample paths resulting from randomness
in switching. In particular, we establish conditions for the
existence of Nash equilibrium using pure feedback strategies
for individual players, and provide algorithms for computing
the optimal strategies. It will be assumed that the players are
aware of the system dynamics, and for each sample path, the
knowledge of the switching signal is available for computing
the feedback strategy. Applications of our theoretical results
are proposed in the context of robust control of Markov
jump DAEs where the objective is to design a control input
which attenuates the effect of disturbance in the dynamics; and
secondly, we consider economic systems described by Leontief
input-output model where different suppliers aim to maximize
their profits subject to a given demand of goods.

Noncooperative games with continuous kernels have been
extensively studied when the formulation of the cost function
involves deterministic ordinary differential equations, see [4]
for an overview. The games where the parameters of the
differential equations may change according to some Markov
transition matrix appear in [3], [33], and an application
of frameworks in modern control systems can be seen in
[44]. However, games comprising differential equations with
equality constraints [11], [12], or with inequality constraints
[31], [32], have only attracted attention recently. The in-
terest in studying games with constraints is also visible in
some recent works on finite-stage games (without differential
equations), where the dynamic nature arises from the time-
varying information patterns available to the players [36], [37].
This paper addresses an N -player nonzero sum game in the
presence of differential-algebraic equations (DAEs), where the
transitions in the system parameters may occur according to
a Markov process. Thus, the main focus of this paper is to
solve multi-player game-theoretic problems using feedback
strategies, where the dynamical systems are described by
randomly switching DAEs.



When studying stochastic games with jump linear systems
[3], [30], one needs several tools such as infinitesimal genera-
tor for the corresponding cost functionals, which for the ODE
case first appeared in [33]. On the other hand, for switched
DAEs, we have seen Lyapunov function based techniques
in [25]. Since Lyapunov functions have not been studied
for stochastic DAEs, we first provide a rigorous derivation
of the infinitesimal generator associated with a real-valued
functional. We then use this result in the context of dynamic
programming to derive the Hamilton-Jacobi-Bellman equation
associated with Markov jump DAEs under consideration.
These statements lay the foundation for us to compute the
optimal strategies of the individual players in the game setting.
In the general case, with nonlinear dynamics, these strategies
rely on solving coupled partial differential equations. For the
case of linear dynamics and quadratic cost functionals, these
strategies can be obtained by solving coupled generalized
Riccati differential equations. When studying the infinite-
horizon case, the solution of these differential equations are
shown to converge to a stationary solution under a stabilizabil-
ity condition on system dynamics; consequently, the optimal
strategies for infinite-horizon case can be computed by solving
generalized coupled algebraic Riccati equations.

As an application of our results, we design robust H∞ con-
trollers for Markov jump DAEs subject to some disturbances
in the dynamics. This is done by studying the two-player
zero-sum game where the performance index is the expected
value of a quadratic function of the state, input, and the
disturbance. One can also interpret DAEs as the limiting case
of singularly perturbed systems where the fast dynamics are
replaced by an algebraic equation; some results onH∞-control
for nonlinear singularly perturbed systems can be found in
[13]. An overview of robust control problems for DAEs in
deterministic setting without switching can be found in [20],
[21], [27], [42], and this article generalizes those results when
the dynamics undergo switching driven by a Markov process.

Another application of our results lies in the study of
economic systems for a certain class of models which relate
the production of different industries in the national economy.
In the seminal work [22, Part I] carried out by W. Leontief,1

static and dynamic models are proposed which relate the pro-
duction of different industries with one another and the given
demand of goods determined by the market and consumers.
Switched DAEs provide one possible framework to unify the
static and dynamic models proposed by Leontief, and the
random changes in the system matrices allow us to capture
the structural changes in the economy which could result
from unknown factors such as climate change, varying natural
resources, or unpredictable changes in labor resources. In the
game setting, the problem of interest that can be addressed in
such models is the design of optimal strategies for the supply
functions of individual industries.

1In 1973, W. Leontief got the Nobel prize in economics for his work on
input-output tables which provide a quantitative relationship between different
economic sectors in the national economy.

A preliminary version of some of the results appearing
in this paper have been presented in the conference paper
[40]. While the paper [40] focused on linear dynamics, this
paper carries out a more general treatment with nonlinear
dynamics. We also provide detailed proofs of the theoretical
tools required to solve the problem, and relax some structural
assumptions on the system dynamics.

II. SYSTEM CLASS AND PROBLEM FORMULATION

The multi-player differential games considered in this paper
have two central elements: first is the cost functional which is
to be minimized by each player, and secondly, the controlled
dynamics and algebraic constraints subject to which each
functional is to be minimized. In this section, we provide a
short description of the stochastic DAEs which will be used
to describe the constraints in the differential games. Then, we
formulate the game problem and describe the cost functionals
and strategies for which we propose a solution.

A. System Class

For the problems studied in this paper, the dynamics of
the state are described by the following differential-algebraic
equation:

Eσ(x)ẋ = fσ(t, x, u), x(0) = x0 ∈ Rn, (1)

where σ is a continuous-time finite-state Markov chain defined
on the state space S := {1, 2, · · · , S}, characterized by the
rate transition matrix Λ := {λij} ∈ RS×S , for (i, j) ∈ S ×S .
The transition rates are such that

λij ≥ 0, j 6= i (2a)∑
j∈S

λij = 0, ∀ i ∈ S, (2b)

where the later condition is true only if λii ≤ 0, for each
i ∈ S. Let (Ω,F ,P) denote the underlying probability space2,
then by definition, the stochastic process σ satisfies

P
[
σ(t+ h) = j

∣∣σ(t) = i
]

= λijh+ o(h) (3a)

P
[
σ(t+ h) = i

∣∣σ(t) = i
]

= 1 + λiih+ o(h) (3b)

for h > 0 sufficiently small, and o(h) is independent of t
satisfying limh↓0

o(h)
h = 0. The sample paths of σ are right-

continuous and piecewise constant; Its value at a given time
determines the following active subsystem modeled as a DAE:

Ei(x)ẋ = fi(t, x, u), i ∈ S (4)

between two consecutive jumps of σ. The matrix Ei(x) ∈
Rn×n may be singular, and hence DAEs provide a generaliza-
tion of ODEs with algebraic constraints involving states and
inputs embedded in the formulation of the dynamical equation.

2All random variables in this article will be considered with respect to this
probability space.



B. Game Formulation

We are interested in a class of N− person continuous-time
dynamic games, or differential games, wherein the evolution
of the state is described by the differential equation

Eσ(x)ẋ = fσ(t, x, u1, · · · , uN ), x(0) = x0, (5)

with σ, as earlier, describing a Markov process on S. The
control action of player p is denoted by up ∈ Up ⊆ Rmp . The
input of each player p ∈ N := {1, 2, · · · , N} is generated by
a strategy µp so that3

up(t) := µp(t, x(t), σ(t)) (6)

where µp : R × Rn × S → Up is measurable in t, locally
Lipschitz continuous in x, continuous in σ, and satisfies the
causality condition. Thus, the class of strategies we consider
for each player are memoryless, and require full information
of the state at current time, and also the information about cur-
rently active mode through σ(t). Let Σp denote this admissible
class of strategies of player p.

The objective of the player p is to choose a strategy µp that
minimizes the following finite-horizon performance index:

Jp(µ1, . . . , µN ) = E
[
cp,T (x(T );σ(T ))

]
+ E

[∫ T

t0

cp (s, x(s), u1(s), . . . , uN (s);σ(s)) ds

]
(7)

where we fix up(s) = µp(s, x(s), σ(s)). We stipulate that
the terminal cost cp,T , and the running cost cp, are jointly
continuous in its arguments for each p ∈ {1, . . . , N}.

Definition 1 (Nash equilibrium [29]). An N -tuple of strategies
{µ∗p | p ∈ N} constitutes a feedback Nash equilibrium if, and
only if, the following inequalities hold for all µp ∈ Σp, p ∈ N ,

J ∗p := Jp(µ∗1, . . . , µ∗p−1, µ
∗
p, µ
∗
p+1, . . . , µ

∗
N )

≤ Jp(µ∗1, . . . , µ∗p−1, µp, µ
∗
p+1, . . . , µ

∗
N ).

(8)

The fundamental problem addressed in this paper relates to
finding the Nash equilibrium for the N -player game, where
a player p minimizes the functional Jp in (7) subject to the
stochastic dynamic constraints (5). To address this problem,
we study solutions of system (1), and use them to derive
the tools that allow us to compute the optimal strategies that
constitute the Nash equilibrium.

III. BASIC HYPOTHESIS AND SOLUTIONS

Within the literature on stochastic systems, the system
class (1) basically falls under the framework of piecewise-
deterministic Markov processes, introduced in [10]. The hold-
ing time between two jumps of σ is determined by a random
variable with exponential distribution, and in between these
jumps, the system evolves according to a deterministic DAE.
However, in the conventional setup of [10], only the evolution
due to deterministic ODEs is considered. In the sequel, we

3It is assumed that the sample paths of σ are right-continuous, which
results in sample-paths of the state being right-continuous. Unless explicitly
mentioned, the value of input or state at a time instant denotes its right limit.

first describe the hypotheses on each subsystem which allow
us to construct the solution for a fixed mode, and then use it
to describe solutions for the stochastic process with Markov
jumps.

