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Abstract— A differential microwave sensor, based on a pair of 

uncoupled microstrip lines each one loaded with a split ring 
resonator (SRR), is applied to the measurement of electrolyte 
concentration in deionized (DI) water. For that purpose, fluidic 
channels are added on top of the SRR gaps, the most sensitive 
parts of the structure. The operating principle is based on the 
measurement of the cross-mode insertion loss, highly sensitive to 
small asymmetries caused by differences between the reference 
liquid and the liquid under test (LUT). In this work, the 
reference liquid is pure DI water (the solvent), whereas the 
solution, DI water with electrolyte content, is injected to the LUT 
channel. The proposed sensor is able to detect electrolyte 
concentrations as small as 0.25 g/L, with maximum sensitivity of 
0.033 (g/L)-1.  The sensor is validated by measuring the 
concentration of three types of electrolytes, i.e., NaCl, KCl and 
CaCl2. Finally, the sensor is applied to monitor variations of total 
electrolyte concentration in urine samples. 
 

Index Terms— Microwave sensors, differential sensors, 
microfluidics, permittivity measurements, microstrip technology, 
split ring resonator (SRR), electrolyte concentration. 

I. INTRODUCTION 
lectrolytes are chemical substances that dissociate into 
cations and anions when dissolved in polar solvents, such 
as water, thereby modifying the electric and 

electromagnetic properties of the solvent. Particularly, 
changes in the conductivity and loss factor (or loss tangent) of 
the solvent are expected by the presence of electrolytes in it. 
Therefore, electrolyte concentration can be measured by 
means of methods or approaches sensitive to the conductivity 
or loss factor of the solution, and particularly through 
microwave techniques.  

Electrolytes are physiologically important since they play 
key roles in various vital functions, such as blood pH and 
pressure control, body hydration, nerve and muscle functions, 
etc. [1]. The most important primary ions of electrolytes in 
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blood and urine are sodium (Na+), potassium (K+), calcium 
(Ca2+), chloride (Cl-) and bicarbonate (HCO3−). Imbalances in 
the concentration of certain ions in blood or urine (the so-
called anion gap [2]) are indicative of certain pathologies. For 
instance, in urine the anion gap is defined as [Na+] + [K+] - 
[Cl-], where [*] denotes concentration, and typical values in 
urine samples not subjected to physiological pathologies 
should be comprised between 0 and -33 mEq/L. Ion 
concentration in blood and urine are typically measured by 
means of electrochemical systems, such as ion selective 
electrodes (ISE) [3], able to provide the individual 
concentration of specific ions, and consequently the anion gap. 
Measuring the total concentration of ions does not determine 
the anion gap, but may be indicative of an overall excess or 
defect of electrolytes, as compared to the typical levels found 
in “healthy” samples. Therefore determining the total 
electrolyte concentration in serum, plasma or urine through 
real-time low-cost systems (as compared to chemical systems) 
may be useful as a complementary diagnosis method.  

Within this context, this paper is focused on the 
measurement of electrolyte concentration in DI water using 
microwaves. The sensor is based on the variations of the 
complex dielectric constant (mostly related to variations in the 
conductivity or loss tangent) of DI water experienced by the 
presence of electrolytes dissolved in it. Such variations can be 
sensitively detected by means of a differential technique based 
on the measurement of the cross-mode insertion loss in a pair 
of microstrip lines loaded with split ring resonators (SRRs), 
and equipped with fluidic channels for liquid injection. The 
main advantage of this resonator-based approach is the high 
sensitivity and capability to detect small concentrations of 
electrolytes in water. 

