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Abstract: This paper deals with the stabilization of switched affine systems. The particularities
of this class of nonlinear systems are first related to the fact that the control action is performed
through the selection of the switching mode to be activated and, second, to the problem of
providing an accurate characterization of the set where the solutions to the system converge to.
In this paper, we propose a new method based on a control Lyapunov function, that provides
a more accurate invariant set for the closed-loop systems, which is composed by the union
of potentially several disjoint subsets. The main contribution is presented as a non convex
optimization problem, which refers to a Lyapunov-Metzler condition. Nevertheless a gridding
technique applied on some parameters allows obtaining a reasonable solution through an LMI
optimization. The method is then illustrated on two numerical examples that demonstrate the
potential of the method.

1. INTRODUCTION

Switched systems are a subclass of hybrid systems (Liber-
zon, 2003a), (Shorten et al., 2007) encountered in many
applications such event-triggered control, mobile sensor
networks, damping of vibrating structures, among many
others. The reader may refer to (Antunes and Heemels,
2017) for more references to these applications. While
one can find a very rich literature on the stabilization
of linear switched, as for instance in (Feron, 1996; Lin
and Antsaklis, 2009; Liberzon, 2003b), the problem of
stabilizing switched affine systems has been less regarded
even though this class of nonlinear systems is of particular
interest for instance for the analysis of sampled-data slid-
ing mode controller (Su et al., 2000) or for the stabilization
of DC-DC converters (Deaecto et al., 2010; Beneux et al.,
2019).

In hybrid-time, i.e. considering the continuous and dis-
crete dynamics, the deal is to guarantee the stabilization
of the state to an equilibrium, which does not generally
coincides with the ones of the subsystems. Several control
design methods have been considered in the literature as
for instance in (Hetel and Fridman, 2013; Skafidas et al.,
1999; Seatzu et al., 2006; Hetel and Bernuau, 2014) or in
(Deaecto et al., 2010; Albea Sanchez et al., 2015; Beneux
et al., 2019), where a particular attention to the applica-
tion to power converters is paid. It is worth mentioning
that these design strategies are not fully satisfactory in
practice because they theoretically produce, around the
equilibrium, an infinite number of control updates, which
is not reasonable because of implementation constraints.
This problem is similar to the one arising in the implemen-
tation of sliding mode controller, where chattering effects
occur when the state enters in the sliding surface (Edwards
and Spurgeon, 1998; Shtessel et al., 2014). To solve this

issue, a possible solution is to introduce a minimum latency
between two successive control updates, also known as
a dwell time constraint (Senesky et al., 2003; Buisson
et al., 2005; Theunisse et al., 2015; Albea Sanchez et al.,
2019). One can note, however, that the resulting control
signals updates are aperiodic and, in some occasions, due
to practical constraints, one needs to impose a periodic
implementation. Moreover, it is worth mentioning a robust
approach with respect to aperiodic sampled-data switching
controllers was investigated in (Hauroigne et al., 2011;
Hetel and Fridman, 2013). Nevertheless, all the previous
design solutions are based on a common quadratic Lya-
punov function, which is known, in the linear case, to be
conservative and/or restrictive.

Another solution provided in the literature consists in
considering periodic updates of the control input and the
resulting discrete-time formulation of the switched affine
system. The objective here is to ensure the stabilization
of the state to a neighborhood of the origin. Where this
solution obviously presents a Zenoness behaviour at the
equilibirum, the price to pay is that the discrete-time
system cannot be stabilized to a single equilibrium but
rather to a suitable region. In this situation the authors of
(Deaecto and Geromel, 2016; Ventosa-Cutillas et al., 2018)
provide a solution considering a common and quadratic
Lyapunov function, which is conservative, leading to a
practical stabilization result. This approach was latter
relaxed in (Egidio and Deaecto, 2019), where the design of
practically stabilizing control law was developed thanks to
a switched Lyapunov function, reducing then the inherent
conservatism of the resulting condition.

