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Fast tracking-by-detection of bus passengers with Siamese CNNs

Knowing the exact number of passengers among the city bus fleets allows public transport operators to optimally distribute their vehicles into the traffic. However, interpreting overcrowded scenarios, at rush hour, with day/night illumination changes can be tricky. Based on the visual trackingby-detection paradigm, we benefit from video stream information provided by cameras placed above doors to infer people trajectories and deduce the number of enterings/leavings at every bus stop. In this way a person detector estimates the location of the passengers in each image, a tracker matches detections between successive frames based on different cues such as appearance or motion, and infers trajectories over time. This paper proposes a fast and embeddable framework that performs person detection using relevant state-of-the-art CNN detectors, and couple the best one (in our applicative context) with a newly designed Siamese network for real-time tracking/data association purposes. Evaluations on our own large scale in-situ dataset are very promising in terms of performances and real-time constraint expected for on-board processing.

Introduction

Several bus passenger counting systems already exist, e.g. electronic ticket validators or floor-located sensors; we focus on passenger detection based on embedded exteroceptive sensors placed above the doors. Many sensor technologies showed good performance, e.g. radar [START_REF] He | A regression-based radar-mote system for people counting[END_REF], active camera [START_REF] Rauter | Reliable human detection and tracking in topview depth images[END_REF], or laser scanner [START_REF] Chen | Svm based people counting method in the corridor scene using single-layer laser scanner[END_REF]. Their cost and recent advances in computer vision motivated our choice to use conventional and cheap perspective cameras for our application.

With a full view of inside the bus, counting could be summed up as the detection of all passengers at once when the bus leaves a stop. In this setting, too many cameras are needed to cover the whole vehicle which can be from 10 to 18m long. Then, we must settle for fewer sensors placed above each door: estimating the number of people going in/out at each stop, in each view, will give insight into the global passenger flow. Figure 1 provides examples of such views, taken from our dataset.

To overcome frame-by-frame detector limitations, we

Multiple-people tracking-by-detection methods are widely investigated in the literature and find m any applications. Within public transport, more specifically i n city buses, we can study bus lines occupancy rate by counting passengers and help the operator to optimaly distribute its fleets o f v ehicles. C ounting p assengers independently from the ticket validation systems can also provide good estimates for frauds. Several market studies show real needs for such systems in public transport [START_REF] Letshwiti | Appropriate technology for automatic passenger counting on public transport vehicles in south africa[END_REF]. Hence, there are two main challenges: (i) dealing with highly cluttered scenes during rush hour and relatively sparse at off-peak hour both with illumination changes, and (ii) providing online, real-time and high accuracy performances perform this task through tracking-by-detection. Dealing with overcrowded scenes, thus lots of trajectories to manage at the same time, becomes one of the main challenges.

Counting passengers using tracking-by-detection implies three steps: (i) detect people on a frame-by-frame basis, (ii) associate detections between frames to reconstruct consistent trajectories, (iii) analyse trajectories directions to determine whether passengers went indoors/outdoors, and finally count them. We focus on the second step, i.e. associating detections in the video stream using the outputs of the best Convolutional Neural Network (CNN) based detector prototyped for our application.

Multiple-people tracking most often deals with front views of pedestrians [START_REF] Milan | Mot16: A benchmark for multi-object tracking[END_REF][START_REF] Geiger | Are we ready for autonomous driving? the kitti vision benchmark suite[END_REF]. Due to buses narrowness, taking such videos from inside the vehicle would lead to drastic occlusions and thus bad performances. This drawback can be avoided with zenithal viewpoint cameras placed above the doors. It then differs from classic applications, e.g. for pedestrian detection/tracking, as it can be seen in plethora of public benchmarks/challenges in the literature.

CNN offline learning based methods have proved to be effective both in terms of object detection and data association, but require specific training on goal-related datasets. No public labelled ones exist in the context of public transport and zenithal indoor point of view, therefore no comparison to public benchmarks can be led and specific trainings have to be performed. To this end, we acquired and labelled our own videos on a sufficiently long period of time to get all the variability, clutter and illumination changes we need to be challenged with: acquisitions were done and monitored in a city center bus during daylight and night hours, with a few as well as huge amount of passengers.

Given that the application has to run in real time -or at least between two bus stops, we must meet the requirement of on-board processing with low computing capacity hardware, close to Jetson TX2-like configuration. It is then necessary to use compact and high-speed neural networks while ensuring enough performances on the tasks to perform, i.e. detection along with tracking.