Many sensing structures based on resonator-loaded lines 
have been proposed, and they can be categorized in three main 
groups: (i) frequency variation sensors [4]-[13], (ii) coupling 
modulation sensors [14]-[22] and (iii) frequency-splitting 
sensors [23]-[30]. In frequency variation sensors, the output 
variable is the frequency position of either a notch or a peak in 
the frequency response of a transmission line loaded with a 
resonant element (sometimes, the notch depth, or the peak 
magnitude, is also used as an additional output variable). 
Sensors based on this approach have been applied to different 
types of measurements, but, particularly, they have been used 
for dielectric characterization of solid [8]-[10] and liquid 
[6],[12],[13] samples. Symmetry disruption is the physical 
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principle in coupling modulation sensors [31],[32]. In such 
sensors, a transmission line is symmetrically loaded with a 
symmetric resonator uncoupled to it. Such uncoupling is 
achieved by using resonant elements exhibiting a symmetry 
plane of different electromagnetic sort than the symmetry 
plane of the line [31], [32]. However, by truncating symmetry 
(e.g., by means of a relative linear or angular displacement 
between the resonator and the line, or by means of an 
asymmetric dielectric loading), line-to-resonator coupling is 
activated, thereby generating a notch in the frequency 
response (with depth intimately related to the level of 
asymmetry). In such coupling modulation sensors the output 
variable is thus the notch depth, and they have been mostly 
applied to the measurement of spatial variables [14]-[22],[33]. 
Finally, in frequency splitting sensors, a transmission line is 
symmetrically loaded with a pair of (not necessarily 
symmetric) resonators coupled to it. Under perfect symmetry, 
a single notch at the fundamental resonance frequency of the 
resonant elements appears. However, if the resonators are 
asymmetrically unloaded, frequency splitting arises. In these 
sensors, similar to differential sensors, the output variables are 
the differential frequency and the differential depth of the 
generated notches, and these frequency-splitting sensors have 
been mainly applied to differential permittivity measurements 
[29],[30]. 

The previous sensors exhibit, in general, acceptable 
sensitivities and dynamic ranges, but they exhibit limited 
resolution, not being able to detect small variations of the 
variable of interest. This aspect is critical for the measurement 
of solute concentration in highly diluted solutions. Therefore, 
for the accurate measurement of electrolyte content in DI 
water solutions exhibiting concentrations in the range 1-10 g/L 
or even below, as pursued in this paper, novel strategies, 
highly sensitive to small concentrations, are needed. The 
above-mentioned sensing approach, based on the measurement 
of the cross-mode insertion loss in a pair of lines, each one 
loaded with a resonant element, provides the necessary 
sensitivity and resolution for the intended application. This 
approach was first demonstrated in [34],[35] by considering 
open complementary split ring resonators (OCSRRs) [36] as 
loading resonators (NaCl was the considered electrolyte in 
[35]).  

In this paper, it is demonstrated that sensitivity can be 
improved by replacing OCSRRs with SRRs. Moreover, sensor 
validation is carried out by considering three electrolytes, i.e., 
NaCl, KCl and CaCl2. An advantage of using SRRs instead of 
OCSRRs as sensing element is the fact that SRRs do not 
require vias, hence easing fabrication and contributing to 
enhance resolution, intimately related to the “level” of 
symmetry achieved when the differential structure is loaded 
with identical loads in both resonators (approaching to 
“perfect symmetry” is more feasible if vias are not present).  
In the last part of the paper, it is demonstrated that the 
proposed sensor may be useful to detect variations of total ion 
concentration in biological samples, particularly urine. This 
may be of interest for real-time monitoring of potential 
dysfunctions or anomalies, e.g., during disease treatment in 

hospital environments, related to extreme ion concentrations 
in such samples. 

