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INTRODUCTION

Switched systems represent a subclass of hybrid systems (Liberzon, 2003a), [START_REF] Shorten | Stability criteria for switched and hybrid systems[END_REF] encountered in many applications such event-triggered control, mobile sensor networks, damping of vibrating structures, among many others. The reader may refer to [START_REF] Antunes | Linear quadratic regulation of switched systems using informed policies[END_REF] to know more about these applications.

While one can find a rich literature on the stabilization of switched linear systems, as for instance in [START_REF] Feron | Quadratic stabilizability of switched systems via state and output feedback[END_REF][START_REF] Lin | Stability and stabilizability of switched linear systems: a survey of recent results[END_REF][START_REF] Liberzon | Switching in systems and control[END_REF], the problem of stabilizing switched affine systems has been less regarded even though this class of nonlinear systems is of particular interest for the analysis of sampled-data sliding mode controllers [START_REF] Su | An o(t 2 ) boundary layer in sliding mode for sampled-data systems[END_REF] or for the stabilization of DC-DC converters [START_REF] Deaecto | Switched affine systems control design with application to DC-DC converters[END_REF][START_REF] Beneux | Adaptive stabilization of switched affine systems with unknown equilibrium points: Application to power converters[END_REF].

Stabilizing switched affine systems aims at ensuring the convergence of the state to a selected reference point that does not necessarily coincide with the equilibriums of the modes. Several control design methods have been considered in the literature as for instance in [START_REF] Hetel | Robust sampled-data control of switched affine systems[END_REF][START_REF] Skafidas | Stability results for switched controller systems[END_REF][START_REF] Seatzu | Optimal control of continuous-time switched affine systems[END_REF][START_REF] Hetel | Local stabilization of switched affine systems[END_REF] or in [START_REF] Deaecto | Switched affine systems control design with application to DC-DC converters[END_REF][START_REF] Albea-Sanchez | Hybrid dynamic modeling and control of switched affine systems: application to DC-DC converters[END_REF][START_REF] Beneux | Adaptive stabilization of switched affine systems with unknown equilibrium points: Application to power converters[END_REF], where a particular attention to the application to power converters is paid. It is worth mentioning that these design strategies are not fully satisfactory in practice because they theoretically produce, around the equilibrium, an infinite number of control updates, which is not reasonable because of implementation constraints. This problem is similar to the one arising in the implementation of sliding mode controllers, where chattering effects occur when the state enters in the sliding surface [START_REF] Edwards | Sliding mode control: theory and applications[END_REF][START_REF] Shtessel | Sliding mode control and observation[END_REF]. To solve this issue, a possible solution is to introduce a minimum latency between two successive control updates, also known as a dwell time constraint [START_REF] Senesky | Hybrid modelling and control of power electronics[END_REF][START_REF] Buisson | On the stabilisation of switching electrical power converters[END_REF][START_REF] Theunisse | Robust global stabilization of the DC-DC boost converter via hybrid control[END_REF][START_REF] Albea-Sanchez | Practical stabilisation of switched affine systems with dwell-time guarantees[END_REF]. One can note, however, that the resulting control signals updates are sampled in an aperiodic manner and, in some occasions, due to practical constraints, one needs to impose a periodic implementation. Moreover, it is worth mentioning a robust approach with respect to aperiodic sampled-data switching controllers was investigated in [START_REF] Hauroigne | Switched affine systems using sampled-data controllers: Robust and guaranteed stabilisation[END_REF][START_REF] Hetel | Robust sampled-data control of switched affine systems[END_REF]. Nevertheless, all the previous design solutions are based on a common quadratic Lyapunov function, which is known, in the linear case, to be conservative and/or restrictive.

Another solution provided in the literature consists in considering periodic updates of the control input and the resulting discrete-time formulation of the switched affine system. The objective here is to ensure the stabilization of the state to a neighborhood of the reference. Where this solution obviously presents a Zeno behaviour at the reference, the price to pay is that the discrete-time system cannot be stabilized to a single point but rather to a suitable region. In this situation the authors of [START_REF] Deaecto | Stability analysis and control design of discrete-time switched affine systems[END_REF][START_REF] Ventosa-Cutillas | Robust switching control design for uncertain discrete-time switched affine systems[END_REF] provide a solution considering a common and quadratic Lyapunov function, which is conservative, leading to a practical stabilization result. This approach was latter relaxed in [START_REF] Egidio | Novel practical stability conditions for discrete-time switched affine systems[END_REF], where the design of practically stabilizing control law was developed thanks to a switched Lyapunov function, reducing then the inherent conservatism of the resulting condition. The present paper aims at providing a novel method for the design of stabilizing control laws for switched affine systems. The novelty of the method relies on the use of another switching control Lyapunov function, with a structure that notably differs from the one proposed in [START_REF] Egidio | Novel practical stability conditions for discrete-time switched affine systems[END_REF]. This method gives rise to a control law resulting from a non convex optimization problem referring to Lyapunov-Metzler conditions (see e.g. [START_REF] Geromel | Stability and stabilization of discrete time switched systems[END_REF][START_REF] Heemels | On Lyapunov-Metzler inequalities and s-procedure characterizations for the stabilization of switched linear systems[END_REF]).