A. Nonlinear time-invariant DAEs

When focusing on the individual DAE (4) described by the
pair (Ei, fi) with i ∈ S fixed, there are several technical
issues to be considered when talking about their solution, see
[19], [16], and [41]. Here, we focus our attention to the case
where each subsystem (Ei, fi) describes an index-one4 DAE.
This assumption allows us to define the algebraic constraints
explicitly as formalized below:
(A1) For each i ∈ S, it holds that the pair (Ei, fi) de-

scribes a regular index-one DAE, that is, there exist
diffeomorphisms Si, Ti : Rn → Rn such that, with
z := (z1>

i , z2>

i )> := T−1
i (x), z1

i ∈ Rνi , z2
i ∈ Rn−νi

and νi := rank(Ei(x)) for each x ∈ Rn, it holds that
for every (t, zi, u) ∈ R× Rn × Rm,

Si

(
Ei(Ti(z))

∂Ti(z)

∂z
ω

)
=

[
I 0
0 0

]
ω, ∀ω ∈ Rn

Si(fi(t, Ti(z), u)) =

(
f1
i (t, z1

i , z
2
i , u)

f2
i (t, z1

i , z
2
i , u)

)
.

(9)
Moreover, the function f2

i (t, z1, ·, u) has the property
that

rank

[
∂f2

i (t, z1
i , z

2
i , u)

∂z2
i

]
= n− νi, (10)

and there exists a map gi : R×Rνi ×Rm → Rn−νi , so
that f2

i (t, z1
i , z

2
i , u) = 0 implies z2

i = gi(t, z
1
i , u).

It is thus seen that (A1) allows us to rewrite each subsystem
as a semi-explicit DAE with index-one, also called Hessenberg
form with index-one [19, Chapter 4]. The rank condition in
(10) allows us to invoke the implicit function theorem and
solve the equation f2

i (t, z1
i , z

2
i , u) = 0 for z2

i , and the resulting
map (t, z1

i , u) 7→ z2
i is denoted by gi. Because of this structure

resulting from (A1), we can introduce the consistency manifold
for each pair (Ei, fi), denoted by Ci. To do so, we let T i :=
T−1
i , so that (

z1
i

z2
i

)
=

(
T

1

i (x)

T
2

i (x)

)
and the system in z-coordinates satisfies the following equa-
tions [

I 0
0 0

](
ż1
i

ż2
i

)
=

(
f1
i (t, z1

i , z
2
i , u)

f2
i (t, z1

i , z
2
i , u)

)
. (11)

As a result, we define the consistency set as

Ci(t, u) :=
{
x ∈ Rn

∣∣∣ f2
i

(
t, T

1

i (x), T
2

i (x), u
)

= 0
}
.

We say that u ∈ dom(C(t, ·)) whenever C(t, u) is not an
empty set. As a consequence of index-one assumption imposed

4For nonlinear DAEs, there are different notions of index that appear in the
literature. In this paper, we refer to the “differentiation-index” only and refer
the reader to [19] for further details.



on the system structure, one can essentially solve the algebraic
constraint and get an ODE in the variable z1

i . More precisely,
if a subsystem i ∈ S is active on an interval [t0, t1), with
x(t0) ∈ Ci(t0, u(t0)), then the state-trajectories evolve in a
manner such that x(t) ∈ Ci(t, u(t)), for each t ∈ [t0, t1).

When the initial condition x(t−0 ) is not consistent with
C(t0, u(t0)), there is a jump in the value of the state such
that x(t+0 ) ∈ C(t+0 , u(t+0 )). Thus, we introduce a mapping
Πi which maps possibly inconsistent initial conditions to the
consistency manifold of the active subsystem:

x 7→ Πi(t, x, u) := Ti

(
T

1

i (x)

gi

(
t, T

1

i (x), u
)) . (12)

To guarantee existence of solutions for a fixed subsystem
starting with a consistent initial condition, we introduce the
following assumption:

(A2) For each i ∈ S, the mapping gi is continuous and
gi(t, ·, u) is continuously differentiable for each (t, u) ∈
R × Rm. Also, for each admissible feedback control
input of the form (6) such that, for each initial condition
z1
i ∈ Rνi , the solution to the ODE

ż1
i = f1

i (t, z1
i , gi(t, z

1
i , u), u), z1

i (t0) = z1
i

is a uniquely defined absolutely continuous function over
[t0, t1), for every t1 > t0, and has no finite escape times.

With assumptions (A1) and (A2), the system (4) is solvable for
each sample path of σ. The following proposition describes the
solutions of the system when the switching signal is described
by a random process.

Proposition 1. Consider system (1) in which σ is a Markov
process, and for each i ∈ S, assumptions (A1) and (A2) hold.
For each x(0) = x0 ∈ Rn, the process (x(t), σ(t))t≥0 is a
Markov process. Along each sample path of this process, if
tj , j ∈ N denotes the time instants at which σ changes its
value, then x is a piecewise absolutely continuous function
that satisfies, for each j ∈ N,

Eσ(t)(x(t))ẋ(t) = fσ(t)(t, x(t), u(t)), t ∈ (tj , tj+1), (13a)

x(tj) = Πσ(tj)(tj , x(t−j ), u(tj)) ∈ Cσ(tj)(tj , u(tj)). (13b)

In other words, along a sample path of the stochastic
process (1), σ only changes its value at time instants tj , j ∈ N
which are determined randomly by the underlying probability
distribution. The state trajectory x evolves as a piecewise
absolutely continuous function so that x(t) ∈ Cσ(tj)(t, u(t)),
for t ∈ [tj , tj+1), and is obtained by integrating the equa-
tion (13a). Then at t = tj+1, when σ changes its value,
so that σ(tj+1) 6= σ(tj), there is a possible jump in x
trajectory and x(tj+1) = Πσ(tj+1)(tj+1, x(t−j+1), u(tj+1)) ∈
Cσ(tj+1)(tj+1, u(tj+1)). Again, the evolution of x over the
interval [tj+1, tj+2) is described by integrating (13a) and
x(t) ∈ Cσ(tj+1)(t, u(t)), for t ∈ [tj+1, tj+2); the process
continues like that.

B. The linear regular case

Let us apply the foregoing discussion to the linear systems.
In this case, the system dynamics are described as:

Eσẋ = Aσx+Bσu, (14)

where σ is a continuous-time finite-state Markov process over
the finite set S , and Ei, Ai ∈ Rn×n, and Bi ∈ Rn×m for each
i ∈ S. For such linear systems, the assumptions (A1) and (A2)
hold if the matrix pair (Ei, Ai) is regular and index-one. The
pair (Ei, Ai) is regular, if there exists λ ∈ C such that the
complex matrix λEi −Ai is nonsingular.

Proposition 2. Assume that the pair (Ei, Ai) describes a
regular DAE, for each i ∈ S. Then there exist invertible
matrices Si, Ti such that

SiEiTi =

[
Iνi×νi 0

0 N(n−νi)×(n−νi)

]
, (15a)

SiAiTi =

[
Jνi×νi 0

0 I(n−νi)×(n−νi)

]
, (15b)

where Jνi×νi ∈ Rνi×νi is a matrix in block Jordan form and
N(n−νi)×(n−νi) is a nilpotent matrix; the smallest κ ∈ N,
for which Nκ

(n−νi)×(n−νi) = 0, is called the index of the pair
(Ei, Ai). In particular, if the pair (Ei, Ai) has index-one, then
N(n−νi)×(n−νi) is a zero matrix. The mapping Πi(t, x, u) is
defined by

x 7→ Πi(t, x, u) = Πi,autx+ Πi,inu (16)

where Πi,aut := Ti

[
Iνi×νi 0

0 0

]
T−1
i ,Πi,in := Ti

[
0
−Bi

]
, and

Bi denotes the last n− νi rows of the matrix SiBi.

The matrices Si, Ti in Proposition 2 transform the sys-
tem (14) in the so-called quasi-Weierstraß form [6], [43]. In
the context of switched DAEs with deterministic transitions,
the transformations introduced in Proposition 2 have been
used for stability analysis [25], and solving observability
related problems [39]. In the remainder of the paper, (A1) and
(A2) will be considered as standing assumptions so that the
solutions of system (1) are well-defined, either in open-loop
or closed-loop.

IV. GENERATOR AND STABILITY CONDITIONS

Using the fundamental development on existence of so-
lutions from previous section, we now develop two further
results for stochastic DAEs (1). The first one concerns com-
putation of infinitesimal generator for the class of DAEs (1)
with stochastic Lyapunov function. This result is used in
deriving an analogue of Hamilton-Jacobi-Bellman equation
for an optimization problem with constraints described by a
Markov jump DAE.

A. Infinitesimal Generator

In the context of this paper, the notion of infinitesimal
generator generalizes the notion of differential operator when
the system dynamics are described by a stochastic process.



Definition 2 (Infinitesimal Generator). The infinitesimal gen-
erator of the joint process

(
x(t), σ(t)

)
t≥0

is the linear operator
V 7→ LV , defined as

(t, z, i) 7→ LV (t, z, i) := lim
h↓0

1

h

(
−V (t, z, i)

+ E
[
V
(
t+ h, x(t+ h), σ(t+ h)

) ∣∣x(t) = z, σ(t) = i
])
(17)

for all maps V : R×Rn×S → R such that the limit is defined
everywhere.

We are interested in computing the infinitesimal generator
for the systems described by

Eσ(x)ẋ = fσ(t, x, u) (18)

where σ is a Markov jump process with right-continuous
sample paths taking values in S := {1, 2, · · · , S}. The
transition rate matrix is Λ = {λij}, with (i, j) ∈ S × S,
λij ∈ R≥0, and λii = −

∑
j 6=i λij . The main result of this

section provides an expression for the infinitesimal generator
of the process described by (18). For piecewise deterministic
Markov processes with ODEs and a renewal jump process,
one can find the computation of generator in [9]. These tools
can be tailored to study the stability of randomly switching
ODEs [7]. Here, we generalize this operator based approach
to compute the infinitesimal generator explicitly for randomly
switching DAEs.