II. STRUCTURE OF THE PROPOSED SENSOR, SENSING PRINCIPLE 
AND FABRICATION 

The proposed differential sensor consists of two parts: (i) the 
microwave structure, a FR4 substrate with a pair of uncoupled 
50 Ω lines each one loaded with a SRR, and (ii) the fluidic 
channels plus the mechanical accessories for liquid injection 
to the channels and for channel attachment to the substrate. 
The topology of the microwave structure is depicted in Fig. 1, 
where relevant dimensions are indicated. The dielectric 
constant and thickness of the considered substrate are er = 4.4 
and h = 1.6 mm, respectively. The fluidic channels are made 
of polydimethylsiloxane (PDMS), and are identical to those 
used in [30]. Channel dimensions are designated by hch 
(height), wch (width) and lch (length). The mechanical parts 
consist of a polyether ether ketone (PEEK) structure, that 
accommodates the fluidic connectors (necessary for liquid 
injection to the channels), and screws, used to fix the PEEK-
PDMS assembly on the substrate. In order to avoid substrate 
absorption, a dry film of clear polyester, with an estimated 
thickness of 50 µm and dielectric constant of 3.5, has been 
deposited on top of the SRRs. The top and lateral views of the 
channel plus mechanical parts are depicted in Fig. 2. The 
photograph of the whole sensing structure is shown in Fig. 3. 

 

Fig. 1. Topology of the microwave structure of the proposed sensor (a) and 
zoom of resonator (b). Dimensions are (in mm): LLT = 76.5, WLT = 2.79, 
l = 24, c = 1, w = 8.17, g = 0.2. The ground plane is depicted in grey. 

 

 

Fig. 2. Lateral (a) and top (b) views of mechanical and fluidic parts of the 
microwave sensor and relevant dimensions. Channel dimensions are: hch = 1.5 
mm, lch = 26 mm, wch = 4.6 mm; other relevant dimensions are: lf = 46 mm, 
wf = 12.6 mm, h1 = 3 mm, and h2 = 9 mm. 
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Fig. 3.  Photograph of the proposed sensor including the microwave structure, 
the fluidic channels (plus mechanical accessories) and connectors. 

 
The working principle of the proposed differential sensor is 

symmetry disruption, caused by an asymmetric dielectric load 
in the SRRs. Thus, in a sensing operation, the reference liquid 
is injected in one of the channels (designated as REF channel), 
whereas the liquid under test (LUT) is injected in the other 
channel (LUT channel). The output variable in the proposed 
sensor is the cross-mode insertion loss (or cross-mode 
transmission coefficient), highly sensitive to small 
asymmetries and, hence, very convenient to detect small 
differences between the REF and the LUT liquids. This is 
necessary in order to measure small concentrations of 
electrolytes in DI water (the purpose of this work). Thus, the 
considered REF liquid will be pure DI water (the solvent), 
whereas the LUT is the DI water solution with electrolyte 
content. 

According to the port definition of Fig. 1, the cross-mode 
transmission coefficient is given by [37] 

𝑆"#$% =
#
"
(𝑆"# − 𝑆)*)                             (1) 

This result is valid as long as the SRR-loaded lines are 
uncoupled. If the structure exhibits perfect symmetry, it 
follows that S21DC = 0 (note that the cross-mode insertion loss, 
i.e., the cross-mode transmission coefficient expressed in dB, 
should be ideally -¥ under perfect symmetry). However, if 
symmetry is disrupted, as occurs by injecting pure DI water in 
the REF channel and the electrolyte solution in the LUT 
channel, the cross-mode insertion loss should take finite 
values, and the maximum value should be indicative of the 
level of asymmetry. Therefore, the maximum level of the 
cross-mode insertion loss is considered the output variable in 
the proposed sensing structure. 

In practice, perfect symmetry is not achievable, as long as 
sensor fabrication involves several (“imperfect”) processes, 
including substrate etching, dry film deposition, and 
mechanical fabrication of the PDMS-PEEK assembly. Thus, 
certain level of cross-mode insertion loss is expected even by 
loading the REF and LUT channels with identical liquids. Let 
us designate the maximum of the modulus of the cross-mode 
transmission coefficient experimentally found with balanced 
loads as |S21DCBAL|. It is important to minimize |S21DCBAL| as 
much as possible, since it has direct impact on sensor 
resolution. Note that tiny differences between the REF liquid 

and the LUT liquid, which should provide a very small value 
of |S21DC|, may be obscured by |S21DCBAL|. Therefore, an 
accurate and rigorous sensor fabrication process, providing 
small |S21DCBAL|, is demanded for resolution optimization.   