The present paper aims at providing a novel method for
the design of stabilizing control law for switched affine
systems. The novelty of the method relies on the use



of another switching control Lyapunov function, with a
structure that notably differs from the one proposed in
(Egidio and Deaecto, 2019). This method gives rise to
a control law resulting from a non convex optimization
problem referring to Lyapunov-Metzler conditions (see
e.g. (Geromel and Colaneri, 2006; Heemels et al., 2016)).
Thanks to a gridding technique, this problem can be solved
by solving iteratively a convex problem formulated as a
Linear Matrix Inequality (LMI). Interestingly, this new
method ensures the convergence of the trajectories of the
system to the interior of an invariant attractive region
composed of several possibly disjoint ellipsoidal regions.
A comparison with the numerical application presented
in (Egidio and Deaecto, 2019) is proposed and shows the
efficiency of our method, since it provides a smaller and
more accurate invariant set.

The paper is organized as follows: the problem is stated in
Section 2. Then, a switched control solution is provided in
Section 3. Section 4 is devoted to numerical application of
our method. The paper ends with a conclusion and several
perspectives.

Notations: Throughout the paper, N denotes the set
of natural numbers, R the real numbers, Rn the n-
dimensional Euclidean space and Rn×m the set of all real
n×mmatrices. For any n andm in N, matrices In and 0n,m
denote the identity matrix of Rn×n and the null matrix
of Rn×m, respectively. When no confusion is possible, the
subscripts of these matrices that precise the dimension,
will be omitted. For any matrix M of Rn×n, the notation
M � 0, (M ≺ 0) means that M is symmetric positive
(negative) definite and det(M) represents its determinant.
Finally, we define Λ as the subset of [0, 1]K such that an
element λ in Λ has its components, λi in (0, 1) for all i ∈ K
and verifies

∑
i∈K λi = 1.

2. PROBLEM FORMULATION

2.1 System data

Consider discrete-time switched affine system{
xk+1 = Aσk

xk +Bσk
, k ∈ N,

σk ∈ K,
x0 ∈ Rn,

(1)

where xk ∈ Rn is the state vector, which is assumed
to be known at each time instant k in N. The switched
system is composed of K subsystems defined through the
constant and known matrices Ai ∈ Rn×n and Bi ∈ Rn×1

for all i ∈ K, where K is a known positive integer. The
active mode is characterized by variable σk, which can take
any value in K. The particularity of this class of systems
relies on the fact that the only control action is performed
through the selection of the active mode σ, which requires
a particular attention.

The objective of this paper is the design of a suitable
control law for system (1) that ensures the convergence
of the state trajectories to a set to be characterized in an
accurate manner. Indeed, it is well-known that asymptotic
stability of a single equilibrium of (1) cannot be achieved
in general for switched affine system (1). Due to the affine,
and consequently nonlinear nature, one has to relax the
control objective to derive an acceptable stability result.

For instance, in Deaecto and Geromel (2016), the authors
have derived a practical stability result. More precisely, it
is shown therein, that the solutions to the switched affine
systems converge to an invariant region characterized by
a level set of a Lyapunov function centered at a desired
operating point or at a slightly shifting point nearby this
operating point.

In this paper, our objective is to go deeper into the
analysis of switched affine systems and try to characterize
in a thinner manner the region where the solutions to
the system converge to. This new analysis is achieved
thanks to a different class of Lyapunov functions than
the quadratic ones. Indeed, one has to use more advanced
tools and Lyapunov functions arising in switched affine
systems in order to derive more accurate results. A first
attempt was considered in (Geromel and Colaneri, 2006)
for switched linear systems, where the Lyapunov function
is defined using different Lyapunov matrices. It is note-
worthy that the discrete-time nature of the dynamics (1)
allows to consider classes of Lyapunov functions associated
with possibly disconnected level sets, as pointed out in
(Cavichioli Gonzaga et al., 2012). Here, we propose a
different Lyapunov function inspired from (Egidio and
Deaecto, 2019) and defined as follows

V (x) = min
i∈K

(x− ρi)> P (x− ρi) , ∀x ∈ Rn, (2)

where P is a symmetric positive definite matrix of Rn×n
and where, for any i ∈ K, ρi are vectors of Rn. These
vectors represent several possible shifted centers of the
Lyapunov function and are to be characterized in a dedi-
cated manner.

Remark 1. In the definition of the Lyapunov function, it
is assumed that the number of shifted centers is the same
as the number of modes. This can be seen a restrictive
assumption that could be relaxed but this goes beyond the
objectives of this paper, which concerns the development
of a new control-Lyapunov for switched affine systems.