Proposition 3. The joint process
(
σ, x
)

described by (1) and
(3) is a Markov process under (A1) and (A2). Moreover, for
a function V : R×Rn×S → R≥0 continuously differentiable
in first two arguments, if
(A3) For each i ∈ S , there exists a function Fi : R × Rn ×

Rn → R such that〈
∂zV (t, z, i), ω

〉
= Fi(t, z, Ei(z)ω), ∀ω ∈ Rn;

Then, for each z ∈ Ci(t, u),

LV (t, z, i) = Fi(t, z, fi(t, z, u)) + λiiV (t, z, i)+∑
j 6=i

λijV (t,Πj(t, z, u), j) + ∂tV (t, z, i). (19)

Before giving the proof of Proposition 3, we compute the
expression in (19) for the case of autonomous linear systems
and V of quadratic form. As an application of this result, we
provide conditions for mean-square stability of linear systems.

B. Stability of Markov Switched Linear DAEs

Consider an autonomous linear switched DAE

Eσẋ = Aσx, x(0) = x0, (20)

where σ is again considered to be a Markov processes over a
finite set. If each pair (Ei, Ai) is regular and index-one, then
using Proposition 2, it is seen that Πi(t, x) = Πi,autx and the
consistency space Ci (independent of t and u) is given by

Ci = im Πi,aut := {Πi,autx |x ∈ Rn}.

We say that (20) is asymptotically mean-square stable, if
E
[
|x(t)|2

∣∣∣x(0), σ(0)
]

converges to the origin asymptotically
as t → ∞. To derive stability conditions, we introduce the
following assumptions on the dynamics of individual modes:
(S1) For each pair (Ei, Ai), i ∈ S, there exists a symmetric

positive definite matrix Pi such that5

A>i PiEi + E>i PiAi ≤ αE>i PiEi, on Ci

for some α ∈ R.
(S2) There exists β > 0 such that for each i, j ∈ S, j 6= i,

E>j PjEj ≤ β E>i PiEi, on Ci.

Proposition 4. Consider the autonomous switched system (20)
driven by Markov process σ over the finite set {1, · · · , S} with
transition rates {λij}(i,j)∈S×S , and suppose that each matrix
pair (Ei, Ai) is regular and index-one. Assume, in addition,
that statements (S1), (S2) hold, and

α+ λii(1− β) < 0, ∀ i ∈ S, (21)

then system (20) is mean-square stable.

The proof of this result relies on computing LV (t, z, i) for
(19) with some appropriate V , and then employing Dynkin’s
formula6 to get a bound on E

[
V (x(t), σ(t))

∣∣∣x(0), σ(0)
]

by
integration.

Proof. For each i ∈ S , we consider the time-invariant V :
Rn × S → R+ to be V (z, i) = (Eiz)

>Pi(Eiz),then this
function satisfies (A3) by choosing

Fi(t, z, Eiω) = (Eiz)
>Pi(Eiω) + (Eiω)>PiEiz.

When the individual modes are described by linear time-
invariant dynamics, fi(t, x) = Aix, i ∈ S, then Πi,in = 0, and
Πi(x) = Πi,autx. Moreover, it is observed that EiΠi,aut = Ei.
The expression (19) thus takes the form

LV (z, i) = z>(A>i PiEi + E>i PiAi)z

+ λii(Eiz)
>Pi(Eiz) +

∑
j 6=i

λij(Ejz)
>Pj(Ejz) (22)

for each z ∈ Ci. Using (S1) and (S2), we thus get

LV (z, i) ≤

α+ λii + β
∑
j 6=i

λij

V (z, i), z ∈ Ci.

Due to the property of the rate-transition matrix, λii =
−
∑
j 6=i λij < 0, so that

LV (z, i) ≤ (α+ λii(1− β))V (z, i), z ∈ Ci.

5We say that a matrix Q ≥ 0 on Ci, if for each x ∈ Ci, x>Qx ≥ 0.
Similarly, Q > 0 on Ci if x>Qx > 0 for each x ∈ Ci, x 6= 0. Finally, we
say that A ≤ B on Ci if B −A ≥ 0 on Ci.

6Dynkin’s formula, see for example [28], states that E
[
V (x(t))

]
=

E
[
V (x(0))

]
+ E

[∫ t
0 LV (x(s)) ds

]
.



Using condition (21), choose ε > 0 such that (α + λii(1 −
β)) < −ε. It then follows from Dynkin’s formula that

E
[
V (x(t), σ(t))

∣∣∣x(0), σ(0)
]
≤ exp (−εt)V (x(0), σ(0))

and hence the desired result follows.

C. Proof of Proposition 3

The basic idea of the proof of the result is to use the
property of Markovian switching to write down the expression
for the joint process

(
σ, x
)

up to first order terms. The
resulting expressions are then substituted in the definition of
infinitesimal generator (17), along with Assumption (A3), to
get (19).
Proof of Proposition 3. Based on the definition of LV (t, z, i)
given in (17), the primary step in the proof is to compute
E
[
V
(
t+h, x(t+h), σ(t+h)

) ∣∣x(t) = z, σ(t) = i
]

for h > 0
arbitrarily small. Toward this end, we compute the conditional
probability distribution of

(
x(t+h), σ(t+h)

)
for small h > 0

given
(
x(t), σ(t)

)
using the definition of Markovian switching

given in (3). For h > 0 small, it is seen that

E
[
V
(
t+ h, x(t+ h), σ(t+ h)

) ∣∣σ(t), x(t)
]

= E
[
V
(
t+ h, x(t+ h), σ(t+ h)

)(
1{σ(t+h)=σ(t)}

+ 1{σ(t+h)6=σ(t)}
)∣∣x(t), σ(t)

]
= E

[
V
(
t+ h, x(t+ h), σ(t+ h)

)∣∣x(t), σ(t) = σ(t+ h) = i
]

(1 + λiih+ o(h))+∑
i6=j

(λijh)E
[
V
(
t+ h, x(t+ h), σ(t+ h)

)∣∣x(t), σ(t) = i,

σ(t+ h) = j
]

+ o(h), (23)

where 1{σ(t+h)=σ(t)} is the indicator for the event when σ
does not change its value on the interval [t, t + h], while
1{σ(t+h)6=σ(t)} is the indicator for the event when σ changes
its value over the interval [t, t + h]. For the case when
σ(t + h) = σ(t) = i, there is no change in the dynamics
on the interval [t, t+ h[, and hence

Ei(x(t))x(t+ h) = Ei(x(t))x(t) + hfi(t, x(t), u) + o(h).

We thus obtain

V
(
t+ h, x(t+ h), σ(t+ h)

)
= V (t, x(t), σ(t))+

h〈∂zV (t, x(t), σ(t)), ẋ(t)〉+ h∂tV (t, x(t), σ(t)) + o(h).

Using Assumption (A3), we get

V
(
t+ h, x(t+ h), σ(t+ h)

)
= V (t, x(t), σ(t))+

hFi(t, x(t), fi(t, z, u)) + h∂tV (t, x(t), σ(t)) + o(h)

leading to the estimate

E
[
V
(
t+ h, x(t+ h), σ(t+ h)

)∣∣x(t), σ(t) = σ(t+ h) = i
]

(1 + λiih+ o(h))

= V (t, x(t), σ(t)) + λiihV (t, x(t), σ(t))+

hFi(t, x(t), fi(t, x(t), u)) + h∂tV (t, x(t), σ(t)) + o(h).
(24)

Concerning the second term on the right-hand side of (23),
we let tij ∈]t, t + h[ denote the time at which σ changes its
value from i to j. We can then write

x(t−ij) = x(t) + (tij − t)ẋ(t) + o(h).

Because of the jump at switching time tij

x(t+ij) = Πj(tij , x(t−ij), u)

= Πj(tij , x(t) + (tij − t)ẋ(t) + o(h), u)

= Πj(tij , z, u) + (tij − t)∂zΠj(tij , z, u)ẋ(t) + o(h),

where we substituted x(t) = z ∈ Ci(t, u) in the last equation,
and we recall that Πi is differentiable in second argument due
to (A2). Next, we observe that

x(t+ h) = x(t+ij) + (t+ h− tij)ẋ(tij) + o(h)

= Πj(tij , z, u) + (tij − t)∂zΠj(tij , z, u)ẋ(t)

+ (t+ h− tij)ẋ(tij) + o(h).

We now recall that given σ(t) = i, the probability that there
are no jumps of σ in the interval [t, t] is eλii(t−t). Also, given
σ(t) = i, the probability density that the first jump of σ after
time t is from mode i to j occurs at t is λijeλii(t−t). Taking
the expectation with respect to the values of σ and the holding
times in the modes before and after the switch results in

E
[
V
(
t+ h, x(t+ h), σ(t+ h)

)∣∣x(t), σ(t) = i, σ(t+ h) = j
]

= V (t,Πj(t, x(t), u), j) + h∂tV (t, x(t), j)+

h

〈
∂zV (t, z, j),

∫ ∞
t

(t− t)∂zΠ(t, z, u)ẋ(t)eλii(t−t)dt

〉
+

h

〈
∂zV (t, z, j), λij

∫ ∞
t

(t− t)ẋ(tij)e
λii(t−t)dt

〉
+ o(h).

Using the properties of the decaying exponential function, we
thus get

E
[
V
(
t+h, x(t+h), σ(t+h)

)∣∣x(t), σ(t) = i, σ(t+h) = j
]

= V (t,Πj(x(t)), j) +O(h). (25)

Substituting (24) and (25) in (23) results in

E
[
V
(
t+ h, x(t+ h), σ(t+ h)

) ∣∣σ(t), x(t)
]

= V (t, x(t), σ(t)) + λiihV (t, x(t), σ(t))

+ hFi(t, x(t), fi(t, z, u)) + h∂tV (t, x(t), σ(t))

+ h
∑
i 6=j

λijV (t,Πj(t, x(t), u), j) + o(h).