III. EXPERIMENTAL VALIDATION 
The fabricated sensor has been validated by considering DI 

water solutions with different types of electrolytes, 
particularly, NaCl, KCl and CaCl2. These electrolytes have 
been considered since they are present in blood and urine and 
they play key roles in several vital functions.  

The first set of experiments has been done by injecting DI 
water solutions with different concentrations of NaCl in the 
LUT channel. In all the cases, pure DI water has been injected 
in the REF channel. The measured cross-mode insertion loss 
for the different NaCl concentrations is depicted in Fig. 4. 
Note that the cross-mode insertion loss resulting when the 
LUT channel is filled with pure DI water (balanced loading) is 
also included. S21DCBAL, expressed in dB, is found to be -38.95 
dB, which is a very reasonable value. NaCl concentrations as 
small as 0.25 g/L can be perfectly resolved by virtue of the 
small value of S21DCBAL. By increasing the electrolyte 
concentration, the cross-mode transmission coefficient (or 
insertion loss) also increases, as expected. In Fig. 5, we have 
depicted the dependence of the maximum value of the cross-
mode transmission coefficient, |S21DC|max, with the 
concentration of NaCl, i.e., [NaCl]. For small concentrations, 
the sensitivity, i.e., the variation of |S21DC|max with [NaCl], is 
very high, and it progressively decreases as [NaCl] increases. 
The maximum value of the sensitivity is found to be 0.033 
(g/L)-1, i.e., higher than the maximum sensitivity of the 
sensors proposed in [35], based on a similar approach, but 
using OCSRRs as sensing elements (in [35] the sensors were 
applied to the measurement of NaCl concentration, as well). 
From the results of Fig. 5, we have obtained the calibration 
curve, from which the concentration of NaCl can be inferred 
by measuring |S21DC|max. Such curve, with a correlation 
coefficient of R2 = 0.99966, is 

[𝑁𝑎𝐶𝑙]𝑔/𝐿 = −0.43 + 0.45𝑒
< =>?

@A

B.BCDEFG + 2 ∙ 10KL𝑒
< =>?

@A

B.BBF?G   (2) 
 

 
Fig. 4.  Cross-mode insertion loss for different values of NaCl concentration. 
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Fig. 5.  Variation of |S21
DC|max with [NaCl]. 

 
  Repetitiveness of the results is important for the practical use 
of the proposed sensors. Therefore, we have repeated the 
previous measurements by subsequently injecting in the LUT 
channel the DI water solutions with the NaCl concentrations 
indicated in Fig. 5. The results, also included in Fig. 5 and 
identified as Measurement 2, reveal that measurements are 
repetitive by virtue of the small differences with the first 
experimental campaign (Measurement 1).  

In the second set of experiments, KCl has been considered as 
solute. The variation of the cross-mode insertion loss and 
|S21DC|max with KCl concentration are depicted in Figs. 6 and 7, 
respectively. Repetitiveness of the results is also demonstrated 
(see Fig. 7). In this case, the calibration curve, with 
R2 = 0.99931, has been found to be 

 
[𝐾𝐶𝑙]𝑔/𝐿 = −0.11 + 0.14𝑒

< =>?
@A

B.B>CENG 
(3) 

and the maximum sensitivity is 0.032 (g/L)-1 

 
Fig. 6.  Cross-mode insertion loss for different values of KCl concentration. 
 

 

Fig. 7.  Variation of |S21
DC|max with [KCl]. 

 
Finally, we have prepared several solutions of CaCl2 in DI 

water, and we have also measured the cross-mode insertion 
loss, as well as |S21DC|max, for the different solute 
concentrations. The results are depicted in Figs. 8 and 9. The 
calibration curve, with R2 = 0.99905, in this case is 

[𝐶𝑎𝐶𝑙]𝑔/𝐿 = −1.76 + 1.29𝑒
< =>?

@A

B.BE>>?G + 3 ∙ 10KR𝑒
< =>?

