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Abstract: Linear impulsive control systems are convenient to formulate a venue of real-life
problems, from diseases treatment to aerospace guidance. To take into account that the origin
is the only formal equilibrium of such systems while usual control objective consist in stabilizing
a desired target region that exclude it, a different concept of equilibrium – which includes
periodic/orbital trajectories – has been defined. This work presents a new characterization of
the equilibrium sets respecting this target region for linear impulsive systems. Based on the
Lucasz-Markov theorem a tractable and non conservative description is obtained. Furthermore,
to assess this description, the constrained equilibrium set is explicitly used in the formulation
of a model-based controller.
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1. INTRODUCTION

In the last two decades, impulsive control systems have
gained lot of interest from the control community. In fact,
linear impulsive models arise in different application fields
such as biomedical research (see González et al. [2017]
and references therein), spacecraft rendezvous guidance
and control (see Arantes Gilz et al. [2019] and references
therein), for instance. Impulsive systems have been studied
in the literature from different perspectives in terms of
solutions existence and uniqueness and stability notions
have been described formally see Bainov and Simeonov
[1995], Haddad et al. [2006].

More recently, the Model Predictive Control community
got involved in the control of such impulsive systems. In
Pereira et al. [2015], a general framework for optimization-
based predictive control is stated. The notions of invari-
ance and stability are introduced, and some stability con-
ditions are provided.

The case of linear impulsive systems has also drawn atten-
tion not only because of its importance in several applica-
tion fields, but also from a theoretical perspective. In fact,
linear impulsively controlled systems have some particu-
larities with respect to classical linear control paradigm.
Those particularities imply to adapt cardinal notions such
as equilibrium and stability. For instance, the regulation
of non-zero set-points is challenging in general: it is even
claimed in Sopasakis et al. [2015] that it is not possible
to stabilize any desired states of an impulsive system.

In Sopasakis et al. [2015], invariance and stability have
been redefined in order to design predictive controller.
The proposed controller exploits polytopic invariant set
that approximate the maximal invariant set. However,
the computation of this polytopic invariant set still is
an open problem in the general case. An intermediate
approach that does not require invariant sets is proposed
in Rivadeneira et al. [2015b] and uses the concept of zone
control defined in González et al. [2009], Gonzalez and
Odloak [2009]. In this framework, the state is steered to an
equilibrium set instead of equilibrium point (that does not
exist anywhere except at the zero point). The equilibrium
point concept has been extended to the equilibrium set
that consists of periodic controlled orbits included in a
target zone Rivadeneira et al. [2018]. In Rivadeneira et al.
[2018], the equilibrium set is clearly defined and its attrac-
tivity is established.
However, no formal description is provided and only ap-
proximating techniques are proposed in Sopasakis et al.
[2015], Rivadeneira et al. [2018]. A first contribution of this
paper is to answer the particular question of characterizing
the constrained equilibrium set and to propose a tractable
methodology to compute it. The free propagation of the
states is first expressed as univariate polynomial thanks
to the relevant change of variable. Then, the set of tra-
jectories included in the target is characterized through
the Linear Matrix Inequalities (LMI) conditions on the
initial states. These conditions are based on the Lucasz-
Markov theorem (see Nesterov [2000]) and they have been



inspired by the work Henrion et al. [2005]. To highlight
the tractability of this description, a novel zone MPC al-
gorithm is proposed, which follows the procedure exposed
in Ferramosca et al. [2010], Gonzalez and Odloak [2009]
but make an explicit use of the new set characterizations.

2. LINEAR IMPULSIVE SYSTEMS

Consider the impulsive control system (ICS){
ẋ(t) = Ax(t), x(0) = x0, t 6= τk,

x(τ+
k ) = x(τk) +Bu(τk), k ∈ N,

(ICS)

with τk = kT , for a period time T > 0. The output
equation is also given by

y(t) = Cx(t). (1)

Variables x ∈ X ⊆ Rn represent the system states,
u ∈ U ⊆ Rm, the control inputs, and y ∈ Rp, the system
outputs.