We can now invoke the definition of LV given in (17), from
where the desired expression (19) follows. �

D. Dynamic Programming

The next tool that we need is an analogue of the Hamilton-
Jacobi-Bellman equation for Markov jump DAEs. This is done
by using the result of Proposition 3 to address the single player



optimal control problem in Markov jump DAEs. For a given
initial condition, let us consider the cost functional defined by

J (u) = E
[∫ T

t0

c(s, x(s), u(s), σ(s)) ds+ cT (x(T ), σ(T ))

]
(26)

where the expectation is taken over all possible sample paths
of σ conditioned upon x(0) and σ(0). We consider the optimal
control problem

inf
u
J (u)

subject to Eσ(x)ẋ = fσ(t, x, u), x(0) = x0.
(27)

As is well-known, there are two common techniques for
addressing such optimization problems. We can get candidates
for open-loop optimal control which satisfy the necessary
conditions provided by Pontryagin’s Maximum principle. But
since we are interested in optimal feedback policies in our
game formulation, here we use the dynamic programming
approach which provides sufficient conditions for optimal
feedback control law. While in the general case, this approach
leads to coupled partial differential equations, we will show
that for linear dynamics with quadratic cost, the problem of
finding optimal control boils down to solving coupled Riccati
differential equations. Before going further, we remark that dy-
namic programming has been extensively used in the literature
for solving optimal control problems for stochastic systems.
The following result is in particular a generalization of the
optimality conditions developed for Markov jump processes
with ODEs [1], [33], [34], where unlike ODEs, the state
jumps between consistency spaces of the constituent DAE
subsystems.

To implement the dynamic programming approach, we
introduce the value function V : R×Rn×S → R defined via
conditional expectation as

V (t, z, i) := inf
u[t,T ]

E
[∫ T

t

c(s, x(s), u(s), σ(s)) ds

+ cT (x(T ), σ(T ))

∣∣∣∣x(t) = z, σ(t) = i

]
(28)

satisfying the boundary condition

V (T, z, σ) = cT (z, σ).

Intuitively speaking, V (t, z, i) is the cost-to-go from time t
with x(t) = z, σ(t) = i, as it provides the minimum value of
the cost functional in (26) over the interval [t, T ].

Proposition 5. Consider the optimal control problem (27)
under the assumptions (A1) and (A2). If, for each i ∈ S , the
optimal cost-to-go function V (·, ·, i) is continuously differen-
tiable in its arguments, and satisfies (A3), then it satisfies the
following partial differential equation:

−∂tV (t, z, i) = inf
u∈domCi(t,·)

[
c (t, z, u, i)+Fi(t, z, fi(t, z, u))

+ λiiV (t, z, i) +
∑

j 6=i,j∈S

λijV (t,Πj(t, z, u), j)
]
, (29)

for every z ∈ Ci(t, u), with the boundary condition
V (T, z, i) = cT (z, i).

Remark 1. As a result of Proposition 5, the optimal control
problem for randomly switching DAEs is solved by comput-
ing, for each i ∈ S , V (·, ·, i) that satisfies (29) with the
terminal condition V (T, z, i) = cT (z, i); and the optimal
control (at each time instant) is obtained by minimizing the so-
called Hamiltonian on the right-hand side of (29). In contrast
to the standard HJB equation that appears in the optimal
control problems associated with nonlinear control systems
[24], there is a coupling in (29) between the value functions
associated with individual subsystems. One also has to be
careful about the fact that the equation (29) is only required
to hold for z ∈ Ci(t, u). Also, when solving for V (·, ·, i), the
minimization problem on the right-hand side of (29) contains
the terms V (t,Πj(t, z, u), j), j 6= i which depend on u. In
Example 1 below, it is shown that this dependence on u can
be ruled out in certain cases.

Before giving the proof of this result, we present some
examples to see how (29) can be solved.

Example 1. Consider the nonlinear system in R2 with two
subsystems described as,

σ = 1 :

{
ẋ1 = f1(x1, x2) + g1(x1, x2)u

0 = x2 − x1h1(x1)− u
(30)

σ = 2 :

{
0 = x1 − x2h2(x2)− u
ẋ2 = f2(x1, x2) + g2(x1, x2)u

(31)

The jump maps are thus given by

x := (x1, x2)> 7→ Π1(x, u) =

(
x1

x1h1(x1) + u

)
and for the second subsystem

x = (x1, x2)> 7→ Π2(x, u) =

(
x2h2(x2) + u

x2

)
.

The cost function that we consider is

c(x, u, 1) = x2
1 + u2, and c(x, u, 2) = x2

2 + u2

with terminal cost given by

cT (x, 1) = a1x
2
1, and cT (x, 2) = a2x

2
2

for a1, a2 ≥ 0.
Let V (t, z, 1) := a1x

2
1, and V (t, z, 2) := a2x

2
2. With this

choice of value functions, for t with σ(t) = 1, we choose

µ∗(t, x) = arg min
u∈R

[
x2

1 + u2 + 2a1x1f1(x1, x2) + λ11a1x
2
1

+ 2a1x1g1(x1, x2)u− λ11a2(x1h1(x1) + u)2
]
,

so that

µ∗(t, x) = b11x1h1(x1)− b12x1g1(x1, x2)



where b11 := λ11a2/(1− λ11a2) and b12 := a1/(1− λ11a2).
Therefore, (29) takes the form

0 = (1+λ11a1)x2
1+2a1x1f1+(b212−2a1b

2
12−λ11a2b

2
12)x2

1g
2
1

+(b211−λ11a2(1+b11)2)x2
1h

2
1+b11(2(a1−b12)+λ11a2b12)x2

1h1g1

where we have suppressed the arguments of the functions
f1, g1, h1 for simplifying the expression. The foregoing equa-
tion holds if

f1(x1, x2) = c11x1 + c12x1g
2
1(x1, x2) + c13x1h

2
1(x1)

+ c14x1h1(x1)g1(x1, x2)

with appropriately chosen constants c1i, i = 1, 2, 3, 4.
Similarly, for t when σ(t) = 2, we compute

µ∗(t, x) = arg min
u∈R

[
x2

2 + u2 + 2a2x2f2(x1, x2) + λ22a2x
2
2

+ 2a2x2g2(x1, x2)u− λ22a1(x2h2(x2) + u)2
]
,

so that, with b21 := λ22a1/(1 − λ22a1) and b22 := a2/(1 −
λ22a1)

µ∗(t, x) = b21a1x2h2(x2)− b22x2g2(x1, x2).

Equation (29) then takes the form

0 = (1+λ22a2)x2
2+2a2x2f2+(b222−2a2b

2
22−λ22a1b

2
22)x2

2g
2
2

+(b221−λ22a2(1+b21)2)x2
2h

2
2+b21(2(a2−b22)+λ22a1b22)x2

2h2g2

and is satisfied if

f2(x1, x2) = c21x2 + c22x2g
2
2(x1, x2) + c23x2h

2
2(x2)

+ c24x2h2(x2)g2(x1, x2)

with appropriately chosen constants c2i, i = 1, 2, 3, 4.

As the next example, we study linear dynamics and
quadratic cost functionals. In such cases, it is seen that the
partial differential equation in (29) leads to a Riccati-like
differential equation. In the context of ODEs, such equations
can be found in [8], [35].

Example 2. Let us consider the cost functional

J (u) = E

[∫ T

t0

x(s)>Qσ(s)x(s) + u(s)>Rσ(s)u(s) ds

+ x(T )>Mσ(T )x(T )
]

subject to the dynamics Eσẋ = Aσx + Bσu, where σ is a
Markov process over the finite set S as introduced in Sec-
tion II. Let us take V (t, z, i) = (Eiz)

>Pi(t)(Eiz), for some
nonnegative definite matrix valued function Pi(·). Following
the same calculations as in the linear autonomous case, we let

Fi(t, z, Eiω) = (Eiz)
>Pi(t)(Eiω) + (Eiω)>Pi(t)Eiz.

Choosing the matrices Si, Ti as in Proposition 2, it is seen
that

EiΠi,in = S−1
i SiEiTi

[
0

−Bi,2

]
= 0 (32)

and using the fact that EiΠi,aut = Ei, we have

V (t,Πj(t, z, u), j) = z>Π>j,autE
>
j PjEjΠj,autz = z>E>j PjEjz.

For z ∈ Ci(t, u), we have that z = Πi,autz + Πi,inu, so
that V (t,Πj(t, z, u), j) also depends on u. As a result, the
minimization problem in (29) can be solved by computing

inf
u

[
c (t, z, u; i) + Fi(t, z, Aiz +Biu) +

∑
j∈S

λijV (t, z, j)
]

= inf
u

[
u>Riu+ z>(E>i PiAi +A>i PiEi + λiiE

>
i PiEi)z

+ z>E>i PiBiu+ u>B>i PiEiz + z>(Qi +
∑
j 6=i

λijE
>
j PjEj)z

]
We will provide conditions to obtain Pi(t) such that (29) holds
for z ∈ Ci,u for the optimal choice of u. We write z = zi,aut +
zi,in, where zi,aut := Πi,autz, and zi,in := Πi,inu, so that zi,aut
does not depend on the input, and zi,in depends on the input
directly. For each i ∈ S, let us introduce the matrix Oi,

Oi := Qi +
∑
j 6=i

λijE
>
j PjEj .

The right-hand side of (29) is obtained by taking the infimum
of the following Hamiltonian over all u ∈ Rm:

z>i,aut(E
>
i PiAi +A>i PiEi + λiiE

>
i PiEi +Oi)zi,aut

+ 2z>i,aut

[
E>i Pi(AiΠi,in +Bi) + Π>i,autOiΠi,in

]
u

+ u>
(
Ri + Π>i,inOiΠi,in

)
u,

where we used the fact that Πi,aut being a projector has the
property that Πi,autzi,aut = zi,aut. It is thus seen that the optimal
input is

µ∗(t, z) = −R̃−1
σ

(
B̃>σ Pσ(t)Eσ + Π>σ,inOσΠσ,aut

)
z

where R̃i := Ri + Π>i,inOiΠi,in is positive definite, and we let
B̃i := Bi +AiΠi,in. Using the notation,

Gi(Pi, Bi) := B̃>i Pi(t)Ei + Π>i,inOiΠi,aut

and plugging the expression for µ∗ in (29), we obtain

E>i ṖiEi + E>i PiAiΠi,aut + Π>i,autA
>
i PiEi + λiiE

>
i PiEi

+ Π>i,autOiΠi,aut −G>i (Pi, Bi)R̃
−1
i Gi(Pi, Bi) = 0, (33)

which must be solved backward in time for Pi with boundary
condition E>i Pi(T )Ei = Mi, for each i ∈ S.

