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Linear impulsive control systems are convenient to formulate a venue of real-life problems, from diseases treatment to aerospace guidance. To take into account that the origin is the only formal equilibrium of such systems while usual control objective consist in stabilizing a desired target region that exclude it, a different concept of equilibrium -which includes periodic/orbital trajectories -has been defined. This work presents a new characterization of the equilibrium sets respecting this target region for linear impulsive systems. Based on the Lucasz-Markov theorem a tractable and non conservative description is obtained. Furthermore, to assess this description, the constrained equilibrium set is explicitly used in the formulation of a model-based controller.

INTRODUCTION

In the last two decades, impulsive control systems have gained lot of interest from the control community. In fact, linear impulsive models arise in different application fields such as biomedical research (see [START_REF] González | Impulsive Zone MPC for Type I Diabetic Patients based on a long-term model[END_REF] and references therein), spacecraft rendezvous guidance and control (see Arantes [START_REF] Arantes Gilz | Stable model predictive strategy for rendezvous hovering phases allowing for control saturation[END_REF] and references therein), for instance. Impulsive systems have been studied in the literature from different perspectives in terms of solutions existence and uniqueness and stability notions have been described formally see [START_REF] Bainov | Impulsive Differential Equations: Asymptotic Properties of the Solutions[END_REF], [START_REF] Haddad | Impulsive and hybrid dynamical systems: stability, dissipativity, and control[END_REF].

More recently, the Model Predictive Control community got involved in the control of such impulsive systems. In [START_REF] Pereira | An optimization-based framework for impulsive control systems[END_REF], a general framework for optimizationbased predictive control is stated. The notions of invariance and stability are introduced, and some stability conditions are provided.

The case of linear impulsive systems has also drawn attention not only because of its importance in several application fields, but also from a theoretical perspective. In fact, linear impulsively controlled systems have some particularities with respect to classical linear control paradigm. Those particularities imply to adapt cardinal notions such as equilibrium and stability. For instance, the regulation of non-zero set-points is challenging in general: it is even claimed in [START_REF] Sopasakis | Model Predictive Control for Linear Impulsive Systems[END_REF] that it is not possible to stabilize any desired states of an impulsive system.

In [START_REF] Sopasakis | Model Predictive Control for Linear Impulsive Systems[END_REF], invariance and stability have been redefined in order to design predictive controller. The proposed controller exploits polytopic invariant set that approximate the maximal invariant set. However, the computation of this polytopic invariant set still is an open problem in the general case. An intermediate approach that does not require invariant sets is proposed in [START_REF] Rivadeneira | MPC with State Window Target Control in Linear Impulsive Systems[END_REF] and uses the concept of zone control defined in [START_REF] González | Robust model predictive control with zone control[END_REF], [START_REF] Gonzalez | A stable MPC with zone control[END_REF]. In this framework, the state is steered to an equilibrium set instead of equilibrium point (that does not exist anywhere except at the zero point). The equilibrium point concept has been extended to the equilibrium set that consists of periodic controlled orbits included in a target zone [START_REF] Rivadeneira | Control Strategies for Nonzero Set-Point Regulation of Linear Impulsive Systems[END_REF]. In [START_REF] Rivadeneira | Control Strategies for Nonzero Set-Point Regulation of Linear Impulsive Systems[END_REF], the equilibrium set is clearly defined and its attractivity is established. However, no formal description is provided and only approximating techniques are proposed in [START_REF] Sopasakis | Model Predictive Control for Linear Impulsive Systems[END_REF], [START_REF] Rivadeneira | Control Strategies for Nonzero Set-Point Regulation of Linear Impulsive Systems[END_REF]. A first contribution of this paper is to answer the particular question of characterizing the constrained equilibrium set and to propose a tractable methodology to compute it. The free propagation of the states is first expressed as univariate polynomial thanks to the relevant change of variable. Then, the set of trajectories included in the target is characterized through the Linear Matrix Inequalities (LMI) conditions on the initial states. These conditions are based on the Lucasz-Markov theorem (see [START_REF] Nesterov | Squared functional systems and optimization problems[END_REF]) and they have been inspired by the work [START_REF] Henrion | Control of linear systems subject to time-domain constraints with polynomial pole placement and LMIs[END_REF]. To highlight the tractability of this description, a novel zone MPC algorithm is proposed, which follows the procedure exposed in [START_REF] Ferramosca | MPC for tracking zone regions[END_REF], [START_REF] Gonzalez | A stable MPC with zone control[END_REF] but make an explicit use of the new set characterizations.

