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Abstract: This article addresses output feedback stabilization of continuous-time nonlinear
systems by choosing control actions from a finite set. Working under the assumption that the
system under consideration is passive and large-time norm observable, we propose a static
feedback mapping, from the output space to the finite set of control actions, which is shown to
be practically stabilizing if the convex hull of certain control actions (in the chosen finite set)
contains the origin in its interior. Consequently, to construct this stabilizing feedback, it suffices
to have, in addition to a zero symbol, another m+ 1 elements in the control set which form an
m-simplex in Rm (the input, and output space).
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1. INTRODUCTION

The design of advanced mechatronics and robotics systems
often has to deal with extreme environmental conditions,
such as, cryogenic temperature or ultra-high vacuum set-
ting, and consequently several design constraints have
to be taken into account. These constraints restrict the
choice of the sensor systems, actuator systems, as well
as, the information processing and control mechanism.
For instance, in a networked robotics systems, the limited
capacity of the communication network enforces the real-
time information from the sensor systems and from the
controller to be quantized before it can be transmitted
via the network. The quantization process produces infor-
mation loss that can lead to a performance degradation
of the overall systems. Among many others, the seminal
paper (Elia and Mitter, 2001) discusses the design of
control systems under minimal information / quantization
levels for linear single input systems case. The study was
continued in (Kao and Venkatesh, 2002) for multiple input
case of linear systems. In the networked control systems
setting, the papers (Cortés, 2006; Jafarian and De Persis,
2015; De Persis and Jayawardhana, 2012) present various
analysis and design methods that incorporate the quan-
tization effect in the control design. Another example is
the design of mechatronics systems with limited actuation,
such as, a fixed set of constant actuator systems in Ocean
Grazer (Barradas-Berglind et al., 2016; Wei et al., 2017),
or a fixed configuration of constant thruster systems in the
space rockets, which can only provide piecewise constant
actuation with limited discrete values. In this paper, we
shall address the constrained control problem, where the
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focus is on designing control actions with limited informa-
tion from sensors, and limited/minimal actuation levels.

To describe our control problem, let us consider linear
systems described by

Σlin :

{
ẋ = Ax+Bu
y = Cx

(1)

where the state x(t) ∈ Rn, the input and output signal
u(t), y(t) ∈ Rm and (A,B,C) are system’s matrices with
appropriate dimension. As we consider limited actuation /
information transmission, the control input u can only take
values from a finite discrete set U := {0, u1, u2, . . . , up}
with ui ∈ Rm for each i = 1, . . . , p. For such systems, as-
suming we have a stabilizing output feedback law y 7→ Ky,
two questions are particularly relevant for stabilization
when the actuation set U is finite: a) how to map Ky
to an element in U and b) how to determine the minimal
number of elements in U . By addressing these questions,
with generic output maps and nonlinear dynamics, our aim
is to design φ : Rm → U , with U discrete (and minimal),
such that u = φ(Ky) ∈ U practically stabilizes Σlin.

The question of finding the minimal set U for feedback
stabilization has received considerable attention. The first
step in this regard is, what should be the minimal cardi-
nality of the set U . The primary results in this direction
state that if the number of bits per sample (rate of com-
munication) is greater than the intrinsic entropy of the
system, then the system is stabilizable in some appropriate
sense. Such relations are collected in the discrete-time
linear setting by (Nair et al., 2007). For the continuous-
time systems, the articles by (Colonius and Kawan, 2009)
and (Colonius, 2012) develop similar relations for linear



systems, but their bounds on minimal bit-rates for stabi-
lization of nonlinear systems are rather conservative.