As a recap, passenger counting in city buses implies dealing with complex rush hour cluttered scenes involving the management of many trajectories at the same time, processed on platforms with limited CPU resources. Handling such constraints, especially with the use of greedy, yet very effective deep learning methods, requires the optimization of the neural networks used for object detection as well as data association. In this context, our contributions relate to the design of nearly real-time embedded tracking-bydetection within our applicative context of public transport and zenithal view, thanks to:

• the comparison of state-of-the-art CNN detectors,

• the prototyping of a fast siamese CNN for detection association in the video stream in order to address realtime constraints: tracking a huge number of targets in highly cluttered scenes with deep learning methods remains a major challenge,

• the evaluation of such techniques on our large scale bus passengers dataset, showing state-of-the-art tracking performance along with higher frame rates. [START_REF] Huang | Speed/accuracy trade-offs for modern convolutional object detectors[END_REF] demonstrates the benefits of replacing SSD feature extractor with a newer and more powerful MobileNet [START_REF] Howard | Mobilenets: Efficient convolutional neural networks for mobile vision applications[END_REF] architecture to take a leap forward in terms of speed, at lower detection performance costs.

Related work

Faster R-CNN, YOLO and SSD show great ability to detect people on the Pascal VOC [START_REF] Everingham | The pascal visual object classes challenge: A retrospective[END_REF] dataset with 79.6, 79.4 and 81.3% of average precision for the person class respectively, depending on the base network used for feature extraction. Such performances and execution speeds legitimize their comparison in our applicative context.

Detection association and similarity function

Matching targets over successive frames is known as data association. It is commonly represented as a graph optimization problem [START_REF] Berclaz | Multiple object tracking using k-shortest paths optimization[END_REF][START_REF] Zhang | Online multi-person tracking by tracker hierarchy[END_REF] where each node is a detection and each edge is a potential link between them. Solving the assignment problem consists in minimizing the total association cost, i.e. the sum of all the edges of associated nodes, which can de done with classic approaches like the Hungarian algorithm [START_REF] Kuhn | The hungarian method for the assignment problem[END_REF]. The challenge is to define a similarity function able to generate discriminatory representations, in order to have the lowest cost value between two similar detections and the highest value between two different ones.

In the domain of pedestrian similarity matching and re-identification, learning such features with convolutional based methods outperformed handcrafted ones [START_REF] Li | Deepreid: deep filter pairing neural network for person re-identification[END_REF][START_REF] Wojke | Deep cosine metric learning for person re-identification[END_REF] and is now widely used. Because it offers good performance and an online, real-time approach for multi-object tracking (MOT) based on CNN embedding for similarity learning, the work of Wojke et al. is in complete agreement with our applicative context. They propose a cosine metric learning framework [START_REF] Wojke | Deep cosine metric learning for person re-identification[END_REF], trained on a re-identification dataset and integrate it in their tracker [START_REF] Wojke | Simple online and realtime tracking with a deep association metric[END_REF] to compute distinctive features for each new detection. More specifically, they train a network with as many output neurons as there are distinct identities in the re-identification dataset, then remove these classification neurons. Thus, they get a structure trained to take a detection patch as input and generate a 128-d feature vector as output. Data association is performed by computing (i) the cost matrix of cosine distances for all possible matchings between existing tracklets and newly detected objects, and (ii) a weighted version of this matrix based on tracklets motion predictions of a Kalman filter, which ensures spatial coherence in the image plane. The minimal cost matching is finally solved by the Hungarian algorithm [START_REF] Kuhn | The hungarian method for the assignment problem[END_REF]. The upper part of figure 3 depicts the reidentification network used during training.

Similarly to this cosine metric learning framework, many approaches train classification networks to correctly predict input images classes among several distinct identities before removing last layers, thus retarget the network for embedding purposes [START_REF] Sun | Deeply learned face representations are sparse, selective, and robust[END_REF][START_REF] Taigman | Deepface: Closing the gap to human-level performance in face verification[END_REF]. As pointed out by Schroff et al. [START_REF] Schroff | Facenet: A unified embedding for face recognition and clustering[END_REF], this technique suffers from poor generalization to unseen identities: to produce an embedding with a goal of re-identification does not guarantee its discriminatory nature. A way to directly produce and compare such embeddings is to minimize the distance between them thanks to contrastive loss [START_REF] Chopra | Learning a similarity metric discriminatively, with application to face verification[END_REF][START_REF] Hadsell | Dimensionality reduction by learning an invariant mapping[END_REF] optimization. It minimizes the distance between positive feature vectors, e.g. extracted from two detections of the same person, and keep a minimum margin distance between negative ones. It is formulated as:

(1 -y) 1 2 d 2 + y * max(0, m -d) 2 , (1) 
with y = 0 if the pair is positive, 1 otherwise. m is the minimum margin we want between two dissimilar feature vectors and d is the distance between them. This kind of approach, trained to find a similarity/dissimilarity between two comparable inputs, belongs to the group of siamese architectures: a network takes two inputs to compare, applies layers on them, and compute any output function expressing their similarity/dissimilarity. The two branches of layers applied to each input share their weights sooner or later. Moreover, the size of the inputs being relatively small (a detection patch is (85 × 85 × 3) in our case), this type of architecture is really fast, thus attractive in our context.

Methodology and implementation

All trainings are led on a workstation equiped with an Intel Xeon E5-1620V4 / 3.5 GHz processor, 16GB RAM, and a NVIDIA Titan Xp graphic card. Whenever possible, speed evaluations are given for a Jetson TX2 platform.

Large scale in situ dataset

To conduct our experiments, we recorded ≈ 4h30m of video sequences with a GoPro camera placed above the central door of a city bus. We aim to capture as much variability of scenarios as possible: daylight/night-time scenes, low/high-density passenger flow, appearance/shape differences between individuals. We discard sequences without any passenger, and we undistort and resize all images to (480 × 360) before labelling them with VATIC [START_REF] Vondrick | Efficiently scaling up crowdsourced video annotation[END_REF]. With almost 350 distinct identities, this dataset captures the main scope of real-life situations. Table 1 summarizes details about content and dataset distribution. Figures 1 and4 show few examples used for detection and data association.

Detectors description for further comparison

We first compare the previously cited deep learning based detectors in our applicative context in order to choose Faster R-CNN -Taking advantage of publicly available pre-trained weights and implementations of Faster R-CNN 1,2 , we find two feature extraction configurations that show good performance: ResNet50 [START_REF] He | Deep residual learning for image recognition[END_REF] and ZFNet [START_REF] Zeiler | Visualizing and understanding convolutional networks[END_REF], which are placed upstream of the regression layers. During training, both networks are initialized with weights pre-trained on COCO and Pascal VOC datasets, and we use a learning rate decay on plateau strategy starting at 10 -5 for ResNet50 and 10 -3 for ZFNet.

YOLO -We compare YOLOv2 [START_REF] Redmon | Yolo9000: Better, faster, stronger[END_REF] combined with Darknet-19 feature extractor against YOLOv3 [START_REF] Redmon | Yolov3: An incremental improvement[END_REF] with Darknet-53. Both are loaded with Pascal VOC pre-trained weights and trained with a learning rate starting at 10 -4 . Training is conducted with darknet 3 .

SSD -For the sake of speed and based on the comparative study led by Huang et al. [START_REF] Huang | Speed/accuracy trade-offs for modern convolutional object detectors[END_REF], VGG feature extractor is replaced with MobileNetv1. Profiling this feature extractor shows that speed can be improved by removing the batch normalization (BN) layer applied to each depthwise convolution (cf. figure 2), without notably affecting detection precision. Because most of the time spent in the detector is located in class and bounding box regression layers, the SSD speed comparison with/without BN shown at section 4.2 does not show significant improvements. However, using this architecture further with representation learning will demonstrate real gains in speed, and motivated our choice to use it in both object detection and siamese contexts in order to remain consistent. As described in table 2, we also remove the second-to-last original MobileNet layer so as to output large enough feature maps regarding the size of image inputs and objects to detect. Thus, we compare three different feature extractors coupled with SSD: the original MobileNetv1, the same architecture without the second-tolast layer, and the latter without BN. In order to do a fair comparison of the three architectures, because pre-trained models only exist for the full configuration, the networks are trained from scratch on our dataset. We use Pierluigi Ferrari's Keras implementation 4 of SSD to conduct our experiments. Training is performed with default arguments for the Adam optimizer, i.e. learning rate of 10 -3 , β 1 = 0.9, β 2 = 0.999 and a plateau learning rate decreasing strategy.