As mentioned above, ensuring asymptotic stability of an
equilibrium is in general not possible for switched affine
systems. However, it is still possible to derive practical
stability result as a given level set of a Lyapunov function.
Following the same ideas as in the literature, our objective
is to guarantee the practical stability of a level set of this
new Lyapunov function. This level set, also called attractor
is defined as follows:

A := {x ∈ Rn | V (x) ≤ 1} , (3)

where we recall that the Lyapunov function V is defined
by (2). Depending on the selection of matrix P and on
the shifted centers ρi, the attractor may not be a convex
nor a connected set. Indeed, we will see in the example
section, that the level set of the Lyapunov function may
characterize several disjoint regions.

2.2 Preliminary

This preliminary is taken from (Geromel and Colaneri,
2006) and provides an equivalence between a minimum
of a set of values and their convex linear combination. The
following lemma taken from (Cavichioli Gonzaga, 2012)
formalizes this statement.



Lemma 2. (Cavichioli Gonzaga (2012)). For any scalars
vi, where i ∈ K, the following equality holds

min
i∈K

vi = inf
α∈Λ

∑
i∈K

αivi. (4)

Remark 3. There is a small difference with respect to the
original formulation of (Cavichioli Gonzaga, 2012). Indeed,
here, we have removed the extrema of the components of
the set Λ (i.e. the αi’s cannot be equal to 0 nor 1).

Equality (4) will be a key element of the next develop-
ments. In particular, the previous lemma ensures that for
any element α in Λ, the following inequality holds

min
i∈K

vi ≤
∑
i∈K

αivi. (5)

3. STATE BASED SWITCHING CONTROL

3.1 Main result

We dedicate this section to design a novel switching control
law based on the state xk from (1) which is assumed to be
known at every time instant k. This stabilization result is
stated in the following theorem.

Theorem 1. Consider parameters µ ∈ (0, 1), λ(i) ∈ Λ, with
i ∈ K, a positive definite matrix W ∈ Rn×n � 0, and
ρi ∈ RN that are the solutions to the following non convex
optimization problem

min
µ,W,ρi,λi

Tr(W ) (6)

subject to the constraints (7)

W � 0, (8)−(1− µ)W 0 Ai(λ(i))

∗ −µ Bi(λ(i))

∗ ∗ −Di(λ(i))

 ≺ 0, ∀i ∈ K, (9)

where

Ai(λ(i)) =
[
λ

(i)
1 WA>i λ

(i)
2 WA>i . . . λ

(i)
K WA>i

]
,

Bi(λ(i)) =
[
λ

(i)
1 (Aiρi+Bi−ρ1)> . . . λ

(i)
K (Aiρi+Bi−ρK)>

]
,

Di(λ(i)) = diag(λ
(i)
1 W, . . . , λ

(i)
K W ),

(10)

Then, the switching function control law given by

σk ∈ G(xk),

where G(x) is a function that maps Rn to subsets of K
defined by

G(x) = argmin
i∈K

(x− ρi)TW−1(x− ρi), ∀x ∈ Rn, (11)

ensures that the set A is uniformly globally asymptotic
stable for system (1).

Remark 2. In that theorem, we have considered the min-
type Lyapunov function defined in (2) which compares K
quadratic functions with different shifted centers. In this
paper, a natural choice, as given in Remark 1, was to
consider the same number of shifted centers {ρi}i∈K as
the number of modes.

Proof: The proof aims at demonstrating that the set A
defined in (3) is uniformly globally asymptotically stable

provided that the conditions of Theorem 1 are verified. To
do so, the two following items have to be considered

• V given in (2) is a Lyapunov function for the system
(1), (11).

• A is invariant for the system (1),(11).

In order to prove the first item, let us compute the
increment of the Lyapunov function. This leads to

∆V (xk) = min
j∈K

(xk+1 − ρj)>P (xk+1 − ρj)

−min
i∈K

(xk − ρi)>P (xk − ρi).

According to the switching control law (11), the active
mode σk corresponds to the mode that minimizes the
Lyapunov function at time k, which allows us to write

∆V (xk) = min
j∈K

(xk+1 − ρj)>P (xk+1 − ρj)

−(xk − ρσk
)>P (xk − ρσk

).

Thanks to Lemma 2 and more particularly to inequality
(5), the following inequality holds for any element λ(σk) in
Λ.

∆V (xk) ≤
∑
j∈K

λ
(σk)
j (xk+1 − ρj)>P (xk+1 − ρj)

−(xk − ρσk
)>P (xk − ρσk

),

where λ
(σk)
j is the jth component of λ(σk).