Thanks to a gridding technique, this problem can be solved iteratively by producing a convex problem formulated as a Linear Matrix Inequality (LMI). Interestingly, this new method ensures the convergence of the trajectories of the system to the interior of an invariant attractive region composed of several possibly disjoint ellipsoidal regions. A comparison with the numerical application presented in [START_REF] Egidio | Novel practical stability conditions for discrete-time switched affine systems[END_REF] is proposed and shows the efficiency of our method, since it provides a smaller and more accurate invariant set.

The paper is organized as follows: the problem is stated in Section 2. Then, a switched control design is provided in Section 3. Section 4 is devoted to numerical applications of our method. The paper ends with a conclusion and several perspectives.

Notations: Throughout the paper, N denotes the set of natural numbers, R the real numbers, R n the n-dimensional Euclidean space and R n×m the set of all real n × m matrices. For any n and m in N, matrices I n and 0 n,m denote the identity matrix of R n×n and the null matrix of R n×m , respectively. When no confusion is possible, the subscripts of these matrices that specify the dimension, will be omitted. For any matrix M of R n×n , the notation M 0, (M ≺ 0) means that M is symmetric positive (negative) definite and det(M ) represents its determinant. Finally, we define Λ as the subset of (0, 1) K such that an element λ in Λ has its components, λ i in (0, 1) for all i ∈ K := {1, . . . , K} and verifies i∈K λ i = 1.

PROBLEM FORMULATION

System data

Consider discrete-time switched affine system

x k+1 = A σ k x k + B σ k , k ∈ N, σ k = u(x k ) ∈ K, x 0 ∈ R n , (1) 
where x k ∈ R n is the state vector, which is assumed to be known at each time instant k in N. The switched system is composed of K subsystems defined through the constant and known matrices A i ∈ R n×n and B i ∈ R n×1 for all i ∈ K. The active mode is characterized by variable σ k , which can take any value in K. The particularity of this class of systems relies on the fact that the only control action u is performed through the selection of the active mode σ k .

The objective of this paper is the design of a suitable control law for system (1) that ensures the convergence of the state trajectories to a set to be characterized in an accurate manner. Indeed, it is well-known that asymptotic stability of a single equilibrium of ( 1) cannot be achieved in general for switched affine system [START_REF] Hauroigne | Switched affine systems using sampled-data controllers: Robust and guaranteed stabilisation[END_REF]. Due to the affine, and consequently nonlinear nature, one has to relax the control objective to derive an acceptable stability result. For instance, in [START_REF] Deaecto | Stability analysis and control design of discrete-time switched affine systems[END_REF], the authors have derived a practical stability result. More precisely, it is shown therein, that the solutions to the switched affine systems converge to an invariant region characterized by a level set of a Lyapunov function centered at a desired operating point or at a slightly shifted point nearby this operating point.

Here, our objective is to go deeper into the analysis of switched affine systems and try to characterize in a more accurate manner the region where the solutions to the system converge to. This new analysis is achieved thanks to a different class of Lyapunov functions than the quadratic ones. Indeed, one has to use more advanced tools and Lyapunov functions arising in switched affine systems in order to derive more accurate results. A first attempt was considered in [START_REF] Geromel | Stability and stabilization of discrete time switched systems[END_REF] for switched linear systems, where the Lyapunov function is defined using different Lyapunov matrices. It is noteworthy that the discrete-time nature of the dynamics (1) allows to consider classes of Lyapunov functions associated with possibly disconnected level sets, as pointed out in (Cavichioli Gonzaga et al., 2012). Here, we propose a different Lyapunov function inspired from [START_REF] Egidio | Novel practical stability conditions for discrete-time switched affine systems[END_REF] and defined as follows

V (x) = min i∈K (x -ρ i ) P (x -ρ i ) , ∀x ∈ R n , (2) 
where P is a symmetric positive definite matrix of R n×n and where, for any i ∈ K, ρ i are vectors of R n . These vectors represent several possible shifted centers of the Lyapunov function and are to be characterized in a dedicated manner. Remark 1. In the definition of the Lyapunov function, it is assumed that the number of shifted centers is the same as the number of modes. This can be seen a restrictive assumption that could be relaxed but this goes beyond the objectives of this paper, which concerns the development of a new control-Lyapunov function for switched affine systems.