Remark 2. The term Gi(Pi, Bi) captures the difference ob-
served in the Riccati differential equation because of the
dependence of the algebraic constraints on the input. In
particular, if the algebraic constraints do not depend on the
input, then Πi,in = 0, which results in R̃i = Ri and
Gi(Pi, Bi) = B>i Pi(t)Ei. This case was studied in our
conference paper [40].

Remark 3. Unlike linear ODEs, it is not true for DAEs that
the same quadratic function satisfying the Hamilton-Jacobi-
Bellman equation satisfies also the Euler-Lagrange equations



[18]. Therefore, it is also possible to choose another structure
for the value function and work out different equations for
computing the feedback control. As an alternate choice for
the value function, one may choose

V (t, z, i) = (Eiz)
>Pi(t)z

where P (t) is such that Pi(t)>Ei = E>i Pi(t) ≥ 0.
This completes the examples, and we now prove Proposi-

tion 5 and derive (29) in the process.
Proof of Proposition 5. According to the principle of optimal-
ity, it can be shown that V in (28) satisfies the relation

V (t, z, i) = inf
u[t,t+h]

E
[∫ t+h

t

c(s, x(s), u(s), σ(s)) ds

]
+ E

[
V (t+ h, x(t+ h), σ(t+ h))

∣∣∣x(t) = z, σ(t) = i
]
(34)

for every z ∈ Ci(t, u(t)) and arbitrarily small h > 0. Using
the definition of infinitesimal generator, we have

E
[
V (t+ h, x(t+ h), σ(t+ h))

∣∣x(t) = z, σ(t) = i
]

=

V (t, z, i) + hLV (t, z, i) + o(h), (35)

and similarly, we can obtain

E
[∫ t+h

t

c(s, x(s), u(s), σ(s)) ds
∣∣∣x(t) = z, σ(t) = i

]
= h c(t, z, u(t), i) + o(h). (36)

Plugging the values from (35) and (36) in (34) yields

V (t, z, i) = inf
u[t,t+h]

{
V (t, z, i) + h c (t, z, u(t), i)

+ hLV (t, z, i) + o(h)
}
.

Cancelling out V on both sides, we get

0 = inf
u[t,t+h]

[
h c (t, z, u(t), i) + hLV (t, z, i) + o(h)

]
.

Divide the last expression by h, and let h go to zero, then the
term o(h)/h vanishes. Plugging the expression for LV (t, z, i)
from (19) results in

0 = inf
u

[
c (t, z, u, i) + Fi(t, z, fi(t, z, u)) + λiiV (t, z, i)+∑

j 6=i

λijV (t,Πj(u, z), j) + ∂tV (t, z, i)
]
,

or equivalently, for every z ∈ Ci(t, u),

− ∂tV (t, z, i) = inf
u

[
c (t, z, u, i) + Fi(t, z, fi(t, z, u))+

λiiV (t, z, i) +
∑
j 6=i

λijV (t,Πj(t, z, u), j)
]

which is the desired equality. �

V. OPTIMAL STRATEGIES FOR NONCOOPERATIVE GAME

We now use the theoretical results from previous section to
address the game problem formulated in Section II.

A. General Case

The general case concerns an N -player dynamic nonco-
operative game, where the objective of player p ∈ N =
{1, . . . , N} is to find a strategy µp to minimize the cost Jp
given in (7), that is,

inf
µp

Jp(µ1, . . . , µN ), (37a)

subject to
Eσẋ = fσ(t, x, µ1, . . . , µN ) (37b)

where we recall that σ is a Markov process over the finite
set S and µp : R × Rn × S → Up belongs to the class of
memoryless pure feedback strategies. To state the main result
on existence of Nash equilibrium and the optimal strategies,
we introduce the notation

f∗i,p(t, z, up) := fi(t, z, µ
∗
1, . . . , µ

∗
p−1, up, µ

∗
p+1, . . . , µ

∗
N )

Π∗i,p(t, z, up) := Πi(t, z, µ
∗
1, . . . , µ

∗
p−1, up, µ

∗
p+1, . . . , µ

∗
N )

C∗i,p(t, up) := Ci(t, µ
∗
1, . . . , µ

∗
p−1, up, µ

∗
p+1, . . . , µ

∗
N )

c̃∗p(t, z, up, i) := cp(t, z, µ
∗
1, . . . , µ

∗
p−1, up, µ

∗
p+1, . . . , µ

∗
N , i).

Theorem 1. Consider the N -player noncooperative stochastic
differential game where the objective of each player is de-
scribed by (37a) subject to (37b). Assume that, for each player
p ∈ N ,
• There exist continuously differentiable functions Vp(·, ·, i),

and Fi,p, i ∈ S, which satisfy (A3) and the coupled partial
differential equations

− ∂Vp(t, z, i)

∂t
= min
up∈Up

[
Fi,p(t, z, f

∗
i,p(t, z, up)) + c̃∗p(t, z, up, i)

+ λiiVp(t, z, i) +
∑
j 6=i

λijVp(t,Π
∗
j,p(t, z, up), j)

]
(38)

for every z ∈ C∗i,p(t, up), with the boundary condition

Vp(T, z, i) = cp,T (z, σ(T )).

• For a player p ∈ N , given a triplet (t, z, i), let µ∗p(t, z, i) :=
u∗p, with u∗p being the minimizer of the optimization problem

min
up∈Up

[
Fi,p(t, z, f

∗
i,p(t, z, up)) + c̃∗p(t, z, up, i)

+ λiiVp(t, z, i) +
∑
j 6=i

λijVp(t,Π
∗
j,p(t, z, up), j)

]
subject to z ∈ C∗i,p(t, up),

and assume that the functions µ∗p : R × Rn × S → Up are
such that the pair (Ei, fi(µ

∗
1, · · · , µ∗N )) satisfies (A1) and

(A2) for each i ∈ S.
Then, the memoryless pure-feedback strategies{
µ∗p(t, x, σ(t)) | p ∈ {1, . . . , N}

}
constitute a Nash

equilibrium and the minimum cost for each player is
Vp(t0, x0, σ(t0)).

Proof. For each player p ∈ {1, . . . , N}, the minimum cost-
to-go function from an initial state z at an initial time t is



described by the corresponding value function Vp : R×Rn ×
S → R given by

Vp(t, z, i) := inf
up[t,T ]

E
[ ∫ T

t

c̃∗p(s, x(s), up(s), σ(s)) ds

+ cp,T (x(T ), σ(T ))
∣∣∣x(t) = z, σ(t) = i

]
(39)

where x is the solution of the system Eσẋ = f∗σ,p(t, x, up)
over the interval [t, T ]. The function Vp satisfies the boundary
condition

Vp(T, x(T ), σ(T )) = cp,T (x(T ), σ(T )). (40)

According to Proposition 5, this function satisfies the equation
(38) and the strategy µp which makes Jp(µ∗1, . . . , µp, . . . , µ∗N )
equal to its minimal value is given by µ∗p. The existence of
solutions is guaranteed due to Proposition 1. According to
Definition 1, such strategies constitute the Nash equilibrium
and the corresponding optimal cost for each player p is
Vp(t0, x0, σ(t0)).

From implementation viewpoint, the major obstacle in the
application of Theorem 1 lies in solving the coupled partial
differential equations in (38), as the computation of optimal
strategy directly follows from knowing Vp. In certain cases, we
can formulate (38) as finite dimensional ordinary differential
equations or even as static algebraic equations, as we discuss
such cases in the sequel.

B. Linear Quadratic Dynamic Game

We consider the particular case of the games with quadratic
cost functions for each player and linear dynamics with
Markovian switching in the matrices describing the con-
straints. In this case, the coupled partial differential equations
from Theorem 1 lead to coupled Riccati differential equations
and the optimal feedback strategies are described by linear
time-varying functions of the state.