Let us now focus on the first positive terms of the previous
expression. Replacing xk+1 by its expression from (1), we
note that xk+1 − ρj = Aσk

xk + Bσk
− ρj . Our objective

is to rewrite the previous expression using xk − ρσk
, in

order to take the full benefits of the negative terms of the
Lyapunov increment. Simple manipulations yield

xk+1 − ρj = Aσk
(xk − ρσk

) +Aσk
ρσk

+Bσk
− ρj .

Let us now introduce a new vector, χk, given by

χk =

[
P (xk − ρσk

)
1

]
, (12)

and matrix W = P−1 � 0 and then, we obtain the
following expression

xk+1 − ρj = [Aσk
W Aσk

ρσk
+Bσk

− ρj ]χk.
Hence, gathering all the terms in the sum and using the
notation introduced in the statement of Theorem 1, we are
able to express the increment of the Lyapunov function as
follows

∆V (xk) = χ>k Φ(σk, λ
(σk))χk, (13)

where matrix Φ(σk, λ
(σk)) is given by

Φ(σk, λ
(σk)) =

[
Aσk

(λ(σk))

Bσk
(λ(σk))

]
D−1
σk

(λ(σk))

[
Aσk

(λ(σk))

Bσk
(λ(σk))

]>
−
[
W 0
0 0

]
.

It is worth noting that the components of λ(i) are assumed
to be strictly positive. Now, that the difference Lyapunov
function has been properly expressed, the next step con-
sists in ensuring its negative definiteness only outside the
attractor defined in (3). To do so, we note that any vector
xk outside of the attractor verifies[

xk − ρσk

1

]> [
P 0
0 −1

] [
xk − ρσk

1

]
> 0.



Using notations χk and W introduced above, the previous
inequality simply writes

χ>k

[
W 0
0 −1

]
χk > 0. (14)

Therefore, the previous problem can be rewritten as the
satisfaction of

χ>k Φ(σk, λ
(σk))χk < 0

for all vector χk that verifies (14). Using an S-procedure,
this problem is equivalent to the existence of a positive
scalar µ, such that,

Φ(σ, λ(σk)) + µ

[
W 0
0 −1

]
≺ 0.

Then, the proof of the first item is then concluded by
application of Schur complement to the first term of
Φ(σk, λ

(σk)), leading to inequality (9).

To conclude the proof, it remains to prove that A is
invariant, corresponding to the second item. Assume that
xk is in the attractor at a given instant k, i.e. V (xk) < 1.
Together with (9), we know that the following inequality

V (xk+1) = V (xk) + ∆V (xk)

= V (xk) + χ>k

(
Φ(σk, λ

(σk)) + µ

[
W 0
0 −1

])
χk

−µ(V (xk)− 1)
≤ (1− µ)V (xk) + µ

holds where the last inequality has been obtained from the
negative definiteness of inequality (9). The assumptions
that xk is in the attractor and that µ ∈ (0, 1) yield

V (xk+1) ≤ (1− µ) + µ = 1,

which guarantees that xk+1 also belongs to A. �

3.2 Comment on the centers ρi and on translated models

Usually for this class of switched affine systems, it is first
required to define a translated system where the origin
becomes located at a desired operating point. The reader
may refer to Deaecto and Geromel (2016), for instance. It
is then important to stress whether the attractor is affected
by this translation. To better understand this issue, let us
define the translated variable z = x − δ, where δ is any
vector in Rn. The new dynamics are given by zk+1 = Aσk

zk + B̃σk
, k ∈ N,

σk ∈ K,
z0 ∈ Rn,

(15)

where B̃σk
= (Aσk

− I)δ + Bσk
. Then, the following

proposition holds.

Proposition 1. Assume that (µ,W, {ρi, λ(i)}i∈K) is a solu-
tion to the optimization problem of Theorem 1 for the
original systems (Ai, Bi)i∈K. Then, (µ,W, {ρi−δ, λ(i)}i∈K)
is a solution to the same optimization problem but for the
translated system (Ai, B̃i)i∈K.

Proof: The proof simply consists in noting that the only
difference between the original and the translated system
appears in the definition of the affine terms that are
gathered in matrices Bi(λ(i)). Since, the same coefficients
λi’s are considered, one has to focus on Aiρi + Bi − ρj ,

for every i and j in K. The proof straightforwardly follows
from the fact that, for every i and j in K, we have

Aiρi +Bi − ρj = Ai(ρi − δ) +Aiδ +Bi − δ︸ ︷︷ ︸
B̃i

−(ρj − δ).