Assumption 1. Set X is assumed to be closed and set U ,
compact. Both, X and U , are assumed to be convex and
to contain the origin in their nonempty interior.

For t ∈ [τk, τk+1] the system transition is described by
x(t) = Φ(t)x(τ+

k ), where Φ(t) = eAt is the transition
matrix.

The control objective is twofold: (i) reach a given
nonempty polytopic set Z ⊆ X , denoted as the target set,
and (ii) maintain the system states inside Z, indefinitely.
In the context of linear impulsive system, periodic orbits
to ensure that the system remains in a given set have been
exploited in several work in the literature. In Arantes Gilz
et al. [2019], the natural periodic orbits included in the tar-
get zone are stabilized by means of a predictive controller.
In Rivadeneira et al. [2016], González et al. [2017], the
equilibrium orbit notion is extended since the periodicity
is forced by means of an admissible control input. The
equilibrium set can be defined as follows (Rivadeneira et al.
[2018]):

Definition 1. (Impulsive equilibrium set (IES)).
Consider the ICS (ICS). A nonempty convex set Xs ⊂ X is
an impulsive equilibrium set with respect to Z if for every
xs ∈ Xs exists us ∈ U such that (i) Φ(T )xs + Bus = xs,
and (ii) {Φ(t)xs, t ∈ [0, T ]} ∈ Z. Every single state xs in
Xs will be denoted as impulsive equilibrium state w.r.t. Z.

From the latter definition, it is clear that Xs ⊆ Z.

3. IMPULSIVE EQUILIBRIUM SET WITH RESPECT
TO A TARGET ZONE

The aim of this section is to characterize the IES, Xs, in a
tractable manner. First, note that the discrete-time system

x◦(τk+1) = Φ(T )x◦(τk) +Bu(τk), (2)

represents the ICS sampled at the instants just after the
jumps (discontinuities).

Assumption 2. The pair [Φ(T ), B] is controllable.

Next two sets will be defined, the intersection of which
allows us a proper computation of the IES, Xs.

On one hand, the equilibrium set of the latter discrete-
time system is, by definition, the set of states fulfilling
condition (i) in Definition 1 (Rivadeneira et al. [2015a],
González et al. [2017]). That is,

X ◦s = {xs ∈ X : ∃us ∈ U such that (In−eAT )xs = Bus},
(3)

is the set of states for which exists an admissible input us,
such that the controlled trajectory describes a periodic
orbit of period T .
On the other hand, the admissible initial set, with respect
to Z, TZ is defined to account for condition (ii) in the IES
Definition 1. Particularly, the set TZ is the set of states
from where the free propagated trajectories remain in Z,
over a complete T -period.

Definition 2. (Admissible initial set). Consider the ICS sys-
tem (ICS). The admissible initial set with respect to target
set Z is given by:

TZ = {x ∈ X : Φ(t)x ∈ Z, t ∈ [0, T ]},

In Sopasakis et al. [2015], Rivadeneira et al. [2018], some
techniques to approximate the set TZ are proposed. The
contribution of this paper is to provide a formal description
of this set, which is tractable enough to be used in the
MPC algorithm.

Finally, Xs, the IES w.r.t. Z, can be defined as:

Xs = X ◦s ∩ TZ . (4)

If the latter intersection is empty, then, it means that set
Z is not well defined for the ICS (ICS). In the following,
it is assumed that Xs is nonempty.

Admissible initial set characterization

Let Z be described by its Cartesian coordinates H ∈ Rl×n
and V ∈ Rl×1 such that

Z = {x ∈ X : Hx ≤ V }

In the sequel TZ is characterized in terms of linear matrix
inequalities (LMI). First some mild assumptions are made
on the flow dynamics of the ICS (ICS).

Assumption 3. (1) Eigenvalues of the matrix A are ra-
tional numbers, λs ∈ Q, with no imaginary part so
that

λl =
ηl
ρ

where ηl ∈ Z, ρ ∈ N, and l = 1, . . . , n

Eigenvalues are ranked in a increasing order such that
η1 is the largest negative integer and ηn is the largest
positive integer;

(2) Eigenvalues of A are all distinct.