The differential game (37) is now described by taking the
cost functional of player p ∈ {1, . . . , N} as,

Jp(µ1, . . . , µn) = E
[
x(T )>Mσ(T ),px(T )

]
+ E

[∫ T

t0

x(s)>Qσ(s),px(s) + up(s)
>Rσ(s),pup(s) ds

]
(41)

where Qi,p is symmetric positive semidefinite, Ri,p is symmet-
ric positive definite for each i ∈ S, and fix up to be of form (6).
For the sake of simplicity, we have taken the cost functional
for player p in (41) to be independent of other players. The
dynamical system which describes the evolution of the state
is given by

Eσẋ = Aσx+

N∑
p=1

Bσ,pup, (42)

where Ei, Ai ∈ Rn×n and Bi,p ∈ Rn×mp , i ∈ S . To work
out a specific case of Theorem 1 for the aforementioned case,

we introduce the following notation in the spirit of Example 2.
For each i ∈ S, p ∈ N , let Oi,p := Qi,p+

∑
j 6=i λijEjPj,pEj ;

let Πi,p := Ti

[
0

−Bi,p

]
, where Bi,p denotes the last (n− νi)

rows of the matrix Bi,p. Next, we let B̃i,p := (AiΠi,p+Bi,p),
R̃i,p := (Ri,p + Π>i,pOi,pΠi,p), and finally, let

Gi(Pi,p, Bi,q) := B̃>i,qPi,p(t)Ei + Π>i,qOi,p(t)Πi,aut. (43)

Corollary 1. Consider the N -player quadratic game where
the objective of each player is described by (37a), (41), subject
to (42). For each i ∈ S, assume that the pair (Ei, Ai)
is regular with index one and that there exist symmetric
nonnegative definite matrix-valued Pi,p(·), p ∈ {1, . . . , N},
which satisfy the condition7

Π>i,pOi,pΠi,q = 0, ∀p, q ∈ N , p 6= q, (44)

and solve the coupled Riccati differential equations

E>i Ṗi,pEi + E>i Pi,pAiΠi,aut + Π>i,autA
>
i Pi,pEi + λiiE

>
i Pi,pEi

+ Π>i,autOi,pΠi,aut −G>i (Pi,p, Bi,p)R̃
−1
i,pGi(Pi,p, Bi,p)

−
N∑

q=1,q 6=p

G>i (Pi,p, Bi,q)R̃
−1
i,qGi(Pi,q, Bi,q)

−
N∑

q=1,q 6=p

G>i (Pi,q, Bi,q)R̃
−1
i,qGi(Pi,p, Bi,q)

+
∑
q 6=p

G>i (Pi,q, Bi,q)Πi,qR̃
−1
i,qΠ>i,qOi,pGi(Pi,q, Bi,q) = 0,

(45)
with the boundary condition

E>i Pi,p(T )Ei = Mi,p. (46)

Then, the memoryless feedback optimal strategies

µ∗p(t, x) = −R̃−1
σ(t),pGσ(t)(Pσ(t),p(t), Bσ(t),p)x (47)

constitute the Nash equilibrium, and the optimal value for
player p is given by x>0 E

>
σ(0)Pσ(0),pEσ(0)x0.

Proof. The proof relies on considering the value function for
player p ∈ {1, . . . , N} to be Vp(t, x, σ) := x>E>σ Pσ,p(t)Eσx
and showing that the conditions of Theorem 1 hold. It is seen
from the calculations carried out in Example 2 that,8 with
Pi,p satisfying (45) and (46), equation (38) indeed holds for
each i ∈ S, p ∈ {1, . . . , N}. We just need to check that the
closed-loop system satisfies (A1) and (A2) under the feedback
policies (47). Indeed, this is seen from the fact that if the
pair (Ei, Ai) is regular and index-one, then the pair (Ei, Ai−
KiEi), for any matrix Ki ∈ Rn×n, is also regular and index-
one. To see that, let Si, Ti be the matrices as in Proposition 2,

7In our conference paper [40], instead of (44), the feedback strategies were
computed under the stronger condition that Πi,p = 0 for each i ∈ S, and
each player p ∈ N .

8One difference compared to Example 2 is that we write z ∈ Rn as z =
Πi,autz+

∑N
p=1 Πi,pup and condition (44) eliminates the products between

up and uq which arise due to algebraic constraints.



and let SiKiS
−1
i :=

[
K̂i,11 K̂i,12

K̂i,21 K̂i,22

]
. Choose T̂i := Ti

[
I 0

K̂i,21 I

]
,

then it is seen that

(SiEiT̂i, Si(Ai −KiEi)T̂i) =

([
I 0
0 0

]
,

[
Ji − K̂i,11 0

0 I

])
.

For each mode i ∈ S, the optimal policy µ∗p indeed results in
the closed-loop system of the form Eσẋ = Aσx − KσEσx,
where Ki =

∑N
p=1Bi,pR̃

−1
i,p (B̃>i,pPi,p(t)+Π>i,pOi,pTiSi), and

hence (A1) and (A2) hold.

Compared to the Riccati differential equation derived in the
single player case in Example 2, we now see more complicated
expressions in (45), which involve products of the matrices
Pi,p and Pi,q that describe the value function for players
p and q, respectively. This adds the difficulty in solving
such equations numerically and even establishing existence of
solutions.
Remark 4. The feedback strategies given in (47) have a
particular structure in the sense that u(t) can be seen as
a matrix multiplying Eσ(t)x(t) and in the proof of Corol-
lary 1, we saw that the resulting closed-loop system is of
the form Eσẋ = (Aσ − KσEσ)x and that this particular
feedback preserves the index of the system. Moreover, if we
let (ẑ1

i , ẑ
2
i ) := T̂−1

i x to be the new coordinates for the closed-
loop system in mode i ∈ S, then we see that ẑ1

i remains
unchanged when the system switches to mode i but we have
ẑ2
i = 0. In other words, ẑ1

i does not jump, but ẑ2
i may jump.

Remark 5. Corollary 1 only provides one possible set of
feedback strategies and it is subject to the solution of (45).
But it is not necessarily the unique solution to the linear
quadratic game under consideration. As stated in Remark 3,
a different choice of the value function for each player would
result in a different set of Riccati-like differential equations,
and also different feedback strategies. It is instructive to recall
that this nonuniqueness feature also arises in the simplest case
of nonswitching deterministic ODEs [4, Remark 6.16].

VI. INFINITE HORIZON LINEAR QUADRATIC GAME

An important class of problems within the framework of lin-
ear quadratic dynamic games deals with cost functionals over
infinite horizon. In generalizing the finite-horizon approach to
deal with such cases, one has to make sure that the solutions
of the coupled Riccati equations converge to constant matrices
asymptotically in time. This issue is addressed in the sequel by
studying the feasibility of time-invariant stationary problems.

The differential game (37) is now described by taking, for
each p ∈ {1, . . . , N},

Jp(µ1, . . . , µn) = E
[∫ ∞

0

x(s)>Qσ(s),px(s)

+ up(s)
>Rσ(s),pup(s) ds

]
(48)

where it is assumed that Qi,p is symmetric positive semidefi-
nite, and Ri,p is symmetric positive definite for every i ∈ S.
The dynamical system under consideration is given by (42).
The terminal state is taken out of the cost function since x

must converge to zero asymptotically for the integral to be
finite.

A. Stabilizability of Markov Jump Linear DAEs

For the cost over infinite horizon to be finite, we need to
make sure that there is at least one input (in the class of
admissible feedbacks) which can steer the state to the origin.
This question is equally formulated by asking whether the
system under consideration (42) is stabilizable. We refer the
reader to a survey [16] for different notions of controllability
for nonswitching DAEs. Here, we are interested in studying
stabilizability for randomly switching DAE, and toward that
end, we rewrite (42) with single player

Eσẋ = Aσx+Bσu. (49)

We say that a collection of triplets {(Ei, Ai, Bi)}i∈S , is mean-
square stabilizable over {Qi}i∈S if, for each i ∈ S , there
exists Li such that the consistency space of (Ei, Ai−BiLiEi)
is Ci,aut = Qi, and there exist positive definite matrices
{Pi}i∈S solving

A>i PiEi+E>i PiAi+λiiE
>
i (Pi−PiBiLi−L>i B>i Pi)Ei+∑

j 6=i,j∈S

λijE
>
j PjEj ≤ −Qi, on Ci,aut, (50)

for every matrix Qi which is positive definite on Ci,aut.

Proposition 6. If the set of triplets {(Ei, Ai, Bi)}i∈S is
mean-square stabilizable over some finite family of subspaces
{Qi}i∈S , then there exists a feedback law which renders
system (49) mean-square asymptotically stable.

In the definition of stabilizability, it is required that Li
should not depend on the choice of Qi, whereas Pi may
change as a function of Qi. In contrast to the result of
Proposition 4, the condition in (50) allows us to compute sta-
bilizing gains which render the closed-loop system stable for
given values of transition rates associated with the Markovian
switching.

Proof of Proposition 6. Let Li and Pi, i ∈ S, be such that
(50) holds, and choose u = −LσEσx in (49), so that the
closed-loop system is

Eσẋ = (Aσ −BσLσEσ)x. (51)

We show that (51) is mean-square asymptotically stable, while
using (50), by working with the stochastic Lyapunov function

V (x, i) = (Eix)>Pi(Eix).

The infinitesimal generator for this Lyapunov function was
computed in (22), that is,

LV (x, i) = x>((Ai−BiLiEi)>PiEi+E>i Pi(Ai−BiLiEi))x

+ λii(Eix)>Pi(Eix) +
∑
j 6=i

λij(Ejx)>Pj(Ejx). (52)



Let Πi,orth be a matrix with orthonormal columns which span
Ci,aut. From condition (50), it then follows that9

LV (x, i) ≤ −x>Qix ≤
−λmin(Π>i,orthQiΠi,orth)

λmax(E>i PiEi)
V (x, i).

Let ε := mini∈S
λmin(Π>

i,orthQiΠi,orth)

λmax(E>
i PiEi)

; then, by Dynkin’s for-
mula

E
[
V (x(t), σ(t))

∣∣x(0) = x0, σ(0) = i
]
≤ e−εtV (x0, i).

From the definition of V , it follows that E
[
|x(t)|2

∣∣∣x0, σ(0)
]

converges to the origin asymptotically. �

B. Solution of the Infinite-Horizon Game

We can now use the aforementioned property of stabiliz-
ability to provide a solution to the N -player game where
the player p minimizes the cost function (48) subject to the
dynamics given in (42). Thus, compared to the finite-horizon
case, we seek value functions Vp with terminal condition
limT→∞ E[Vp(x(T ), σ(T ))] = 0, for each p ∈ N . The
following result generalizes the single-player ODE based result
[17, Theorem 5] to the multi-player case where dynamics are
given by DAEs. To state the result, we use the same notation
as in Corollary 1 with one slight modification: Instead of time-
varying Gi, we use its time-stationary counter part

Gi(P i,p, Bi,q) = B̃>i,qP i,pEi + Π>i,qOi,pΠi,aut,

where Oi,p = Qi,p +
∑
j 6=i λijE

>
j P j,pEj . The corresponding

stationary version of the Riccati equation is written as

E>i P i,pAiΠi,aut + Π>i,autA
>
i P i,pEi + λiiE

>
i P i,pEi

+ Π>i,autOi,pΠi,aut −G
>
i (P i,p, Bi,p)R̃

−1
i,pGi(P i,p, Bi,p)

−
N∑

q=1,q 6=p

G
>
i (P i,p, Bi,q)R̃

−1
i,qGi(P i,q, Bi,q)

−
N∑

q=1,q 6=p

G
>
i (P i,q, Bi,q)R̃

−1
i,qGi(P i,p, Bi,q)

+
∑
q 6=p

G
>
i (P i,q, Bi,q)Πi,qR̃

−1
i,qΠ>i,qOi,pGi(P i,q, Bi,q) = 0.