LINEAR IMPULSIVE SYSTEMS

Consider the impulsive control system (ICS)

ẋ(t) = Ax(t), x(0) = x 0 , t = τ k , x(τ + k ) = x(τ k ) + Bu(τ k ), k ∈ N, (ICS) 
with τ k = kT , for a period time T > 0. The output equation is also given by y(t) = Cx(t).

(1) Variables x ∈ X ⊆ R n represent the system states, u ∈ U ⊆ R m , the control inputs, and y ∈ R p , the system outputs. Assumption 1. Set X is assumed to be closed and set U, compact. Both, X and U, are assumed to be convex and to contain the origin in their nonempty interior.

For t ∈ [τ k , τ k+1 ] the system transition is described by

x(t) = Φ(t)x(τ + k )
, where Φ(t) = e At is the transition matrix.

The control objective is twofold: (i) reach a given nonempty polytopic set Z ⊆ X , denoted as the target set, and (ii) maintain the system states inside Z, indefinitely. In the context of linear impulsive system, periodic orbits to ensure that the system remains in a given set have been exploited in several work in the literature. In Arantes [START_REF] Arantes Gilz | Stable model predictive strategy for rendezvous hovering phases allowing for control saturation[END_REF], the natural periodic orbits included in the target zone are stabilized by means of a predictive controller. In [START_REF] Rivadeneira | Impulsive zone model predictive control with application to type I diabetic patients[END_REF], [START_REF] González | Impulsive Zone MPC for Type I Diabetic Patients based on a long-term model[END_REF], the equilibrium orbit notion is extended since the periodicity is forced by means of an admissible control input. The equilibrium set can be defined as follows [START_REF] Rivadeneira | Control Strategies for Nonzero Set-Point Regulation of Linear Impulsive Systems[END_REF]): Definition 1. (Impulsive equilibrium set (IES)). Consider the ICS (ICS). A nonempty convex set X s ⊂ X is an impulsive equilibrium set with respect to Z if for every x s ∈ X s exists u s ∈ U such that (i) Φ(T )x s + Bu s = x s , and (ii) {Φ(t)x s , t ∈ [0, T ]} ∈ Z. Every single state x s in X s will be denoted as impulsive equilibrium state w.r.t. Z.

From the latter definition, it is clear that X s ⊆ Z.

IMPULSIVE EQUILIBRIUM SET WITH RESPECT TO A TARGET ZONE

The aim of this section is to characterize the IES, X s , in a tractable manner. First, note that the discrete-time system

x • (τ k+1 ) = Φ(T )x • (τ k ) + Bu(τ k ), (2) 
represents the ICS sampled at the instants just after the jumps (discontinuities). Assumption 2. The pair [Φ(T ), B] is controllable.

Next two sets will be defined, the intersection of which allows us a proper computation of the IES, X s .

On one hand, the equilibrium set of the latter discretetime system is, by definition, the set of states fulfilling condition (i) in Definition 1 (Rivadeneira et al. [2015a], [START_REF] González | Impulsive Zone MPC for Type I Diabetic Patients based on a long-term model[END_REF]). That is,

X • s = {x s ∈ X : ∃u s ∈ U such that (I n -e AT )x s = Bu s }, (3) 
is the set of states for which exists an admissible input u s , such that the controlled trajectory describes a periodic orbit of period T . On the other hand, the admissible initial set, with respect to Z, T Z is defined to account for condition (ii) in the IES Definition 1. Particularly, the set T Z is the set of states from where the free propagated trajectories remain in Z, over a complete T -period. Definition 2. (Admissible initial set). Consider the ICS system (ICS). The admissible initial set with respect to target set Z is given by:

T Z = {x ∈ X : Φ(t)x ∈ Z, t ∈ [0, T ]},
In [START_REF] Sopasakis | Model Predictive Control for Linear Impulsive Systems[END_REF], [START_REF] Rivadeneira | Control Strategies for Nonzero Set-Point Regulation of Linear Impulsive Systems[END_REF], some techniques to approximate the set T Z are proposed. The contribution of this paper is to provide a formal description of this set, which is tractable enough to be used in the MPC algorithm. Finally, X s , the IES w.r.t. Z, can be defined as:

X s = X • s ∩ T Z . (4) 
If the latter intersection is empty, then, it means that set Z is not well defined for the ICS (ICS). In the following, it is assumed that X s is nonempty.