Remark 1. In the conclusion of the paper Henrion et al.
[2005], arguments are provided to justify such assump-
tions. In particular, the cases where non-zero eigenvalue
multiplicity is greater than 1 are isolated cases that are non
robust to small perturbations.Consequently, this works
will not account for this case.

Remark 2. The stability of the ICS flow is not required for
the following development.

The admissible initial set is given by

TZ = {x ∈ X : HΦ(t)x ≤ V, ∀t ∈ [0, T ]} (5)



where Φ(t) = eAt. Addressing the inequality (5) row by
row, it comes

hi

n∑
j=1

Φjxj ≤ vi, i = 1, . . . , l (6)

where hi and vi are respectively the ith row and ith

singleton of H and V respectively. Φj is the jth column
of the transition matrix Φ. In the context described by
the assumptions 3, each singleton of the transition matrix
Φ(t) is given by

Φij =

n∑
r=1

αijr e
λrt, αijr ∈ R

where λs are the eigenvalues of the dynamic matrix A.
Then, inequalities (6) can be rewritten

n∑
j=1

n∑
r=1

βijr e
λrtx0,j ≤ vi, t ∈ [0, T ], i = 1, . . . , l (7)

with βijr ∈ R. Let us propose the change of independent
variable:

w = e
−1
ρ t, so that t ∈ [0, T ]⇔ w ∈ [W, 1] (8)

where W = e
−T
ρ .

Exploiting the previous change of variable, inequalities (7)
are equivalent to the following inequalities:
n∑
r=1

γjr(x, φ, hi)w
−ηr − vi ≤ 0, w ∈ [W, 1], i = 1, . . . , l

(9)
where γjs(·) are linear function of the initial state x, the
coefficients αijs of the transition matrix Φ collected in the
vector φ and the singletons of hi.

Since ηs ∈ Z, (9) are rational inequalities, it comes that∑n
l=1 γ

j
s(x, φ)w−ηs+ηn − viwηn

wηn
≤ 0, w ∈ [W, 1]. (10)

The monomial term wηn being positive on [W, 1], inequal-
ity (10) is equivalent to a polynomial positivity problem
with a given structure:

P (w) =

η̄∑
d=0

πdw
d ≥ 0, w ∈ [W, 1]. (11)

where η̄ = ηn − η1. If 0 does not belong to the spectrum
of A (0 /∈ {ηs}),

where πd =


−γd(x, φ) if d ∈ {−η1 + ηn, . . . , ηn}
vi if d = ηn
0 else

.

If 0 belongs to the spectrum of A (0 ∈ {ηs}),

where πd =


−γd(x, φ) if d ∈ {−η1 + ηn, . . . , 0}
vi − γj(x, φ) if d = ηn and ηj = 0

0 else

.

Applying the Lucasz-Markov theorem (see Nesterov [2000]),
inequalities (11) are satisfied if and only if P (w) can be
written as weighted sum of squares:

P (w) =

{〈q1, u(t)〉2 + (w −W )(1− w)〈q2, v(t)〉2, if η̄ is even

(w −W )〈q1, u(t)〉2 + (1− w)〈q2, u(t)〉2, if η̄ is odd

where u(t) = {1, t, . . . , tη̄/2}, v(t) = {1, t, . . . , tη̄/2−1},
q1 ∈ Rη̄/2 and q2 ∈ Rη̄/2−1 or q2 ∈ Rη̄/2 depending on η̄
being even or odd. Equivalently, P (w) will be non negative
if its coefficient vector π is the image of two positive semi-
definite matrices Y1 and Y2 through linear operator Λ∗1 and
Λ∗2:

π(x) = Λ∗1(Y1) + Λ∗2(Y2), Y1, Y2 � 0. (12)

The operators Λ∗1 and Λ∗2 are defined in Nesterov [2000]
and conveniently described in terms of Hankel matrices
(see [Arantes Gilz 2018, Appendix B] for a detailed exam-
ple). Thus, TZ is described as a semi-algebraic set as the
initial condition x needs to satisfy the LMI condition (12):