@A

B.BBSESG   (4) 
 

and the maximum sensitivity is 0.021 (g/L)-1 

 
Fig. 8.  Cross-mode insertion loss for different values of CaCl2 concentration. 
 

 
Fig. 9.  Variation of |S21

DC|max with [CaCl2]. 
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IV. DISCUSSION AND COMPARISON TO OTHER FLUIDIC 
SENSORS FOR SOLUTE CONCENTRATION MEASUREMENTS 

Note that the dependence of |S21DC|max with the electrolyte 
concentration is not identical for KCl, NaCl and CaCl2, but 
similar. The relatively high sensitivity of the reported sensors 
is in part because the presence of electrolytes in DI water 
modifies substantially its conductivity (or loss tangent), 
provided the electrolyte molecules dissociate into anions and 
cations when dissolved in water. For a certain electrolyte 
concentration, ion concentration is determined by the 
molecular mass of the electrolyte. Therefore, since the 
conductivity depends on ion concentration, we cannot expect 
identical dependences of the cross-mode insertion loss with 
the electrolyte concentration for the different electrolytes 
considered. Moreover, conductivity depends also on ion 
mobility, also related to the atomic mass. Indeed, at 
intermediate concentrations (between 2.5 g/L and 20 g/L), the 
electrolyte that produces higher values of the cross-mode 
insertion loss is NaCl, which is coherent with the low value of 
the atomic mass of Na, as compared to K and Ca. However, 
the differences are not significant. On the other hand, for very 
small values of the electrolyte concentration (< 2.5 g/L), the 
accuracy is expected to be limited, and for large values (> 20 
g/L), |S21DC|max exhibits a quasi-saturation effect, and the 
dependence of the conductivity on ion concentration and 
mobility may be more complex. These facts may explain that 
at low and high electrolyte concentrations there is not a clear 
dependence of the cross-mode insertion loss with the ion 
concentration and atomic mass. Nevertheless, for a given 
electrolyte, the very good correlation coefficient that results by 
curve fitting, plus the repetitiveness of the results, reveals that 
the corresponding calibration curve is useful to determine its 
concentration. 

Besides the work [35], focused on the measurement of NaCl 
concentration in DI water by using a pair of OCSRR-loaded 
lines, other papers report solute concentration measurements 
in liquid solutions. In [38], the considered solute is also NaCl, 
whereas in [39]-[42], the proposed sensors are used for the 
measurement of glucose concentration in liquid solutions. 
Finally, in [43], both NaCl and glucose concentration 
measurements in DI water are reported. Table I compares 
these sensors in terms of maximum sensitivity, resolution and 
dynamic range. It is remarkable the sensor reported in [40], 
with a very good value of the sensitivity, taking into account 
that the considered solute is glucose, a substance that does not 
modify the water conductivity (or loss factor) as electrolytes 
do. If we focus on the sensors devoted to NaCl concentration 
measurements, we conclude that the sensor proposed in this 
paper provides the best combination of sensitivity and 
resolution. Moreover, sensor fabrication is simple (only a 
single metal layer is etched) and vias are not required. 
Therefore, the reported differential sensing structure, based on 
SRRs is very promising for the measurement of electrolyte 
content in very diluted liquid solutions.  

 
 

 

TABLE I 
COMPARISON OF VARIOUS MICROWAVE FLUIDIC SENSORS FOR 

SOLUTE CONCENTRATION MEASUREMENT IN LIQUID SOLUTIONS 
Ref. Max. sensitivity 

(dB/g/L) 
Resolution 

(g/L) 

Dynamic 
range (g/L) 

[35] 4.3 0.25 80 
[38] 0.005 2 10 
[39] 0.003 1 300 
[40] 1.75 1.5 5.5 
[41] 0.017 10 150 
[42] 0.003 5 300 