The question of designing the mapping φ : Rm → U has
also been addressed in different forms. Note that, with U
being discrete, the range of φ determines a partition of the
output space containing as many regions as the number
of elements in the set U . When U is a regular grid in a
compact set in Rm, for example {−N,−N + 1, . . . , N −
1, N}m with 2N + 1 being the number of quantization
level per input dimension, then φ can be the standard
(uniform) quantization operator. In this case, the existing
works on quantized control systems are directly applicable.
We refer the works of (Delchamps, 1990; Tatikonda, 2000;
Ceragioli and De Persis, 2007; Fu and de Souza, 2009;
Jafarian and De Persis, 2015; De Persis and Jayawardhana,
2012). However, in these works, the state is shown to stay
in a ball around the origin whose size depends on the
number of quantization levels. One has to resort to time-
varying feedbacks to get desired accuracy with finitely
many quantization levels (Liberzon, 2003; Tanwani et al.,
2016). However, we will show in Section 3 of this paper
that a static mapping that assigns Ky to the nearest
element in U (practically) stabilizes the system under
certain structural assumptions.

With certain passivity structure in the dynamics, Σlin can
be practically stabilized by using binary control for each
input dimension which translates to 2m + 1 elements in
U , e.g., U = {0} ∪ {−1, 1}m, see (Cortés, 2006; Jafarian
and De Persis, 2015). As a relaxation of these results, and
dealing with multi-input multi-output nonlinear systems,
we show that practical stabilization is achievable by simply
using m + 2 elements in U for a rather generic class of
passive systems.

Passive systems are well-studied in literature on dynam-
ical control systems, as they model physical phenomena
exhibited by almost all thermo-chemo-electromechanical
systems (van der Schaft et al., 2013; Ortega et al., 2013).
The passivity property can be related to the dynamics of
the energy variable of a system. It describes the energy
dissipation process and energy exchange mechanism with
the environment through the (input/output) ports. In
particular, for passive systems, the rate of change of the
system’s “stored energy” never exceeds the power supplied
by the environment through its external ports. We refer
interested readers to the various expositions on passive
systems in (Sepulchre et al., 2012; Ortega et al., 2013;
Khalil, 2014; van der Schaft, 2016).

When quantization effect is of a particular concern, the
interconnection of passive systems and quantizers has been
studied for the past decade in various different contexts.
The tutorial paper (Jayawardhana et al., 2011) presents
the practical stability analysis of passive systems in a
feedback loop with a quantizer using an adapted circle
criterion for nonsmooth systems. For distributed control
systems, the paper (De Persis and Jayawardhana, 2012)
analyzes networked passive systems through a quantized
communication channel. The contribution of this paper
lies in studying control strategies for passive systems with
minimal control actions.

The rest of the paper is organized as follows. In Section 2,
we provide some preliminaries on set-valued dynamics re-

sulting from discontinuous controls, and formulate the con-
trol problem. Our main results are presented in Section 3,
where we study practical stabilization of passive systems
under the nearest neighbor control approach. Illustration
via an academic example and concluding remarks are
provided in Sections 4 and 5, respectively.

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1 Preliminaries

Notation: For an element of a normed vector space, we
denote its norm by ‖ · ‖. The set Bε ⊂ Rn is defined
as, Bε := {ξ ∈ Rn|‖ξ‖ ≤ ε}. The inner product of two
vectors ν, γ ∈ Rm is denoted by 〈ν, γ〉. For a discrete set
U , its cardinality is denoted by card(U). The convex hull
of vertices from a discrete set B is denoted by conv(B).
The interior of a set S ⊂ Rn is denoted by int (S). For a
signal z : R+ → Rn, the essential supremum norm of z
over an interval I ⊂ R+ is denoted by ‖z‖I .
A set-valued mapping Φ : Rn ⇒ Rn is called upper
semicontinuous at x if for every open set X containing
Φ(x) ⊂ Rn, there exists an open set Ξ containing x such
that for all ξ ∈ Ξ, Φ(ξ) ⊂ X. Correspondingly, Φ is
upper semicontinuous if it is upper semicontinuous at every
point in Rn. Using the set-valued map Φ, consider now the
following differential inclusion

ẋ ∈ Φ(x) x(0) = x0. (2)