Admissible initial set characterization

Let Z be described by its Cartesian coordinates

H ∈ R l×n and V ∈ R l×1 such that Z = {x ∈ X : Hx ≤ V }
In the sequel T Z is characterized in terms of linear matrix inequalities (LMI). First some mild assumptions are made on the flow dynamics of the ICS (ICS). Assumption 3.

(1) Eigenvalues of the matrix A are rational numbers, λ s ∈ Q, with no imaginary part so that

λ l = η l ρ where η l ∈ Z, ρ ∈ N, and l = 1, . . . , n
Eigenvalues are ranked in a increasing order such that η 1 is the largest negative integer and η n is the largest positive integer; (2) Eigenvalues of A are all distinct. Remark 1. In the conclusion of the paper [START_REF] Henrion | Control of linear systems subject to time-domain constraints with polynomial pole placement and LMIs[END_REF], arguments are provided to justify such assumptions. In particular, the cases where non-zero eigenvalue multiplicity is greater than 1 are isolated cases that are non robust to small perturbations.Consequently, this works will not account for this case. Remark 2. The stability of the ICS flow is not required for the following development.

The admissible initial set is given by T

Z = {x ∈ X : HΦ(t)x ≤ V, ∀t ∈ [0, T ]} (5)
where Φ(t) = e At . Addressing the inequality (5) row by row, it comes

h i n j=1 Φ j x j ≤ v i , i = 1, . . . , l (6) 
where h i and v i are respectively the i th row and i th singleton of H and V respectively. Φ j is the j th column of the transition matrix Φ. In the context described by the assumptions 3, each singleton of the transition matrix Φ(t) is given by

Φ ij = n r=1 α ij r e λrt , α ij r ∈ R
where λ s are the eigenvalues of the dynamic matrix A.

Then, inequalities (6) can be rewritten

n j=1 n r=1 β ij r e λrt x 0,j ≤ v i , t ∈ [0, T ], i = 1, . . . , l (7) 
with

β ij r ∈ R. Let us propose the change of independent variable: w = e -1 ρ t , so that t ∈ [0, T ] ⇔ w ∈ [W, 1] (8) 
where W = e -T ρ . Exploiting the previous change of variable, inequalities (7) are equivalent to the following inequalities:

n r=1 γ j r (x, φ, h i )w -ηr -v i ≤ 0, w ∈ [W, 1], i = 1, . . . , l (9) 
where γ j s (•) are linear function of the initial state x, the coefficients α ij s of the transition matrix Φ collected in the vector φ and the singletons of h i .

Since η s ∈ Z, (9) are rational inequalities, it comes that

n l=1 γ j s (x, φ)w -ηs+ηn -v i w ηn w ηn ≤ 0, w ∈ [W, 1]. ( 10 
)
The monomial term w ηn being positive on [W, 1], inequality ( 10) is equivalent to a polynomial positivity problem with a given structure:

P (w) = η d=0 π d w d ≥ 0, w ∈ [W, 1]. ( 11 
)
where η = η nη 1 . If 0 does not belong to the spectrum of A (0 / ∈ {η s }),

where

π d =    -γ d (x, φ) if d ∈ {-η 1 + η n , . . . , η n } v i if d = η n 0 else . If 0 belongs to the spectrum of A (0 ∈ {η s }),
where

π d =    -γ d (x, φ) if d ∈ {-η 1 + η n , . . . , 0} v i -γ j (x, φ) if d = η n and η j = 0 0 else .
Applying the Lucasz-Markov theorem (see [START_REF] Nesterov | Squared functional systems and optimization problems[END_REF]), inequalities (11) are satisfied if and only if P (w) can be written as weighted sum of squares:

P (w) = q 1 , u(t) 2 + (w -W )(1 -w) q 2 , v(t) 2 , if η is even (w -W ) q 1 , u(t) 2 + (1 -w) q 2 , u(t) 2 , if η is odd
where u(t) = {1, t, . . . , t η/2 }, v(t) = {1, t, . . . , t η/2-1 }, q 1 ∈ R η/2 and q 2 ∈ R η/2-1 or q 2 ∈ R η/2 depending on η being even or odd. Equivalently, P (w) will be non negative if its coefficient vector π is the image of two positive semidefinite matrices Y 1 and Y 2 through linear operator Λ * 1 and Λ * 2 :

π(x) = Λ * 1 (Y 1 ) + Λ * 2 (Y 2 ), Y 1 , Y 2 0. ( 12 
)
The operators Λ * 1 and Λ * 2 are defined in [START_REF] Nesterov | Squared functional systems and optimization problems[END_REF] and conveniently described in terms of Hankel matrices (see [Arantes Gilz 2018, Appendix B] for a detailed example). Thus, T Z is described as a semi-algebraic set as the initial condition x needs to satisfy the LMI condition (12):

T Z = {x ∈ X : π(x) = Λ * 1 (Y 1 ) + Λ * 2 (Y 2 ), Y 1 , Y 2 0} (13)
As T Z is independent from the input variable u, this set can be extended such that

T u Z = {(x, u) ∈ X × R m : x ∈ T Z and u ∈ U} (14) 
In this section, the set X s has been described as a slice of an spectrahedron as the intersection of a set given by linear equalities and a set defined by LMI conditions. If it exists, this set has the property to be non empty and convex. It is also tractable enough to be included as constraint in a convex program that can be solved efficiently with interiorpoint method solver. The next section takes advantage of it to design a model predictive controller.

ZONE MPC CONTROL

This section is devoted to the description of a zone model predictive controller. Its main goal is to steer the ICS to the target zone Z, that may excludes the origin, and to make it hover this specific zone. In other words, the MPC must be able to stabilize the IES with respect to Z. The idea is to use the discrete-time model (2) for predictions, and to use as a target set the set T Z (instead of the discrete-time equilibrium X • s , since it does not fulfill the conditions in Definition 1).

The cost function to be minimized on-line by the MPC is given by 15) where x = x(τ 0 ) represents the current state, u = {u(τ 0 ), u(τ 1 ), . . . , u(τ N -1 )} is the predicted sequence of inputs, x s and u s are additional optimization equilibrium variables fulfilling φ(T )x s + Bu s = x s , and α, β and γ are penalization scalars. The distance function dist T Z (x) is given by dist T Z (x) = min x * ∈T Z xx * . Remark 3. The term dist T Z (x s ) = min x * ∈T Z x sx * is approximated by using an additional optimization variable x * , which is forced to be in T Z , and including the cost term x sx * 2 .

J N (x, u, x s , u s ) = N -1 j=0 α x(τ j ) -x s 2 + β u(τ j ) -u s 2 + γdist T Z (x s ) (
The optimization problem to be solved at each time τ k is as follows: min u,xs,us

J N (x, u, x s , u s ) s.t.              x(τ 0 ) = x x • (τ j+1 ) = φ(T )x • (τ j ) + Bu(τ j ), j ∈ N N -1 x(τ j ) ∈ X , u(τ j ) ∈ U, j ∈ N N -1 x(τ N ) = x s , φ(T )x s + Bu s = x s , (x s ∈ X • s ).
(16) In the latter optimization problem, x is the optimization parameter while u, x s , u s are the optimization variables. The terminal constraint x(τ N ) = x s forces the last state on the control horizon to reach the artificial equilibrium state x s , to ensure stability. The last constraint forces the additional variables (x s , u s ) to be an equilibrium of the sampled system (2). This two constraints determine the region of feasibility of the optimization problem, which is given by the controllable set, in N -step, to X • s :

C N (X • s ) = {x • ∈ X : x • (τ j ) ∈ X , u(τ j ) ∈ U, j ∈ N N -1 , x • (τ N ) ∈ X • s } , (17) 
where

x • (τ j+1 ) = Φ(T )x • (τ j ) + Bu(τ j ), x = x(τ 0 ).
Once the MPC problem is solved at time τ k , the optimal solution is given by the optimal input sequence u 0 (x) = {u 0 (x, τ 0 ), u 0 (x, τ 1 ), . . . , u 0 (x, τ N -1 )}, ( 18) and the optimal additional variables (x 0 s (x), u 0 s (x)), while the optimal cost is denoted as J 0 N (x) := J N (x, u 0 , x 0 s , u 0 s ). The control law, derived from the application of a receding horizon control policy (RHC), is given by u(τ k ) = κ M P C (x(τ k )) = u 0 (x, τ 0 ), where u 0 (x, τ 0 ) is the first control action in u 0 (x).