TZ = {x ∈ X : π(x) = Λ∗1(Y1) + Λ∗2(Y2), Y1, Y2 � 0}
(13)

As TZ is independent from the input variable u, this set
can be extended such that

T uZ = {(x, u) ∈ X × Rm : x ∈ TZ and u ∈ U} (14)

In this section, the set Xs has been described as a slice of
an spectrahedron as the intersection of a set given by linear
equalities and a set defined by LMI conditions. If it exists,
this set has the property to be non empty and convex. It
is also tractable enough to be included as constraint in a
convex program that can be solved efficiently with interior-
point method solver. The next section takes advantage of
it to design a model predictive controller.

4. ZONE MPC CONTROL

This section is devoted to the description of a zone model
predictive controller. Its main goal is to steer the ICS to the
target zone Z, that may excludes the origin, and to make
it hover this specific zone. In other words, the MPC must
be able to stabilize the IES with respect to Z. The idea is
to use the discrete-time model (2) for predictions, and to
use as a target set the set TZ (instead of the discrete-time
equilibrium X ◦s , since it does not fulfill the conditions in
Definition 1).

The cost function to be minimized on-line by the MPC is
given by

JN (x,u, xs, us) =

N−1∑
j=0

α‖x(τj)− xs‖2 + β‖u(τj)− us‖2

+ γdistTZ (xs) (15)

where x = x(τ0) represents the current state, u =
{u(τ0), u(τ1), . . . , u(τN−1)} is the predicted sequence of
inputs, xs and us are additional optimization equilibrium
variables fulfilling φ(T )xs + Bus = xs, and α, β and γ
are penalization scalars. The distance function distTZ (x)
is given by distTZ (x) = minx∗∈TZ ‖x− x∗‖.
Remark 3. The term distTZ (xs) = minx∗∈TZ ‖xs − x∗‖ is
approximated by using an additional optimization variable
x∗, which is forced to be in TZ , and including the cost term
‖xs − x∗‖2.

The optimization problem to be solved at each time τk is
as follows:



min
u,xs,us

JN (x,u, xs, us)

s.t.



x(τ0) = x

x◦(τj+1) = φ(T )x◦(τj) +Bu(τj), j ∈ NN−1

x(τj) ∈ X , u(τj) ∈ U , j ∈ NN−1

x(τN ) = xs,

φ(T )xs +Bus = xs, (xs ∈ X ◦s ).
(16)

In the latter optimization problem, x is the optimization
parameter while u, xs, us are the optimization variables.
The terminal constraint x(τN ) = xs forces the last state
on the control horizon to reach the artificial equilibrium
state xs, to ensure stability. The last constraint forces the
additional variables (xs, us) to be an equilibrium of the
sampled system (2). This two constraints determine the
region of feasibility of the optimization problem, which is
given by the controllable set, in N -step, to X ◦s :

CN (X ◦s ) = {x◦ ∈ X : x◦(τj) ∈ X , u(τj) ∈ U , j ∈ NN−1,

x◦(τN ) ∈ X ◦s } , (17)

where x◦(τj+1) = Φ(T )x◦(τj) +Bu(τj), x = x(τ0).

Once the MPC problem is solved at time τk, the optimal
solution is given by the optimal input sequence

u0(x) = {u0(x, τ0), u0(x, τ1), . . . , u0(x, τN−1)}, (18)

and the optimal additional variables (x0
s(x), u0

s(x)), while
the optimal cost is denoted as J0

N (x) := JN (x,u0, x0
s, u

0
s).

The control law, derived from the application of a reced-
ing horizon control policy (RHC), is given by u(τk) =
κMPC(x(τk)) = u0(x, τ0), where u0(x, τ0) is the first con-
trol action in u0(x).

The stabilizing properties of the controller are summarized
in the following Property.

Property 1. The IES Xs, w.r.t. Z, is asymptotically stable
for the closed-loop system ICS,{

ẋ(t) = Ax(t), x(0) = x0, t 6= τk,

x(τ+
k ) = x(τk) +BκMPC(x(τk)), k ∈ N,

(19)

with a domain of attraction given by CN (X ◦s ).