A Krasowskii solution x(·) on an interval I ⊂ R+ is an
absolutely continuous function x : R+ → I such that
(2) holds almost everywhere on I. It is maximal if it has
no right extension and it is a global solution if I = R+.
For any upper semicontinuous set-valued map Φ such that
Φ(ξ) is compact and convex for all ξ ∈ Rn, the following
properties have been established (see, e.g., Lemma 1 in
Jayawardhana et al. (2011)): (i). the differential inclusion
(2) has a solution; (ii). every solution can be extended to a
maximal one; and (iii). if the maximal solution is bounded
then it is global. For any discontinuous map F : Rn → Rn,
we can define an upper semicontinuous set-valued map Φ
by convexifying F as follows

K(F (x)) :=
⋂
δ>0

co(F (x+ Bδ))

where co(S) is the convex closure of S.

2.2 Stabilization with limited control problem

For the rest of this paper, we consider the following
nonlinear systems

Σ :

{
ẋ = f(x) + g(x)u
y = h(x)

(3)

where the state x(t) ∈ Rn, the output y(t) ∈ Rm and
the input u(t) ∈ U := {0, u1, . . . , up} with ui ∈ Rm for
all i = 1, . . . , p. The function f, g and h are assumed to
be C1 differentiable, f(0) = 0, g(x) is full-rank for all
x and h(0) = 0. We assume further that Σ is passive,
i.e., for all pair of input and output signals u, y we

have
∫ T
0
〈y(t), u(t)〉dt > −∞ for all T > 0 (Willems,

1972; van der Schaft, 2016; Ortega et al., 2013). By



the well-known Hill-Moylan conditions, the passivity of
Σ implies that there exists a positive definite storage
function H : Rn → R+ such that 〈∇H(x), f(x)〉 ≤ 0
and 〈∇H(x), g(x)〉 = h>(x). Without loss of generality,
we assume that the storage function H is proper, i.e. all
level sets of H are compact.

Using the passivity assumption on Σ, it is immediate
to see that u ≡ 0 implies that all level sets of H are
positively invariant. More precisely, for any c > 0, if
H(x(0)) ≤ c then H(x(t)) ≤ c for all t ≥ 0. In other
words, if we initialize the state of Σ such that x(0) ∈ Ωc :=
{ξ|H(ξ) ≤ c} with u ≡ 0 then x(t) ∈ Ωc for all t ≥ 0.
We will use this property later to establish the practical
stability of our closed-loop systems in conjunction with the
following observability notion from Hespanha et al. (2005).
System (3) has the large-time norm observability property
if there exist τ > 0, γ, χ ∈ K∞ such that the solution x of
(3) satisfies

‖x(t)‖ ≤ γ(‖y‖[t1,t2]) + χ(‖u‖[t1,t2])
for all x(0), u, t1 ≥ 0, t2 ≥ t1 + τ , and each t ∈ [t1, t2]. In
particular, we will use the large-time norm observability
property for the autonomous system (with u = 0):

ẋ = f(x)
y = h(x).

}
(4)

In this case, large-time norm observability of (4) implies

∃ τ > 0, γ ∈ K∞ such that, for each t1 ≥ 0, x(0) ∈ Rn,
‖x(t)‖ ≤ γ(‖y‖[t1,t2]), ∀t2 ≥ t1 + τ, t ∈ [t1, t2]. (5)

We note that in the standard passivity-based control
literature, the notion of zero-state observability or zero-
state detectability is typically assumed for establishing
the convergence of the state to zero in the Ω-limit set.
However, these notions cannot be used to conclude the
boundedness of the state trajectories given the bound
on the output trajectories. Therefore, instead of using
these notions, we will use the above large-time norm
observability for deducing the practical stability based on
the information on y in the Ω-limit set.

Practical output-feedback stabilization with lim-
ited control (POS-LC): For a given system Σ as in (3)
and for a given ball Bε with ε > 0, determine the (minimal)
elements ui, i = 1, . . . , p for U and determine φ : Rm → U
such that the closed-loop system of (3) with u = φ(y)
satisfies x(t)→ Bε as t→∞ for all initial condition x(0).