Detection association with siamese CNNs

Our goal is to propose a study of siamese networks addressing detection association for MOT purposes within highly cluttered scenes, while remaining consistent with our real-time constraint. Our contribution is two-fold: we compare (i) two different feature extraction structures combined with (ii) two approaches to produce the feature map em- α is the width multiplier factor from the original paper [START_REF] Howard | Mobilenets: Efficient convolutional neural networks for mobile vision applications[END_REF], which increases/decreases the number of filters for each layer. Different values were tested and 0.66 appeared to be a reasonable speed/accuracy trade-off on our dataset.

beddings. Therefore, we propose a fast siamese framework capable of computing discriminatory representations with state-of-the-art performance and less computational time.

Based on the work of Wojke et al. [START_REF] Wojke | Simple online and realtime tracking with a deep association metric[END_REF], we re-train their re-identification network for similarity learning purposes and compare it against a faster MobileNetv1-based network. In the paper, Wojke et al. apply convolutions on an input image, flatten the last (11 × 11 × 128) feature map, and apply a fully connected layer trained for multiclassification, where the number of outputs is the number of distinct identities to classify. We cut the network just before the flattening layer, thus retrieve the last (11×11×128) output volume. Similarly, we cut MobileNetv1 structure after the fifth depthwise convolutional block in order to obtain a (10×10×128) volume. For speed purposes, we also compare two MobileNetv1 versions, i.e. with/without BN layers in depthwise blocks (cf. section 3.2). Left side of figure 3 illustrates this feature extractors comparison.

In the original contrastive loss paper [START_REF] Chopra | Learning a similarity metric discriminatively, with application to face verification[END_REF], the distance d from equation 1 is the euclidean distance between vectors, but other related works show interest in learning a cosine similarity measure in the context of visual object tracking [START_REF] Wang | Visual tracking via weighted local cosine similarity[END_REF][START_REF] Moujahid | Visual object tracking via the local soft cosine similarity[END_REF]; similarly, DeepSORT computes the cost matrix of data association using the cosine distance between vectors. Based on cosine similarity, we use the angular distance between vectors as our distance d: two closely related vectors in the embedding space should have an angular distance near 0, 1 otherwise. The angular distance between two normalized vectors is retrieved from their scalar product.

In order to reduce dimensions of this configuration into a single feature vector, we compare two techniques: (i) we flatten the feature map generated by the feature extractor, e.g. going from a (10 × 10 × 128) feature map in the case of MobileNet to a single 12800-d feature vector, and apply a fully connected layer to project this vector into the 128-d embedding space; (ii) we drastically reduce the number of parameters and execution speed of the first technique by replacing fully connected layers with global average pooling and 1x1 convolutions after the feature extractor last feature map, as described in figure 3.

During training, the siamese CNNs are fed with pairs of (85 × 85 × 3) image patches -the average size of a person in our training set. These patches are the resized outputs of SSD on the training set. Based on the overlap between patches and ground truth, we can determine the real identity label of a detection and thus construct positive/negative pairs as inputs to the siamese network. Training the latter with real detections instead of ground truth patches allows the network to see realistic and not perfectly centered cases. To equally optimize the distance between positive/negative pairs, it is necessary to produce them in equal amount. Thus, as a lot of frames in our training set do not necessarily contain two or more distinct targets, constructing positive/negative pairs for siamese learning has to be done artificially. Positive pairs are generated within a temporal horizon of [0-300] frames between first and second detection, with X ∼ N (µ = 1, σ 2 = 60). In this way, we simulate non-detections and appearance changes. For each positive pair, a negative one is produced: the first patch is the same as in the positive pair, the second patch is randomly picked among all other identities. 5% of the time, we pick a randomly selected SSD false positive output as the second negative patch of the pair. Figure 4 shows examples of positive and negative pairs used during training.

Evaluations and discussion

Hereafter, we justify the choice of SSD along with a customized MobileNetv1 feature extractor as input to data association, and demonstrate performance in line with the literature, at higher frame rates, for our siamese architecture.

Evaluation metrics

As it is common for evaluating object detectors, we use the Pascal VOC [START_REF] Everingham | The pascal visual object classes challenge: A retrospective[END_REF] Mean Average Precision (mAP) metric which gives intuition on detectors global performance. This metric computes the average precision for different recall values from 0 to 1, over all classes, and thus integrates information about both false positive/negative errors.

To evaluate our siamese network against other architectures, we integrate them into the DeepSORT tracker and compute the Multi Object Tracking Accuracy (MOTA) [START_REF] Bernardin | Evaluating multiple object tracking performance: The clear mot metrics[END_REF]. As it relies on many types of errors (false positives, misses, mismatches), this metric gives an overall idea of the tracker ability to compute consistent trajectories over time. [START_REF] Wojke | Deep cosine metric learning for person re-identification[END_REF] and further truncated before the cosine-softmax block to be integrated to DeepSORT tracker [START_REF] Wojke | Simple online and realtime tracking with a deep association metric[END_REF], (ii) on the lower part, the siamese pipeline we used to compare feature extractors (DeepSORT base network vs. MobileNet) and output layers. Right side of the solid line: structure of the two compared output layers. The equal sign between layers means that they share the same weights. We take the example of DeepSORT base network configuration to show output sizes in gray. 