(53)
To state the result, we need the following notation

Ai,p := Ai −
∑
q 6=p

Bi,qR̃
−1
i,qG

>
i (P i,q, Bi,q),

where R̃i,p := (Ri,p + Π>i,pOi,pΠi,p).

Theorem 2. Consider the N -player quadratic game where the
objective of each player is described by (37a), (48), subject to
(42). For each i ∈ S, assume that
• the pair (Ei, Ai) is regular with index one,

9We use the fact that, for each x ∈ Ci,aut ⊆ Rn, there is a unique z ∈ Rνi ,
νi = dim(Ci,aut) such that x = Πi,orthz, z = Π>

i,orthx, and |x| = |z|. This
leads to x>Qix ≥ λmin(Π>

i,orthQiΠ
orth
i )|x|2, while we already have the

bound V (x, i) ≤ λmax(E>
i PiEi)|x|2.

• there exist symmetric positive definite matrix-valued P i,p,
p ∈ {1, . . . , N} which solve (53), and (44) holds with Oi,p,

• for each player p, the triplets {(Ei, Ai,p, Bi,p)}i∈S is sta-
bilizable over {Qi,p}i∈S , and for each i ∈ S , the matrix
Qi,p in (48) is positive definite on the subspace Qi,p.

Then, the static feedback optimal strategies

µ∗p(t, x) = −R̃−1
σ(t),pG

>
σ(t)(P i,p, Bi,p)x (54)

constitute the Nash equilibrium, and the optimal value for
player p is given by x>0 E

>
σ(0)Pσ(0),pEσ(0)x0.

Proof. We recall that the matrix Ri,p is positive definite, and
Qi,p is positive definite on Qi,p for each i ∈ S, p ∈ N . Under
the stabilizability assumption, there exist matrices Li,p such
that, for the closed-loop system

A
>
i P̃i,pEi + E>i P̃i,pAi

+ λiiE
>
i (P̃i,p − P̃i,pBi,pLi,p − L>i,pB>i,pP̃i,p)Ei+∑

j 6=i

λijE
>
j P̃j,pEj ≤ −Qi,p − L>i,pRi,pLi,p

holds on Qi,p for some positive definite matrix P̃i,p, i ∈ S .
The foregoing equation was obtained from (50) by replacing
Qi,p on the right-hand side by the matrix Qi,p+L>i,pRi,pLi,p,
which is positive definite on Ci,aut. To show that the strategies
(54) constitute a Nash equilibrium, let us now analyze the cost
of player p with (a not necessarily optimal) input up(t) =
−Lσ(t),px(t), while the other players adopt the strategy (54).
In this case, by letting Ṽp(z, i) = (Eiz)

>P̃i,p(Eiz), we get

Jp(µ∗1, . . . , µ∗p−1, up, µ
∗
p+1, . . . , µ

∗
N )

= E

[∫ ∞
0

x(s)>
(
Qσ(s),p + L>σ(s),pRσ(s),pLσ(s),p

)
x(s) ds

]

≤ E

[∫ ∞
0

−LṼp(x(s), σ(s)) ds

]
≤ Ṽp(x(0), σ(0))

where, in the last inequality, we used Dynkin’s formula and
the fact that E

[
|x(t)|2

]
converges to zero with the chosen

control input as t goes to infinity. Thus, the cost Jp, for
each player p ∈ N , is bounded by Ṽp(x(0), σ(0)) obtained
from (not necessarily optimal) input up(t) = −Lσ(t),px(t).
Also, in case of finite-horizon problems over the interval
[t0, T ], it is seen from (41) that the optimal cost J ∗p is a
monotonically nondecreasing function of the terminal time T .
Thus, the solutions of the Riccati differential equations (45)
given by Pi,p(·) are bounded and monotonically nondecreasing
functions of time. As T goes to infinity, each of the matrices
Pi,p(t) converges to a constant matrix P i,p that satisfies (53),
which is obtained from (45) by setting Ṗi,p to 0.

VII. CASE STUDY I: INPUT-OUTPUT MODELS IN
ECONOMICS

The dynamic input-output (IO) analysis plays an important
role in understanding the interdependencies among industries
of an economy. In particular, the Leontief model has been used



for development of economic growth plans, social policies,
and the life cycle assessment in environmental sciences [22].
In the description of these models, the state x ∈ Rn is the
vector of the output levels with each component xp ∈ R
denoting the total output of industry p, and y(t) is final
demand vector. Another essential element in the model is
the matrix Hσ ∈ Rn×n, called the Leontief input-output
function: the (p, q) entry of the matrix Hσ represents the
amount of commodity p used by per unit of production of
industry q. We denote by Eσ the possibly singular capital
matrix function. Both Hσ and Eσ are constant matrices for a
given σ as the market and technology usually do not change
quickly over a period of time. The process σ denotes the
disruptive changes in the economy that can be caused by
different types of events including natural disasters, technology
upgrade, and government policies. The framework of DAEs
without switching has been widely used for Leontief models.
To accommodate sudden changes being modeled by σ, we
assume that these events occur in a stochastic manner that can
be modeled by a Markov chain, which results in

x(t) = Hσx(t) + y(t) + Eσẋ(t). (55)

The demand vector y(t) is specified over a period of time
from t0 to T . Demand can be increased and reduced by each
industry to make profit. Consider that y(t) can be represented
by y(t) =

∑n
p=1 bp(yp(t) − up(t)), where bp ∈ Rn is an

n−dimensional vector with its p-th element being 1, but 0
otherwise. The variable up(t) ∈ R is the amount of resource
spent by p-th industry to meet the corresponding demand,
and it is of interest to minimize this effort. In addition, each
industry aims to regulate its output xp to a desired level x̄p
without adjusting the demand too significantly. This fact can be
captured by an n−person game problem with each individual
p solving the following optimal control problem:

Jp = E

[∫ T

t0

(xp(s)− x̄p)2 + rσ(s),pu
2
p(s) ds

]
, (56)

where rσ(t),p is the weighting factor that tradeoffs between
the control and the deviation of the output from the desired
trajectory. This problem falls into the framework addressed
in Section 5. The Leontief model can be rewritten in the
following form for computational convenience:

Eσ ż = Aσz + hσ +

n∑
p=1

bpup (57)

where z = x − x, Ai := I − Hi, and hi(t) = Aix −∑n
p=1 bpyp(t).
Finding control inputs as a solution to the n-person game

problem described above is an extension to the linear-quadratic
case in Section 5. We let the value function to take the
following generalized form:

Vp(t, z, i) = (Eiz)
>Pi,p(t)(Eiz) + (Eiz)

>vi,p(t) + wi,p(t)

where Pi,p(t) ∈ Rn×n is positive definite, vi,p(t) ∈ Rn, and
wi,p(t) ∈ R. Working with the notation B̃i,p := bp + AiΠi,p

as before, and applying the result of Theorem 1, the optimal
strategy is given by

up(t) = −R̃−1
σ,p

[
Gσ(Pσ,p(t), B̃σ,p)(x − x) + Wσ,p(t)

]
where Wi,p(t) := B̃>i,pvi,p(t) +

∑
j 6=i λijΠ

>
i,pE

>
j vj,p(t), and

Pi,p(t) is obtained by solving the backward Riccati differential
equation (45) with boundary condition Pi,p(T ) = 0, and Qi,p
a diagonal matrix with 1 only in p-th row. The vector-valued
function vi,p(·) is obtained by solving the differential equation

E>i v̇i,p(t) = E>i Pi,p(t)hi(t) + Π>i,autA
>
i vi,p(t)

+
∑
j∈S

λijE
>
j vj,p(t)−

n∑
q=1

G>i (Pi,q, Bi,q)R̃
−1
i,q B̃

>
i,qvi,p(t)

− 2

n∑
q=1

G>i (Pi,p, Bi,q)R̃
−1
i,qWi,q(t)

+ 2
∑
q 6=p

G>i (Pi,q, Bi,q)R̃
−1
i,qΠ>i,qOi,pΠi,qR̃

−1
i,qWi,q(t)

−
n∑
q=1

G>i (Pi,q, Bi,q)R̃
−1
i,qΠi,q

∑
j 6=i

λi,jE
>
j vj,p(t)


with terminal condition vi,j(T ) = 0. For computing the value
function, we need to solve for wi,p(t), which is given by

ẇi,p(t) =

n∑
j=1

λijwi,j(t)+h
>
i vi,p(t)−

n∑
q=1

W>i,qR̃
−1
i,q B̃

>
i,qvi,p(t)

+
∑
q 6=p

W>i,qR̃
−1
i,qΠ>i,qOi,pΠi,qR̃

−1
i,qWi,q(t)

−
n∑
q=1

W>i,qR̃
−1
i,qΠi,q

∑
j 6=i

λi,jE
>
j vj,p(t)


with terminal condition wi,j(T ) = 0.