The stabilizing properties of the controller are summarized in the following Property. Property 1. The IES X s , w.r.t. Z, is asymptotically stable for the closed-loop system ICS,

ẋ(t) = Ax(t), x(0) = x 0 , t = τ k , x(τ + k ) = x(τ k ) + Bκ M P C (x(τ k )), k ∈ N, (19) 
with a domain of attraction given by C N (X • s ).

Sketch of Proof:

The proof follows the steps of the so called MPC for tracking, [START_REF] Ferramosca | MPC for tracking zone regions[END_REF], [START_REF] Rivadeneira | Control Strategies for Nonzero Set-Point Regulation of Linear Impulsive Systems[END_REF]. The time of the closed-loop is denoted by τ k , as in ( 19), while the time for predictions, inside each optimization problem, is denoted by τ j .

The recursive feasibility of the sequence of optimization problems follows from the fact that, for every x ∈ C N (X • s ), the terminal constraint forces the system x • (τ j+1 ) = φ(T )x • (τ j ) + Bu(τ j ) to reach an invariant set (for instance the equilibrium set, X 0 s ), at the end of the control horizon. So, if the solution of the optimization problem for x, at time τ k , is given by u 0 (x), x 0 s (x) and u 0 s (x), then a feasible solution for the state x + , at time τ k+1 , can be computed as ũ(x + ) = {u 0 (x; τ 1 ), u 0 (τ 2 ), . . . , u 0 (τ N -2 ), ũs (x + )}, xs (x + ) = x s (x) and ũs (x + ) = u s (x). This feasible solution produces a feasible sequence of states, given by x(x + ) = {x 0 (x, τ 1 ), x 0 (x, τ 2 ), . . . , xs (x + ), xs (x + )}.

The attractivity of X s follows from the fact that, JN (x + ) ≤ J 0 N (x)α xx s 2β uu s 2 , where JN (x + ) = J N (ũ(x + ), xs (x + ), ũs (x + )) and u is the input injected to the system at time τ k . Then, by optimality, it is J 0 N (x + ) ≤ JN (x + ), which means that J 0 N (•) is a strictly decreasing positive function -i.e., J 0 N (x + ) ≤ J 0 N (x) -that only stops to decrease if x = x(τ k ) = x s and u = (τ k ) = u s . Furthermore, the fact that x(τ k ) → x s and u(τ k ) → u s , as k → ∞, implies that x(τ k ) tends also to T Z (by the effect of the cost term dist T Z (x s ), as stated in Lemmas 1, 2 and 3, in [START_REF] Rivadeneira | Control Strategies for Nonzero Set-Point Regulation of Linear Impulsive Systems[END_REF]). This way, x(τ k ) tends to the intersections of X • s and T Z , which, by (4), represents the IES X s . Remark 4. Note that it is not necessary to express explicitly the intersection (4) to formulate the MPC. In fact, such intersection is implicit in the controller formulation, by means of the additional variables (x s , u s ) -that are forced to be in X • s -, and the cost term dist T Z (x s ) which steers the states after the discontinuities, x • (τ k ), to T Z . Remark 5. In [START_REF] Rivadeneira | Control Strategies for Nonzero Set-Point Regulation of Linear Impulsive Systems[END_REF] a target set X • s , already accounting for the properties of X s w.r.t. Z (i.e., accounting for {Φ(t)x s , t ∈ [0, T ]} ∈ Z), needs to be outerapproximated by a polyhedron, and then explicitly used in the controller formulation. In contrast, the proposed MPC steers the system to the exact set X s , without the need of explicitly compute it. Remark 6. Another benefits of the proposed MPC to be emphasized is that it steers the system to an equilibrium region that fulfill continuous-time constraints by only considering a sampled discrete-time system, as it is x • (τ j+1 ) = φ(T )x • (τ j ) + Bu(τ j ).