This manipulation allows us to conclude the proof. �

Proposition 1 stresses that the shifted centers ρi’s are
intrinsically the same, whatever the translation of coor-
dinates. This is an important remark, since it proves that
there is no need to apply any change of coordinates before
applying Theorem 1.

3.3 Comments on the resolution of the non convex problem

As stated in its statement, the optimization problem
of Theorem 1 is non convex due to the multiplication

of decision variables, such as for instance λ
(i)
j W in the

definition of matrices Di. However, this problem can be
made convex by fixing µ ∈ (0, 1) and λ(i) ∈ (0, 1)K , with
i ∈ K. Of course, this is not realistic for large values of K,
but for K = 2, the number of parameters to fix is only 3,
which is reasonable. This is formulated in the following
proposition.

Proposition 2. For given parameters µ, γ1, γ2 ∈ (0, 1), the
solution including the symmetric positive definite matrix
W ∈ Rn×n � 0 and the vectors ρi ∈ RN to the non convex
optimization problem

min
W,ρi

Tr(W ) (16)

subject to the constraints (17)

W � 0, (18)−(1− µ)W 0 Āi(γi)
∗ −µ B̄i(γi)
∗ ∗ −D̄i(γi)

 ≺ 0, ∀i = 1, 2, (19)

where

Āi(γi) =
[
γiWA>i (1− γi)WA>i

]
,

B̄i(γi) =
[
γi(Aiρi+Bi−ρ1)> (1−γi)(Aiρi+Bi−ρ2)>

]
,

D̄i(γi)=diag(γiW, (1− γi)W ),
(20)

ensures that the switching control law given by

σk ∈ G2(xk),

where G2 is a function that maps Rn to subsets of {1, 2}
given by

G2(x) = argmin
i=1,2

(x− ρi)>W−1(x− ρi), ∀x ∈ Rn, (21)

ensures that A is uniformly globally asymptotic stable for
system (1).

Proof: The proof is obtained by the introduction of

parameters γi, such that, for K = 2, we have λ
(i)
1 = γi

and λ
(i)
2 = 1− γi. �

4. SIMULATION RESULTS

Through this section, we aim at illustrating our contribu-
tions through two examples that have been already treated
in the literature.



4.1 Example 1

Consider the discrete-time switched affine system bor-
rowed from (Deaecto and Geromel, 2016), as modeled in
(1), with two modes (K = 2) and the following matrices

Ai = eFiT , Bi =

∫ T

0

eFiτdτgi, ∀i ∈ {1, 2} , (22)

where T , referring to a sampling period is taken equal to
1 and where matrices Fi and gi for i ∈ K are given by

F1 =

[
0 1 0
0 0 1
−1 −1 −1

]
, F2 =

[
0 1 0
0 0 1
0 −1 −1

]
, g1 =

[
1
0
0

]
, g2 =

[
0
1
0

]
.

Fig. 1. Trajectories of system (1) for Example 1 in the state
space. Two windows are included to show the attrac-
tor located around the shifted centers, represented by
the red cross.

In Deaecto and Geromel (2016), the authors considered
the convergence of the state trajectories to an invariant set
around a desired equilibrium. Therefore, they solved the
problem by introducing an auxiliary variable and defining
the translated system with that variable. In Section 3.2,
we comment and prove that the solution found for system
(1) is a solution for system (15).

As it has been commented in Section 3.3, the optimization
problem is non convex. Using a gridding procedure to
fix the parameters µ and γi, the resulting optimization
problem becomes convex and is solvable using sdp software
as the CVX solver in Matlab (see (Grant and Boyd, 2014)).
The following numerical results are obtained:

µ = 0.7929, γ1 = 10−5, γ2 = 1− 10−5,

W =

[
5.6 −4 2
−4 6.2 −4.2
2 −4.2 7.4

]
.10−10,

ρ1 =

[
0.1
0.4
0.37

]
, ρ2 =

[
0.69
−0.2
−0.6

]
.