In our problem formulation, both the determination of
elements in U , as well as, the design of the practical
stabilization mapping φ constitute our control problem.
To solve this problem, we will work under the following
basic assumption:

(A0) The system Σ in (3) is passive with a proper storage
function H and, the corresponding autonomous sys-
tem (4) is large-time norm-observable for some τ > 0
and γ ∈ K∞.

3. NEAREST NEIGHBOR CONTROL

As a solution to the aforementioned problem, we provide
conditions on the set U followed by the description of the
static map φ which practically stabilizes the system. For

efficiency in practical implementation, in our design, we
work with minimal number of elements in the set U which
yield the desired performance using the static feedback
only. Toward this end, the only assumption we associate
with the set U is the following:

(A1) For a given set U := {0, u1, u2, . . . , up}, there exists
a minimal index set I ⊂ {1, . . . , p} such that the set
V := {ui}i∈I ⊂ U defines the vertices of a convex
polytope satisfying, 0 ∈ int (conv (V)).

An immediate consequence of (A1) is the following lemma,
which is used in the derivation of our main result.

Lemma 1. Consider a discrete set V := {v1, . . . , vq} ⊂ Rm
such that 0 ∈ int(conv (V)). Then, there exists CV > 0
such that the following implication holds for each y ∈ Rm

‖y‖ > CV ⇒ ∃ vi ∈ V s.t. ‖vi + y‖ < ‖y‖. (6)

Proof. First we observe that any point ṽ ∈ Rm that is
closer to the origin than to any point vi ∈ V is contained
in the solution set of the linear inequality

[v1 . . . vq]
>
ṽ ≤ 1

2

[
‖v1‖2 . . . ‖vq‖2

]>
(7)

where v1, . . . , vq ∈ V. Let us denote the solution set of

(7) by Ṽ. In other words, the set Ṽ is defined by the
intersection of q half-spaces described by each row of the

inequality (7), so that Ṽ is a closed convex polyhedron. It

remains to show that Ṽ is bounded. Indeed, boundedness
implies that we can choose CV = max

ṽ∈Ṽ
(‖ṽ‖), such that BCV

is the smallest ball containing the set Ṽ. By construction

of Ṽ, for any point y ∈ Rm \ BCV , there is an element
vi ∈ V such that ‖vi + y‖ < ‖y‖.

To show that Ṽ is bounded, we observe that, under (A1),
there exists δ > 0 such that Bδ ⊂ conv(V). Thus, for every

ṽ ∈ Ṽ, δ ṽ
‖ṽ‖ ∈ conv(V). Hence, there exist λi ≥ 0 such

that
∑q
i=1 λi = 1 and δ ṽ

‖ṽ‖ =
∑q
i=1 λivi. Consequently,

from (7), it follows that

δ
ṽ>ṽ

‖ṽ‖
=

q∑
i=1

λiv
>
i ṽ ≤

1

2

q∑
i=1

λi‖vi‖2

and hence ‖ṽ‖ ≤ 1
2δ

∑q
i=1 λi‖vi‖2. �

Using the result of Lemma 1 and the assumptions intro-
duced thus far, we can define the function φ which maps
the measured outputs to the discrete set U to achieve
practical stabilization.

Proposition 2. Consider a nonlinear system Σ as in (3)
satisfying (A0), along with a discrete set U ⊃ V satisfying
(A1) and a scalar CV satisfying (6). For a given ε > 0
assume that

γ(CV) ≤ ε.

Then by defining

φ(y) := arg min
v∈U

{‖v + y‖} (8)

the control law u = φ(y) globally practically stabilizes Σ
with respect to Bε.