VIII. CASE STUDY II: ROBUST CONTROL OF MARKOV
JUMP DAES

We now address an application of our tools in controller
synthesis for Markov jump DAEs subject to disturbances in
the dynamics. For linear time-invariant plants, H∞-controllers
address the issue of worst-case design subject to unknown
additive disturbances and uncertainties in plants.10 While the
problem was originally studied in the context of frequency
domain, several research works from the mid 80’s have shown
that a time-domain characterization of these controllers uses
generalized Riccati differential equations which are closely
related to the ones found in linear quadratic dynamic games.
This naturally draws connections between H∞-control design
problems and the game-theoretic approaches [2]. In particular,
H∞-optimal control problem is reformulated as minimax

10The notation H∞ denotes Hardy space of complex-valued functions of
a complex variable, which are analytic and bounded in the open right-half
complex plane. For a continuous-time, linear time-invariant system, the H∞-
norm of the transfer function matrix G is defined as supω∈R µmax(G(jω)),
where µmax denotes the largest singular value.



opitmization problem in time-domain, and hence they form
a particular class of a two-player zero-sum game where the
controller can be viewed as the minimizing player and the
disturbance as the maximizing player.

For Markovian jump systems with ODEs, this problem was
studied in [30]. In this section, we adopt this viewpoint to
design H∞ controllers which cater for the worst-case effect of
the disturbance. In particular, we consider Markov jump DAEs
with the control input u and the disturbance w, described by

Eσẋ = Aσx+Bσu+Dσw, x(0) = x0. (58)

We will impose the following assumption on the system
dynamics for this section, which basically says the algebraic
constraints do not depend on the input u, or the disturbance
w. In other words, for each i ∈ S, we have

Ti

[
0
Bi

]
= 0, and Ti

[
0
Di

]
= 0. (59)

The zero-sum game between the control input u and the
disturbance w is set up by taking the quadratic performance
index, parameterized by γ > 0:

Jγ(µ, ν) = E
[∫ T

t0

x(s)>Qσ(s)x(s) + u(s)>Rσ(s)u(s)

− γ2w(s)>w(s) ds− γ2x>0 Mσ(0)x0

]
, (60)

where Qi,Mi are symmetric positive semidefinite and Ri
is symmetric positive definite for each i ∈ S . The first
player chooses the strategy µ so that the input u = µ(t, x)
minimizes the cost function and the second player chooses the
strategy ν to define the function w and the initial condition
x0 to maximize the cost function. It is assumed that there
exist nonempty function spaces U ⊂ L2([t0, T ];Rm) and
V ⊂ L2([t0, T ];Rm) × Rn such that for each u ∈ U and
(w, x0) ∈ V , the solution of system (58) is uniquely defined.
The upper value of this game is

V := inf
µ∈U

sup
ν∈V
Jγ(µ, ν). (61)

It is noted that for each u, one can take x0 = 0 and w = 0
and hence, supν∈V Jγ(µ, ν) ≥ 0; consequently, V ≥ 0 for
every γ > 0. The case V = 0 is the only case of interest as
the value of the game will be infinite if V > 0. If γ∗ is the
smallest value of γ for which the game admits a finite value
(V = 0), then this value characterizes the L2 gain from the
disturbance to the state, that is,

γ∗ = inf
µ∈U

sup
ν∈V

J (µ, ν)1/2

(‖w‖2 + x>0 Mσ(0)x0)1/2

where J (µ, ν) = E
[∫ T
t0
x(s)>Qσ(s)x(s) +

u(s)>Rσ(s)u(s)ds

]
. We now have the following result

which relates the value of γ for which V = 0 (with x0 = 0)
to the Riccati differential equations associated with the game.

Theorem 3. Consider the two player zero-sum game with
quadratic performance index (60) subject to the dynamic
constraints (58) under the condition (59). For each i ∈ S,
assume that the pair (Ei, Ai) is regular with index one and
that there exist symmetric nonnegative definite matrix-valued
Pi(·), which solve the coupled Riccati differential equations

E>i ṖiEi + E>i PiAiΠi,aut + Π>i,autA
>
i PiEi + λiiE

>
i PiEi

− E>i Pi
(
BiR

−1
i B>i −

1

γ2
DiD

>
i

)
PiEi

+
∑
j 6=i

λijΠ
>
i,autE

>
j PjEjΠi,aut + Π>i,autQiΠi,aut = 0 (62)

on Ci,aut, with boundary condition Pi(T ) = 0 for some γ > 0,
and furthermore

γ2Mi − E>i Pi(t0)Ei ≥ 0.

Then the game has a finite value, that is, V = 0, and the
corresponding minimax strategy which attains this upper value
is µ∗(t, x) = −R−1

σ(t)B
>
σ(t)Pσ(t)Eσ(t)x.

This result can be proved using the arguments similar
to Corollary 1. For the minimizing player, we choose the
value function V (t, x, σ) := x>E>σ Pσ(t)Eσx, and for the
maximizing player, the value function is −V (t, x, σ), where
P (·) satisfies the equation (62). The case of inifinite-horizon
can be treated similarly as in Section VI by setting Ṗi to 0,
for each i ∈ S, and solving the resulting algebraic Riccati
equation.

A. Numerical Solvability

Let us now briefly discuss the issue of solving the coupled
Riccati equation (62). For the sake of simplicity, consider the
stationary case over infinite horizon, so that Ṗ is set equal
to zero. We know that for each i ∈ S, there exist invertible
matrices Si, Ti such that

Ei = S−1
i ÊiT

−1
i , and Ai = S−1

i ÂiT
−1
i

where

Êi :=

[
Iνi×νi 0

0 0

]
, and Âi :=

[
Jνi×νi 0

0 I(n−νi)×(n−νi)

]
.

In the following, we also use the notation B̂i := SiBi, D̂i :=
SiDi, and

Ĵi :=

[
Jνi×νi 0

0 0(n−νi)×(n−νi)

]
.

Plugging these values of Ei and Ai in (62), multiplying from
left by T>i and from right by and Ti, and using the notation
P̂i = S−>i PiS

−1
i , we get (with Ṗ = 0)

Ê>i P̂iĴi+Ĵ
>
i P̂iÊi−Ê>i P̂i

(
B̂iR

−1
i B̂>i −

1

γ2
D̂iD̂

>
i

)
P̂iÊi

+λiiÊ
>
i P̂iÊi+Ê

>
i T
>
i

∑
j 6=i

λijE
>
j PjEj +Qi

TiÊi = 0



The advantage of this last matrix equation is that it separates
out the coupled Riccati algebraic equations in two parts.
Because of the special structure of Êi, one can use the existing
solvers for Riccati algebraic equation to compute Pi, i ∈ S.
Based on the algorithm proposed in [23], it turns out that if
we use a line search method for γ, and an iterative procedure
to handle the coupling, then this algorithm is seen to converge
to a solution under the usual hypotheses. This technique was
used to study the following academic example.

Example 3. Consider a Markov switched DAE (58) with
two subsystems. For the first subsystem, the quadruple
(E1, A1, B1, D1) is given by:

(E1, A1) =
([

1 0 0
0 1 0
0 0 0

]
,
[−1 2 0
−2 −1 0
0 0 1

])
,

(B1, D1) =
([

1 0 0
]>
,
[
0 1 0

]>)
.

It can easily be checked that for this system Π1(x) = Π1,autx,
and C1 = C1,aut = im Π1,aut. In particular,

Π1,aut =
[

1 0 0
0 1 0
0 0 0

]
, C1 = {x ∈ R3 |x3 = 0}.

For the second subsystem, the quadruple (E2, A2, B2, D2) is
given by:

(E2, A2) =
([

0 1 0
1 0 1
0 0 0

]
,
[

2 −1 2
−1 −2 −1
1 0 0

])
,

(B2, D2) =
([

1 0 1
]>
,
[
0 1 0

]>)
,

and once again, we have Π2(x) = Π2,autx, and C2 = C2,aut =
im Π2,aut, where

Π2,aut =
[

0 0 0
0 1 0
1 0 1

]
, C2 = {x ∈ R3 |x1 = 0}.

We consider continuous-time Markov process over S = {1, 2},
and choose the parameters of the rate-transition matrix to be

λ11 = −1, λ12 = 1, λ22 = −2, λ21 = 2.

Using the numerical methods described in this section, and
choosing Qi to be identity on Ci, we find the solutions of
Riccati equations, corresponding to, γ = 7.53, which results
in

P̂1 =
[−3.60 −2.67 0
−2.67 17.55 0

0 0 1

]
, P̂2 =

[
3.86 −1.83 0
−1.83 9.71 0

0 0 1

]
.

Hence, the L2 gain from the disturbance to state is γ∗ ≤ 7.53.

IX. CONCLUSION

In this article, we have considered multi-player stochas-
tic differential games with algebraic constraints embedded
in the dynamics. Theoretical tools related to computation
of the infinitesimal generators, and derivation of Hamilton-
Jacobi-Bellman equation have been developed for Markov
jump DAEs. In the game setting, these tools have provided
ways to compute Nash equilibrium by solving coupled partial
differential equations. In the particular case of linear quadratic
dynamic games, the problem of computing Nash equilibrium
is reformulated as a solution to coupled Riccati differential
equations, which under appropriate stabilizability assumption,

reduce to generalized algebraic Riccati equations for infinite-
horizon games. From application viewpoint, we have com-
puted minimax robust control for Markov jump DAEs with
disturbances in dynamics. As an immediate aftermath of the
results developed in this paper, we are interested in addressing
the cases where the cost-functionals include a risk sensitivity
factor. One can also generalize the scope of the results of this
paper to consider systems where the matrices Ei are not nec-
essarily square. Several physical systems, such as multibody
dynamics in mechanics, are modeled as semi-explicit DAEs in
Hessenberg form of index 2 or higher, and it is of interest to
generalize the results to cover such cases. Further applications,
especially the ones in the context of Leontief input-output
systems, are being considered to understand interdependencies
and resiliency of critical infrastructures. Another interesting
application arises in the context of power systems, as the DAEs
are particularly suitable for modeling such systems [14]. It
remains to be seen whether the particular structure of these
systems bring computational tractability in implementing the
solutions proposed in this paper.
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