Object detection

Figure 5 shows a comparison between Faster R-CNN, YOLO and SSD: we can highlight the correlation between speed and precision. The more precise the detector, the slower it is. But even if the gain in precision is approximately 10% from SSD to Faster R-CNN with ResNet50, SSD still achieves about 75% of mAP while being 14.5× faster, which makes it a reasonable candidate for our embedded application. YOLO is also capable of notable frame rates with good mAP in its original version, but is still far behind SSD in terms of speed. It should be noted that because big architectures like Faster R-CNN do not fit into the Jetson TX2, fps are given on Titan Xp for all detectors. This comparison corroborates the comparative study led by Huang et al. on CNN object detectors [START_REF] Huang | Speed/accuracy trade-offs for modern convolutional object detectors[END_REF], at least for Faster R-CNN and SSD, and the execution time of the latter motivated our choice to use it as input to data association.

Table 3 gets into the details of MobileNet feature extractors comparison for SSD and shows the detector mAP on the training and validation sets with the three different tested architectures. Removing the second-to-last layer of Mo-bileNet feature extractor shows slightly better performance both on training and validation. It can be due to the fact that this layer is usually applied with a stride of 2 and makes the prediction for close objects more difficult (the feature map A slight gain in speed on the target platform can also be observed with the removal of BN layers, but as mentioned in section 3.2 the major time consumption of SSD is located in its regression layers. For further experiments in our embedded context, effort should be put on this part.

Siamese CNNs for data association

As described in table 4, fully connected layers alone account for the major portion of the whole networks parameters: 2 millions for DeepSORT base network, 1.6 million for MobileNets (respectively 75 and 97% of the parameters). Using 1x1 convolutions drastically reduces this proportion (respectively 8 and 64% for DeepSORT and MobileNets), scaling memory usage of full structures down by a factor of 1.5 to 2.7 depending on the base network, and thus leading to faster execution speed. Once integrated to DeepSORT tracking framework, our siamese networks show equivalent MOTA performance to the original architecture trained on our dataset as a re-identification task. However, the architecture we put forward is 1.7× faster.

The estimated time for computing worst case scenario feature vectors shows that our siamese 1x1 architecture with customized MobileNet w/o BN feature extractor is the closest to real-time processing. Such results are very promising and comfort us in the fact that we can embed a full real-time system, or at least process with short delay.

We can notice a difference between min_clutter and max_clutter: it can be partially explained by slightly lower performance of SSD on the first set, due to a larger proportion of false positives. Moreover, the confidence score threshold used to determine which detections to track was arbitrarilly fixed to 0.5 for all sets and configurations. It would be worth choosing a threshold based on the training set tracker performance to get more balanced results and reduce the gap between test sets. This would imply to finetune this threshold over multiple values, accross all training sets, with all similarity learning architectures.

Conclusion

When it comes to online multi-objet tracking-bydetection, especially with huge number of objects to track within highly cluttered scenes, deep learning techniques hardly address real-time constraints. In this paper, we propose a nearly real-time and embeddable architecture applied to bus passengers counting with zenithal cameras. To this end, we first compare state-of-the-art CNN detectors and optimize the best one to meet our on-board requirements. Then, to associate detections over successive frames, we also propose a fast and new siamese architecture showing state-of-the-art performance on our challenging dataset. Several tracks can be explored: based on our evaluations, we may focus on the time-consuming detector regression layers but also get a system-wide overview of passenger counting to have better insight into achievable speed. The three siamese feature extractors combined either with fully connected layers ("FC") or with global average pooling plus 1x1 convolutions ("1x1"). Params accounts for the total number of parameters, i.e. feature extractor combined with last layers. We show the impact of such structural choices on memory usage in megabytes (MB) along with the average number of frames per second (Fps) and the estimated time to compute feature vectors in worst case scenarios (Estim.), i.e. 10 detections per frame throughout 25 frames, on Jetson-TX2. Final tracking performances are evaluated both on min_clutter and max_clutter test scenes in terms of Multi Object Tracking Accuracy (MOTA). Best results are in bold and underlined.