Proof. Suppose that φ(y) = {ui}i∈J for some J ⊂
{1, . . . p} and 0 /∈ {ui}i∈J . It follows from (8) that {ui}i∈J



are the closest points to −y and it implies that

〈φ(y),−y〉 ∈ {‖ui‖‖y‖ cos(θi,y) | i ∈ J}
⇔ 〈φ(y), y〉 ∈ {−κi,y‖ui‖‖y‖ | i ∈ J}

where θi,y is the angle between the vectors ui and−y which
lies strictly between −π/2 to π/2, and κi,y := cos(θi,y) >
0, accordingly. Otherwise, 0 is (also one of) the nearest
element(s) of U to −y, in which case,

〈φ(y), y〉 ∈ {0}
⋃
{−κi,y‖ui‖‖y‖ | i ∈ J}

or 〈φ(y), y〉 = 0 if φ(y) is a singleton and is given by 0.

Based on this property of 〈φ(y), y〉, we can now analyze
the behaviour of the closed system which is given by

ẋ = f(x) + g(x)φ(y) (9)

y = h(x).

As φ(y) is a non-smooth operator, we consider instead the
following differential inclusion

ẋ ∈ K
(
f(x) + g(x)φ(y)

)
= f(x) + g(x)K(φ(y)) (10)

y = h(x).

We note that the solution of (9) is also a solution of (10).
Therefore, the asymptotic behaviour of all solutions of (10)
determines the asymptotic behavior of the solution of (9).

Using the storage function H of the original system, for
all solutions of (10) we have that either
(i): φ(y) = {ui}i∈J =:W for some J ⊂ {1, . . . , p}, 0 /∈ W,
so that

Ḣ(x) = 〈∇H(x), ẋ〉 ∈ 〈∇H(x), f(x) + g(x)K(φ(y))〉
= 〈∇H(x), f(x)〉+ 〈y, conv(W)〉.

Based on the computation of 〈φ(y), y〉 for non-zero φ(y)
as before, it follows that

〈y, conv(W)〉
∈
[
− κy,max‖ui,max‖‖y‖ , −κy,min‖ui,min‖‖y‖

]
,

where ‖ui,max‖ := maxw∈W‖w‖, ‖ui,min‖ := minw∈W‖w‖,
κy,min = cos(θy,max) with θy,max be the largest angle
between −y and ui ∈ W and correspondingly, κy,max =
cos(θy,min) with θy,min be the smallest angle between −y
and ui ∈ W. Therefore,

Ḣ(x) ≤ −κy,min‖ui,min‖‖y‖;
or
(ii): φ(y) = {0}

⋃
{ui}i∈J =: O for some J ⊂ {1, . . . , p},

in which case, following the same arguments as in case (i)

Ḣ(x) ∈ 〈H(x), f(x)〉+ 〈y, conv(O)〉.
Since {0} is an element of O,

〈y, conv(W)〉 ∈
[
− κy,max‖ui,max‖‖y‖ , 0‖

]
,

where ‖ui,max‖ := maxw∈O‖w‖. This implies that

Ḣ(x) ≤ 0

As H(x(t)) is non-increasing in both cases of (i) and (ii)
and since H is proper, all solutions x(t) are bounded.
By the LaSalle invariance principle, all of such compact
trajectories converge to the largest invariant set M ⊂ Rn
where h(M) ⊂ Z where Z := {y ∈ Rm | 0 = φ(y)}.
In the invariant set M , φ(y(t)) = 0 for all t and corre-
spondingly, ‖y(t)‖ ≤ CV for each t ≥ 0. By the property
of large-time norm-observability of (4), it holds that in the
invariant set M

‖x(t)‖ ≤ γ(CV) ≤ ε ∀t ≥ 0,

Fig. 1. Illustration of the region of the solution of φ(y) for the
discrete set Uex as in (11) with θex = 0 and α = 1.

where the last inequality is due to the hypotheses of the
proposition. Thus, by the LaSalle invariance principle

x(t)→M ⊂ Bε as t→∞.
Due to the properness of H, the above arguments hold for
all initial conditions x(0) ∈ Rn. �

Example 1. A simple example of U in R2, satisfying (A1)
is as follows:

Uex :=

{
0, α

[
sin(θex)
cos(θex)

]
, α

[
sin(θex+ 2π

3 )
cos(θex+ 2π

3 )

]
, α

[
sin(θex+ 4π

3 )
cos(θex+ 4π

3 )

]}
= {0, uex,1, uex,2, uex,3}

(11)
with some θex ∈ R and α ∈ (0,∞). For this example,
(A1) holds by taking V := U \ {0}. Following the proof of

Lemma 1, we have {y |φ(y) = 0} = Ṽ := conv
(
Ṽp
)

where

Ṽp := α

{[
sin(θex+π

3 )
cos(θex+π

3 )

]
,

[
sin(θex+ 3π

3 )
cos(θex+ 3π

3 )

]
,

[
sin(θex+ 5π

3 )
cos(θex+ 5π

3 )

]}
.