Figure 1 shows the trajectories of the system. The centers
are indicated by the two red crosses. With the full view of

the temporal evolution, we cannot see the ellipsoids draw-
ing the attractor. However, they appear after performing a
zoom of them in the two windows. These views allow us to
see the convergence of the trajectories toward the interior
of the two ellipsoids, which differ only by their center. An
alternative interpretation of the previous figure is shown
on Figures 2 and 3, where the evolution of xk − ρσk

with
respect to k is plotted. One can see from this figure that
the trajectories are indeed converging to the centers ρi.

It is also of interest to point out that the switching law
tends to a periodic behaviour and that the state converges
to a cycle k 7→ ρσk

.
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Time k

1
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Fig. 2. Evolution of xk − ρσk
with the switching function

σ ∈ {1, 2} computed at instant k

Continuing with the same example, one may be interested
in highlighting the evolution of the centers ρi, with respect
to the selection of the sampling period, T . In Figure 4, it
is depicted the attractors for T = 0.1, 0.5 and 1. One can
see in this figure that an increasing in T leads to more
distant centers. This fits to the intuition that larger the
sampling periods induce to larger chattering amplitude at
the steady state.

4.2 Example 2

Now, we take the example 1 given in (Egidio and Deaecto,
2019). The considered system is a discrete-time switched
affine system discretized using (22) with T = 0.5 which
provides the following matrices :

F1 =

[
−5.8 −5.9
−4.1 −4

]
, F2 =

[
0.1 −0.5
−0.3 −5

]
,

g1 =[0 −2]
>
, g2 =[−2 2]

>
.
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-4
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0
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x k -
 

k

Fig. 3. Evolution of xk − ρσk
for Example 1

Fig. 4. Plot of ρ1 and ρ2 for T = 1, 0.5 and 1s for
Example 1.

Considering the gridding procedure used in Example 1 to
find the parameters µ and γi ∀i ∈ {1, 2}, we have

µ = 0.997, γ1 = 10−5, γ2 = 1− 10−5,

W =

[
1.3 0.5
0.5 1.8

]
.10−10,

ρ1 =

[
−1.7
0.47

]
, ρ2 =

[
−0.54
0.33

]
.

Figure 5 shows the trajectory of the state xk from the
initial state toward the two shifted ellipses. Note that
the ellipses depicted on this figure present such a re-
duced size that they are represented by a cross in each
center, ρi. In addition, the dotted line S, defined by

(x− ρ1)
>
W−1 (x− ρ1) = (x− ρ2)

>
W−1 (x− ρ2) por-

trays the switched surface, which separates the space in
two regions. Through this graphic criteria, one can know
which mode is active depending on which side the state xk
is.

Moreover, in the concerned figure, we compare the result
given in (Egidio and Deaecto, 2019) with our main result.
The readers are able to see the different set sizes. The
dashed ellipsoids represent the invariant set obtained in
(Egidio and Deaecto, 2019) while the invariant set ob-
tained from Proposition 2 is illustrated by the crosses
as commented above. Note that our approach provides a
attractor at least 109 smaller than the one provided in
(Egidio and Deaecto, 2019).
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Fig. 5. Trajectories of system (1) for Example 2 in the
state space. The switching surface (dotted line), the
centers ρ1 and ρ2 (red crosses) and the invariant set
(dashed line) from Egidio and Deaecto (2019).

Finally, one can note the decreasing value of the Lyapunov
function on Figure 6. It is highlighted the invariant char-
acter of the attractor. Once V goes under 1, it remains
under this value.

0 50 100

Time k

10-10

100

1010

Vk

Lyapunov Function
V =    1

100

Fig. 6. Evolution of the Lyapunov function Vk for Exam-
ple 2

5. CONCLUSIONS

In this paper, the problem of designing a stabilizing
switched control law for switched affine systems has been
addressed. Thanks to a new control Lyapunov function,
arising from the stability analysis of switched systems, an
accurate characterisation of the attractor is formulated.
The parameter of the control law are obtained through
the solution of a non convex optimization problem, that
can be efficiently solved using a gridding procedure in the
situation of 2-modes switched affine systems.

This contribution opens many directions for future in-
vestigations. First, the numerical results exposed in this
paper lead to the reasonable idea of considering attractor
that are defined by the union of several points. A formal
proof of this needs to be investigated. A second direction



is related to the fact that the main contributions of this
paper present a non convex optimization problem that may
be difficult to solve in case of large number of modes. This
problem requires a particular attention and producing a
method that can overcome this issue would be highly
relevant.
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