Figure 1 :

 1 Figure 1: Examples taken from our large scale bus passenger dataset. It captures all the variability of real-life situations: illumination, clutter, appearance, shape, etc.

  ) and highly ("max_clutter") populated scenes, containing from 0 to ≈ 10 people at the same time. IDs indicates the number of distinct targets, Clutter indicates the scene congestion (Weak < Medium < High < Strong) -s indicates that the bus seats are also occupied, Illum. describes the illumination variation of the scene (hour of the day, with/without artificial lighting), Variability enumerates few cases taken from the dataset. the best one regarding our real-time constraint and performance expectations. We put forward a fast and custom MobileNetv1-based architecture for SSD feature extraction.

Figure 2 :

 2 Figure 2: MobileNetv1 consists in stacking a convolutional block followed by multiple depthwise blocks. The purple "BatchNorm" block was removed in our modified version.

Figure 3 :

 3 Figure 3: Left side of the solid line: (i) on the upper part, the global training pipeline used in cosine metric learning[START_REF] Wojke | Deep cosine metric learning for person re-identification[END_REF] and further truncated before the cosine-softmax block to be integrated to DeepSORT tracker[START_REF] Wojke | Simple online and realtime tracking with a deep association metric[END_REF], (ii) on the lower part, the siamese pipeline we used to compare feature extractors (DeepSORT base network vs. MobileNet) and output layers. Right side of the solid line: structure of the two compared output layers. The equal sign between layers means that they share the same weights. We take the example of DeepSORT base network configuration to show output sizes in gray.

Figure 4 :

 4 Figure 4: Positive/negative pairs examples used for siamese CNNs training. Within each quadruplet, positive and negative pairs are depicted in first and second rows respectively. The top three quadruplets above the horizontal line show examples built with two different identities. Pairs built with false positive detections are shown on the lower part.

Figure 5 :

 5 Figure 5: Frames per second on Titan Xp vs. Mean Average Precision. Detectors are tested with different feature extractors on both min_clutter and max_clutter test sets. We observe close performances between sets for each detector, and a correlation between precision and execution speed -Faster R-CNN + ResNet being the most precise but slowest detector and SSD the fastest but less precise one.

Table 1 :

 1 Training / validation sets are used for training. We present our results on two test sets: sparsely ("min_clutter"

		Name	Images IDs	Clutter	Illum.	Variability
	Train	video_1 15,382 video_2 18,427 video_3 29,889	46 79 Medium (max 3 + s) Late + artificial Medium (max 4) Daylight 95 High (max 6 + s) Daylight	Height: small, medium, tall. Hats: colours (gray, blue, black, white, pink, green, patterned), types (cap, veil,
	Val.	video_4	9,751	44	Weak (max 3)	Daylight	beret, with pompom, hood). Hair: long, short, bald, blonde, brown, red,
	Test	min_clutter 11,576 max_clutter 20,353	37 43	Weak (max 2) Strong (≈ 10 + s)	Night artificial Night artificial	gray, white, black. Other: stroller, scarf, glasses on top of the head, etc.
		Total (≈ 1h) 105,378 345			

Table 2 :

 2 Modified version of MobileNetv1 feature extractor.

	Layer type	# filters/stride	Output size
	Input image	-	360 × 480 × 3
	Conv block	α.32/2	180 × 240 × 21
	Dw conv block	α.64/1	180 × 240 × 42
	Dw conv block	α.128/2	90 × 120 × 84
	Dw conv block	α.128/1	90 × 120 × 84
	Dw conv block	α.256/2	45 × 60 × 168
	Dw conv block	α.256/1	45 × 60 × 168
	Dw conv block	α.512/2	23 × 30 × 337
	5 x Dw conv block	α.512/1	23 × 30 × 337
	Dw conv block	α.1024/1	23 × 30 × 675

Table 3 :

 3 Mean Average Precision (mAP) and frames per second (fps) of SSD feature extraction architectures, with width multiplier α = 0.66. Results are presented on training and validation sets so as not to skew the final SSD evaluation against other detectors. Fps are produced on Jetson TX2. Best results are in bold and underlined. is two times smaller than in the modified version).

		Train	Val
	Feature extractor	mAP	Fps
	Full MobileNet 88.35 83.12 29.95
	Custom w/ BN 90.06 87.06 29.72
	Custom w/o BN 89.87 86.26 30.95

Table 4 :

 4 

	min_clutter max_clutter

SSD: github.com/pierluigiferrari/ssd_keras
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