Here, Ṽp contains all vertices of the convex polytope Ṽ. By

choosing CV = α, one can check that Ṽ ⊂ Bα. In the proof
of Proposition 2, it is established that the trajectories

converge to an invariant set M , such that h(M) ⊆ Ṽ.

Remark 3. If the dynamics in system (4) are linear, that
is, ẋ = Ax, y = Cx, and the pair (A,C) is observable, then
one can quantify γ in (5) using observability Gramian. In
particular, if for τ > 0

Wτ =

∫ τ

0

eA
>sC>CeAs ds

then x(t) = W−1τ

∫ t+τ
t

eA
>sC>y(s) ds, for each t ≥ 0, and

τ > 0, which in particular yields

|x(t)| ≤ ‖W−1τ ‖
∫ τ

0

‖eA
>sC>‖ ds sup

s∈[t,t+τ)
|y(s)|

for each t ≥ 0, and any τ > 0.

Corollary 4. Consider the system Σ as in Proposition 2
with U = λ{−N,−N+1, . . . , N−1, N}m, λ > 0 being the
step size and N a positive integer. Then the control law
u = φ(y), where φ is as in (8), globally practically stabilizes
Σ with respect to Bε where ε > 0 satisfies γ(λ

√
m) ≤ ε.

Proof. The proof follows mutatis mutandis the proof of
Proposition 2. The set U satisfies (A1) by taking V =
λ{−1, 0, 1}m \ {0}. It is also seen that CV = λ

√
m, and by

requiring γ(λ
√
m) ≤ ε, all the hypotheses of Proposition 2

hold. �



In contrast to the previous example where we used (11)
to construct the discrete set U in R2, the constant CV
in Corollary 4 is less than max

ṽ∈Ṽ ‖ṽ‖. This is due to

the choice of the set V in the proof of Corollary 4 that
is dense enough such that {y |φ(y) = 0} ⊂ conv(V). From
this corollary, one can conclude that two-level quantization
with N = 1 suffices to get a global practical stabilization
property. This binary control law restricts however the
convergence rate of the closed-loop system. It converges to
the desired compact ball in a linear fashion and may not
be desirable when the initial condition is very far from the
origin. The use of higher quantization level (e.g., N >> 1)
can provide a better convergence rate when it is initialized
within the quantization range.

Before we present our next result, let us recall again the
result in Proposition 2. In this proposition, when U is the
continuum space of Rm, the resulting control law is simply
given by u = −y, i.e., it is a unity output feedback law.
Using standard result in passive systems theory, the closed-
loop system will satisfy Ḣ ≤ −‖y‖2 and the application of
La-Salle invariance principle with zero-state detectability
allows us to conclude that x(t) → 0 asymptotically. As
the underlying system is passive, we can in fact stabilize it
with any sector-bounded nonlinearity u = −F (y) where
F satisfies k1‖y‖2 ≤ 〈F (y), y〉 ≤ k2‖y‖2 with 0 <
k1 ≤ k2. There are a number of reasons for considering
such feedback laws rather than the unity output feedback
law. For instance, we can attain a prescribed L2-gain
disturbance attenuation level or we can shape the transient
behaviour by adjusting the gains on different domain of y.
In the following proposition, we will consider such sector-
bounded output feedback law F (y) which is mapped to
our limited control input set U .