[43], Glucose 0.055 1 100 
[43], NaCl 1.609 0.5 100 

This work, NaCl 12.27 0.25 60 
 

V. CHARACTERIZATION OF URINE SAMPLES 
To further validate the proposed sensor, we have 

characterized several horse urine samples, with different levels 
of electrolyte concentrations (Na+, K+ and Cl-), which have 
been externally measured by means of an ISE electrochemical 
system (the electrolyte concentration measurements and the 
urine samples have been provided to us by the Biochemistry 
and Molecular Biology Department of Universitat Autònoma 
de Barcelona). From the measured values of the individual 
electrolyte concentrations (i.e., Na+, K+ and Cl-) for each 
sample, expressed in mEq/L, we have obtained the total 
concentrations by a simple addition. Note that the total 
concentration in mEq/L is proportional to the total ion 
concentration, a quantity of interest as it may be indicative of 
certain pathologies if certain limits are surpassed. The real-
time monitoring of possible variations in the total ion 
concentration in urine (or even in blood) may be also of 
interest to detect possible dysfunctions or anomalies, e.g., 
during disease treatment in hospital environments. Note that 
with the proposed sensor system, ion concentration variations 
as compared to a reference sample can be easily measured.  

The urine samples provided to us exhibit the total ion 
concentrations indicated in the right hand side column of Fig. 
10. By considering as reference liquid the urine sample with 
the highest level of ion concentration (615.8 mEq/L), the 
cross-mode insertion loss that results by injecting the different 
samples to the LUT channel are those depicted in Fig. 10. It 
should be mentioned that for monitoring changes in total ion 
concentration with time in a real scenario, the reference 
sample should be, obviously, the urine at the beginning of the 
test campaign. In our case, we have (arbitrarily) considered 
that the reference sample is the one with 615.8 mEq/L ion 
concentration, as mentioned above. 

The variation of |S21DC|max with the total ion concentration is 
depicted in Fig. 11. The calibration curve, with R2 = 0.99422, 
is (the total ion concentration has been designated as [*]) 

[∗]𝑚𝐸𝑞/𝐿 = −46.62 + 517.26𝑒
<X=>?

@A

B.BCNG + 428.68𝑒
<X=>?

@A

B.BBCDG  (5) 
and the maximum sensitivity has been found to be -0.00058 
(mEq/L)-1. From these results, we can envisage the application 
of this sensing principle to monitor electrolyte concentration 
variations in biological samples (e.g., urine and blood) in a 
real scenario. 
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Fig. 10.  Cross-mode insertion loss for different values of total ion 
concentration in urine samples. 

 
Fig. 11.  Variation of |S21

DC|max with total ion concentration in urine. 

 
VI. CONCLUSIONS 

  In summary, novel differential microwave fluidic sensors for 
electrolyte concentration measurements in diluted aqueous 
solutions, based on pairs of uncoupled lines loaded with split 
ring resonators (SRRs), have been reported. The working 
principle of the sensor is the variation of the cross-mode 
insertion loss generated by an asymmetric dielectric load of 
the SRRs. Thus, by loading the fluidic channel of one of the 
SRRs with the reference liquid (the solvent), and the other 
fluidic channel with the liquid under test (the solution), it 
follows that solute concentration determines the cross-mode 
insertion loss level, which is used as output variable. Sensor 
validation has been carried out by considering three types of 
electrolytes: NaCl, KCl and CaCl2. Repetitiveness of the 
results has been demonstrated, and it has been found that the 
dependence of the cross-mode insertion loss with electrolyte 
content does not experience significant variations when the 
different electrolytes are considered. The combination of 
sensitivity and resolution of the reported sensor for NaCl 
concentration measurements in DI water, as compared to those 
of other sensors (also focused on NaCl measurements), has 
been found to be very competitive. With these high 
sensitivities and small resolutions, these differential sensors 
are of general interest for measuring small solute 
concentrations in liquids, as well as to detect changes in the 
properties of liquids (related to variations in the complex 

dielectric constant), as compared to a reference. In the last part 
of the paper, the sensor has been applied to the 
characterization of urine samples with different levels of ion 
concentrations, and the potential of the approach for real-time 
monitoring of total ion concentration in biological samples in 
a real scenario, has been pointed out. 
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