Sketch of Proof: The proof follows the steps of the
so called MPC for tracking, Ferramosca et al. [2010],
Rivadeneira et al. [2018]. The time of the closed-loop is
denoted by τk, as in (19), while the time for predictions,
inside each optimization problem, is denoted by τj .

The recursive feasibility of the sequence of optimiza-
tion problems follows from the fact that, for every
x ∈ CN (X ◦s ), the terminal constraint forces the sys-
tem x◦(τj+1) = φ(T )x◦(τj) + Bu(τj) to reach an in-
variant set (for instance the equilibrium set, X 0

s ), at
the end of the control horizon. So, if the solution of
the optimization problem for x, at time τk, is given by
u0(x), x0

s(x) and u0
s(x), then a feasible solution for the

state x+, at time τk+1, can be computed as ũ(x+) =
{u0(x; τ1), u0(τ2), . . . , u0(τN−2), ũs(x

+)}, x̃s(x+) = xs(x)
and ũs(x

+) = us(x). This feasible solution produces a
feasible sequence of states, given by x̃(x+) = {x0(x, τ1),
x0(x, τ2), . . . , x̃s(x

+), x̃s(x
+)}.

The attractivity of Xs follows from the fact that, J̃N (x+) ≤
J0
N (x) − α‖x − xs‖2 − β‖u − us‖2, where J̃N (x+) =
JN (ũ(x+), x̃s(x

+), ũs(x
+)) and u is the input injected to

the system at time τk. Then, by optimality, it is J0
N (x+) ≤

J̃N (x+), which means that J0
N (·) is a strictly decreasing

positive function - i.e., J0
N (x+) ≤ J0

N (x) - that only stops
to decrease if x = x(τk) = xs and u = (τk) = us.
Furthermore, the fact that x(τk)→ xs and u(τk)→ us, as
k →∞, implies that x(τk) tends also to TZ (by the effect
of the cost term distTZ (xs), as stated in Lemmas 1, 2 and
3, in Rivadeneira et al. [2018]). This way, x(τk) tends to
the intersections of X ◦s and TZ , which, by (4), represents
the IES Xs.
Remark 4. Note that it is not necessary to express explic-
itly the intersection (4) to formulate the MPC. In fact,
such intersection is implicit in the controller formulation,
by means of the additional variables (xs, us) - that are
forced to be in X ◦s -, and the cost term distTZ (xs) which
steers the states after the discontinuities, x◦(τk), to TZ .

Remark 5. In Rivadeneira et al. [2018] a target set X ◦s ,
already accounting for the properties of Xs w.r.t. Z (i.e.,
accounting for {Φ(t)xs, t ∈ [0, T ]} ∈ Z), needs to be outer-
approximated by a polyhedron, and then explicitly used in
the controller formulation. In contrast, the proposed MPC
steers the system to the exact set Xs, without the need of
explicitly compute it.

Remark 6. Another benefits of the proposed MPC to be
emphasized is that it steers the system to an equilib-
rium region that fulfill continuous-time constraints by
only considering a sampled discrete-time system, as it is
x◦(τj+1) = φ(T )x◦(τj) +Bu(τj).

5. NUMERICAL STUDIES

Let consider a linear time-invariant and impulsively con-
trolled system described by the state space model ICS
where

A =

[
1
2 −2
0 − 3

2

]
, B =

[
3
−2

]
, C = [1 1] . (20)

The eigenvalues of A are 1
2 and − 3

2 so that the flow
dynamics of the impulsive control system is unstable and
diverges naturally from the target set Z. The control
period T is set to 1 second. The admissible input control
set, U , is given by the interval [−1, 1]. The aim of the
control is to stabilize and maintain the output y in the
target interval [0.5, 3]. Consequently, the impulsive control
system has to be controlled inside the target zone Z, given
by:

Z = {x ∈ R2 | Hx ≤ V }, (21)

where

H =

[
1 1
−1 −1

]
, V =

[
3
−0.5

]
. (22)

The MPC tuning parameters are given by N = 5, α = 1,
β = 1 and δ = 100. Simulations have been conducted
using Matlab, Yalmip (Löfberg [2004]) and Mosek Solver
(Andersen and Andersen [2000]).