Proposition 5. Consider the system Σ satisfying (A0),
along with a discrete set U ⊃ V satisfying (A1) so that
there is a scalar CV such that (6) holds. Let φ be given
as in (8); and let F : Rm → Rm satisfy the sector
bound k1‖y‖2 ≤ 〈F (y), y〉 ≤ k2‖y‖2, 0 < k1 < k2 and
‖F (y)‖ ≤ k3‖y‖ with k3 > k1 for all y. Suppose that there
exists θ1,max > 0 such that for all z ∈ Rm

φ(z) 6= 0⇒ 〈φ(z),−z〉 ≥ ‖φ(z)‖‖z‖ cos(θ1,max). (12)

Assume that γ
(
CV/k1

)
≤ ε, for a given ε > 0. In addition,

if arccos(k1/k3) + θ1,max < π/2, then the control law
u = φ(F (y)) globally practically stabilizes Σ with respect
to Bε.

Proof. We prove the theorem by showing that for any
given y ∈ Rm, we have either

〈φ(F (y)), y〉 ∈ {−κi,y‖ui‖‖y‖ | i ∈ J}
for some J ⊂ {1, . . . , p} with κi,y > 0 and {ui}i∈J be the
nearest element(s) of U to −F (y); or when 0 ∈ φ(F (y))

〈φ(F (y)), y〉 ∈ {0}
⋃
{−κi,y‖ui‖‖y‖ | i ∈ J}

for some J ⊂ {1, . . . , p}, or 〈φ(F (y)), y〉 = 0 if φ(F (y)) is
a singleton and is given by 0. The rest of the proof follows
similarly to that of Proposition 2.

Similar to the arguments used in the proof of that propo-
sition, suppose that φ(F (y)) = {ui}i∈J for some J and
0 /∈ φ(F (y)). It follows from (8) that {ui}i∈J are the closest
points to −F (y) which implies that

〈φ(F (y)),−F (y)〉 ∈ {‖ui‖‖F (y)‖ cos(θi,1) | i ∈ J},

where θi,1 is the angle between the vectors ui and −F (y).
By the hypothesis of the proposition, |θi,1| ≤ θ1,max for
any i. On the other hand,

〈−F (y),−y〉 = ‖F (y)‖‖y‖ cos(θ2),

where θ2 is the angle between the vectors F (y) and y. Since
k1‖y‖2 ≤ 〈F (y), y〉 and ‖F (y)‖ ≤ k3‖y‖, the maximum
angle θ2 is given by θ2,max = arccos(k1/k3).
Hence the inner product between the vectors φ(F (y)) and
−y satisfies

〈φ(F (y)),−y〉 ∈ {‖ui‖‖y‖ cos(θi,3) | i ∈ J},
where |θi,3| ≤ |θi,1| + |θ2| ≤ θ1,max + θ2,max < π/2.
Therefore

〈φ(F (y)), y〉 ≤ {−κy‖ui‖‖y‖ | i ∈ J}
where κy = cos

(
θ1,max + arccos(k1/k3)

)
> 0.

Following the same line of arguments as in the proof
of Proposition 2, the solutions x(t) of the differential
inclusion (10) converge to the invariant set M , in which
φ(F (y(t))) = 0 for all t. Hence in M , ‖F (y(t))‖ ≤ CV for
all t. Since k1‖v‖2 ≤ 〈F (v), v〉 ≤ ‖F (v)‖‖v‖ holds for all
v ∈ Rm, it follows that ‖y(t)‖ ≤ CV

k1
for all t in M . By the

property of large-time norm-observability of (4), it holds
that in the invariant set M

‖x(t)‖ ≤ γ(CV/k1) ≤ ε ∀t,
where the last inequality is due to the hypotheses of the
proposition. Thus, by the LaSalle invariance principle

x(t)→M ⊂ Bε as t→∞.

4. EXAMPLE AND SIMULATION RESULTS

In this section, we will apply our main results to an
academic example and illustrate the behaviour of the
closed-loop system through a numerical simulation.