NUMERICAL STUDIES

Let consider a linear time-invariant and impulsively controlled system described by the state space model ICS where

A = 1 2 -2 0 -3 2 , B = 3 -2 , C = [1 1] . (20) 
The eigenvalues of A are 1 2 and -3 2 so that the flow dynamics of the impulsive control system is unstable and diverges naturally from the target set Z. The control period T is set to 1 second. The admissible input control set, U, is given by the interval [-1, 1]. The aim of the control is to stabilize and maintain the output y in the target interval [0.5, 3]. Consequently, the impulsive control system has to be controlled inside the target zone Z, given by:

Z = {x ∈ R 2 | Hx ≤ V }, (21) 
where

H = 1 1 -1 -1 , V = 3 -0.5 . ( 22 
)
The MPC tuning parameters are given by N = 5, α = 1, β = 1 and δ = 100. Simulations have been conducted using Matlab, Yalmip [START_REF] Löfberg | Yalmip : A toolbox for modeling and optimization in matlab[END_REF]) and Mosek Solver [START_REF] Andersen | The mosek interior point optimizer for linear programming: An implementation of the homogeneous algorithm[END_REF]).

Figures 1 expose the different sets described in the previous sections such as the target set Z, the admissible initial set with respect to Z, T Z , and the controllable set to X • s , C N , which represents the domain of attraction of 
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Fig. 1. ICS controlled trajectories for different initial states the MPC. The set X • s is a straight line as the projection onto the (x 1 , x 2 ) space of the intersection of two planes in the (x 1 , x 2 , u) space (see definition (3)). It should be noted that the initial admissible set can not be a polytope, by definition. Actually, T Z is spectrahedon, and it can be seen that its western corner is in fact rounded (see Figure 1b). Three different initial conditions have been tested to assess the efficiency and the limits of the predictive controller. First, the initial state x 0 = [7, 15] T can not be steered to the target zone as it is just outside of the controller domain of attraction, C N . In this case, the optimization problem ( 16) is infeasible, given that the terminal constraint cannot be fulfilled. In general, an enlarged set C N can be obtained for larger values of the control horizon N . However, it should be considered that a constrained, open-loop unstable system has a bounded maximal stabilizable set, outside of which no controller can stabilize any equilibrium point. The other trajectories start at the initial states that are in C N , respectively x 0 = [START_REF] Arantes Gilz | Stable model predictive strategy for rendezvous hovering phases allowing for control saturation[END_REF]15] T and x 0 = [2, 0.9] T . As it can be seen on figures 1, both trajectories do converge to an impulsive equilibrium point in the IES X s . For the initial state x 0 = [START_REF] Arantes Gilz | Stable model predictive strategy for rendezvous hovering phases allowing for control saturation[END_REF]15] T , the controller steers the system to the boundary of the IES, from the left, given that according to the selected cost term dist T Z (x s ), this is the cheapest way to approach and reach X s (recall that X s = T Z ∩ X • s ). Figure 1a shows that the optimal additional variables x s converges step-by-step to T Z along the sampled discrete-time system equilibrium set X • s . Moreover, It reaches a particular state x s characterized by a periodic orbit with the smallest value of u s (see Figures 1a). The last initial point is located in T Z . From this point the system converges to the closest point in the IES, with respect its impulsive dynamics and the norm used in dist T Z (x s )).

CONCLUSIONS

The formal description of the generalized equilibrium set with respect to a target set is proposed for impulsive control system. The main advantage of such description is that it enables a tractable computation that can be embedded in a convex program. Taking advantage of such properties a zone model predictive controller has been implemented to steer the impulsive control system to a given target zone. Once reached, the target zone is hovered with the certification that the equilibrium orbits remains inside it on the time continuum. This approach has been developed assuming that the flow dynamics of the impulsive control system is characterized by real eigenvalues with no multiplicity. If the need to account for multiplicities of the eigenvalue is arguable, complex eigenvalues can be easily met in the real applications. This fact clearly highlights the need for further investigation to enhance the proposition made in this work. Another axis of research is to evaluate the region of attraction of the impulsive equilibrium set taking advantage of its formal characterization.