Figures 1 expose the different sets described in the pre-
vious sections such as the target set Z, the admissible
initial set with respect to Z, TZ , and the controllable set
to X ◦s , CN , which represents the domain of attraction of
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Fig. 1. ICS controlled trajectories for different initial states

the MPC. The set X ◦s is a straight line as the projection
onto the (x1, x2) space of the intersection of two planes in
the (x1, x2, u) space (see definition (3)). It should be noted
that the initial admissible set can not be a polytope, by
definition. Actually, TZ is spectrahedon, and it can be seen
that its western corner is in fact rounded (see Figure 1b).

Three different initial conditions have been tested to assess
the efficiency and the limits of the predictive controller.
First, the initial state x0 = [7, 15]T can not be steered to
the target zone as it is just outside of the controller domain
of attraction, CN . In this case, the optimization problem
(16) is infeasible, given that the terminal constraint cannot
be fulfilled. In general, an enlarged set CN can be obtained
for larger values of the control horizon N . However,
it should be considered that a constrained, open-loop
unstable system has a bounded maximal stabilizable set,
outside of which no controller can stabilize any equilibrium
point. The other trajectories start at the initial states that
are in CN , respectively x0 = [8, 15]T and x0 = [2, 0.9]T .
As it can be seen on figures 1, both trajectories do converge
to an impulsive equilibrium point in the IES Xs.
For the initial state x0 = [8, 15]T , the controller steers
the system to the boundary of the IES, from the left,
given that according to the selected cost term distTZ (xs),
this is the cheapest way to approach and reach Xs (recall
that Xs = TZ ∩ X ◦s ). Figure 1a shows that the optimal
additional variables xs converges step-by-step to TZ along
the sampled discrete-time system equilibrium set X ◦s .
Moreover, It reaches a particular state xs characterized
by a periodic orbit with the smallest value of us (see
Figures 1a). The last initial point is located in TZ . From
this point the system converges to the closest point in the
IES, with respect its impulsive dynamics and the norm
used in distTZ (xs)).

6. CONCLUSIONS

The formal description of the generalized equilibrium set
with respect to a target set is proposed for impulsive
control system. The main advantage of such description
is that it enables a tractable computation that can be
embedded in a convex program. Taking advantage of
such properties a zone model predictive controller has
been implemented to steer the impulsive control system
to a given target zone. Once reached, the target zone is
hovered with the certification that the equilibrium orbits
remains inside it on the time continuum. This approach
has been developed assuming that the flow dynamics
of the impulsive control system is characterized by real
eigenvalues with no multiplicity. If the need to account
for multiplicities of the eigenvalue is arguable, complex
eigenvalues can be easily met in the real applications. This
fact clearly highlights the need for further investigation to
enhance the proposition made in this work. Another axis
of research is to evaluate the region of attraction of the
impulsive equilibrium set taking advantage of its formal
characterization.
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Löfberg, J. (2004). Yalmip : A toolbox for modeling and
optimization in matlab. In In Proceedings of the CACSD
Conference. Taipei, Taiwan.

Nesterov, Y. (2000). Squared functional systems and
optimization problems. In Applied Optimization, 405–
440. Springer US. doi:10.1007/978-1-4757-3216-0 17.

Pereira, F.L., Fontes, F.A.C.C., Aguiar, A.P., and
de Sousa, J.B. (2015). An optimization-based frame-
work for impulsive control systems. In Developments
in Model-Based Optimization and Control, 277–300.
Springer International Publishing. doi:10.1007/978-3-
319-26687-9 13.

Rivadeneira, P.S., Ferramosca, A., and Gonzalez, A.H.
(2016). Impulsive zone model predictive control with
application to type I diabetic patients. In Proceedings
of the 2016 IEEE Multi-Conference on Systems and
Control, 544–549. Buenos Aires.

Rivadeneira, P.S., Ferramosca, A., and González, A.H.
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