Example 2. Consider the following nonlinear system

Σex :


ẋ =

 −x2 + x23
x1 + x23

−x1x3 − x2x3

+

[
1 0
0 0
0 1

]
u

y =

[
x1
x3

] (13)

where x := [x1 x2 x3]
> ∈ R3 and y := [y1 y2]

>
, u :=

[u1 u2]
> ∈ R2. It can be checked that by using the proper

storage function H(x) = 1
2x
>x, the system Σex is passive.

Indeed, a straightforward computation gives us Ḣ = 〈y, u〉.
We will now show that Σex satisfies the large-time norm
observability condition. As the bound on x1 and x3 for
the large-time norm observability can directly be obtained
from the output y, we need to compute the bound on
x2. If we consider the sub-system of [ x1

x2
] with x1 as its

output (and is equal to y1), it is a linear system with

A =
[
0 −1
1 0

]
, B = [ 1 0

0 1 ], C = [1 0] and its input is [ x2
3 x

2
3 ]
>

.
Thus, as (A,C) is observable, we can choose the following
observability Gramian

Wπ =

∫ π

0

eA
>sC>CeAsds =

π

2

[
1 0
0 1

]
,

whose inverse is simply given by W−1π = 2
π I2 and

‖W−1π ‖ = 2
π . Then for any t > 0[

x1(t)
x2(t)

]
= W−1π

∫ t+π

t

eA
>sC>

(
x1(s)−

(
L ∗

[
x23
x23

])
(s)

)
ds,



Fig. 2. Simulation results of Σex using nearest neighbor control
approach with discrete input set Uex as in (11) and fixed
parameters θex = 0 and α = 0.1. The evolution of control
actions is plotted with shorter time frame to show the switch
before the state x and the output y finally enter the desired
forward invariant set.

where ∗ denotes the convolution operation and L is the
convolution matrix kernel given by L(t) = CeAt. Since
‖eAt‖ = 1 for all t, it follows then that∥∥∥∥[x1(t)

x2(t)

]∥∥∥∥
≤ ‖W−1π ‖

∫ t+π

t

∥∥∥eA>sC>
∥∥∥ ∥∥∥∥x1(s)−

(
L ∗

[
x23
x23

])
(s)

∥∥∥∥ds

≤ 2

π
π
(
‖y1‖[t,t+π] +

√
2‖y2‖2[t,t+π]

)
≤ 2‖y‖[t,t+π] + 4‖y‖2[t,t+π].

Since by the definition of y, ‖x1‖[t,t+π] = ‖y1‖[t,t+π] ≤
‖y‖[t,t+π] and ‖x3‖[t,t+π] = ‖y2‖[t,t+π] ≤ ‖y‖[t,t+π], it
follows from the inequality above that

‖x‖[t,t+π] ≤ 4
(
‖y‖[t,t+π] + ‖y‖2[t,t+π]

)
.

In other words, the function γ in (5) is given by γ(s) =
4(s+ s2). Note that when the output of Σex is only x1 or
x3, it is not large-time norm observable and it is even not
zero-state observable/detectable.

We will now use the result in Proposition 2 for practical
stabilization of Σex. We choose the control set to be Uex
given in (11), and the desired stability margin to be
ε = 0.5. Then, based on the function γ computed for the
system Σex, we get γ(CV) < 0.5 if CV ∈

(
0, − 1

2 + 1
4

√
6
]
.

By letting θex = 0 and α = 0.1 in (11), it is seen that
Σex is globally practically stable with respect to Bε, with
ε = 0.5, as confirmed by simulations reported in Figure 2.

5. CONCLUSIONS AND FURTHER RESEARCH

We have considered stabilization of continuous-time pas-
sive nonlinear systems, under appropriate observability
assumption, using output feedback where the control in-
put can switch between finitely many values. Our re-
sults provide a lower bound on the number of control
elements, and conditions on their configuration in input
space, which guarantee practical stability. We are currently
investigating an algorithmic procedure for designing the
finite control actions with minimal cardinality such that

the value of the constant CV is minimized. Questions
related to improving the convergence rate with more (than
necessary) control elements also require further research.
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