As mentioned above, ensuring asymptotic stability of an equilibrium is in general not possible for switched affine systems. However, it is still possible to derive practical stability result as a given level set of a Lyapunov function.

Following the same ideas as in the literature, our objective is to guarantee the practical stability of a level set of this new Lyapunov function. This level set, also called attractor is defined as follows:

A := {x ∈ R n | V (x) ≤ 1} , (3) 
where we recall that the Lyapunov function V is defined by (2). Depending on the selection of matrix P and on the shifted centers ρ i , the attractor may not be a convex nor a connected set. Indeed, we will see in the example section, that the level set of the Lyapunov function may characterize several disjoint regions.

Preliminary

This preliminary is taken from [START_REF] Geromel | Stability and stabilization of discrete time switched systems[END_REF] and provides an equivalence between a minimum of a set of values and their convex linear combination. The following lemma taken from (Cavichioli Gonzaga, 2012) formalizes this statement. Lemma 2. (Cavichioli Gonzaga (2012)). For any scalars v i , where i ∈ K, the following equality holds

min i∈K v i = inf α∈Λ i∈K α i v i . (4 

)

Remark 3. There is a small difference with respect to the original formulation of (Cavichioli Gonzaga, 2012). Indeed, here, Λ is an open set (i.e. the α i 's cannot be equal to 0 nor 1). Equality (4) will be a key element of the next developments. In particular, the previous lemma ensures that for any element α in Λ, the following inequality holds

min i∈K v i < i∈K α i v i .
(5)

STATE BASED SWITCHING CONTROL

Main result

We dedicate this section to design a novel switching control law based on the state x k from (1) which is assumed to be known at every time instant k. This stabilization result is stated in the following theorem. Theorem 4. Consider parameters µ ∈ (0, 1), λ (i) ∈ Λ, with i ∈ K, a positive definite matrix W ∈ R n×n 0, and ρ i ∈ R N that are the solutions to the following non convex optimization problem min µ,W,ρi,λi

Tr(W ) (6) 
subject to the constraints W 0, (7)

  -(1 -µ)W 0 A i (λ (i) ) * -µ B i (λ (i) ) * * -D i (λ (i) )   ≺ 0, ∀i ∈ K, (8) 
where

A i (λ (i) ) = λ (i) 1 W A i . . . λ (i) K W A i , B i (λ (i) ) = λ (i) 1 (A i ρ i +B i -ρ 1 ) . . . λ (i) K (A i ρ i +B i -ρ K ) , D i (λ (i) ) = diag(λ (i) 1 W, . . . , λ (i) K W ).
Then, the switching function control law given by u

(x) ∈ G(x) = argmin i∈K (x-ρ i ) T W -1 (x-ρ i ), ∀x ∈ R n , (9) 
ensures that A is uniformly globally asymptotic stable (UGAS) for system [START_REF] Hauroigne | Switched affine systems using sampled-data controllers: Robust and guaranteed stabilisation[END_REF].

Proof. The proof aims at demonstrating that A defined in (3) is UGAS provided that the conditions of Theorem 4 are verified. To do so, the two following items have to be considered 2) is a Lyapunov function for the system (1), ( 9), with P = W -1 . • A is invariant for the system (1),(9).

• V given in (
In order to prove the first item, let us compute the increment of the Lyapunov function. This leads to

∆V (x k ) = min j∈K (x k+1 -ρ j ) P (x k+1 -ρ j ) -min i∈K (x k -ρ i ) P (x k -ρ i ).
According to the switching control law (9), the active mode σ k corresponds to the mode that minimizes the Lyapunov function at time k, which allows us to write ∆V (x k ) = min j∈K (x k+1 -ρ j ) P (x k+1 -ρ j )

-(x k -ρ σ k ) P (x k -ρ σ k ). Thanks to inequality (5), the following inequality holds for any element λ (σ k ) in Λ.

∆V (x

k ) < j∈K λ (σ k ) j (x k+1 -ρ j ) P (x k+1 -ρ j ) -(x k -ρ σ k ) P (x k -ρ σ k ),
where λ

(σ k ) j is the j th component of λ (σ k ) .
Let us now focus on the first positive terms of the previous expression. Replacing x k+1 by its expression from (1), we note that x k+1 -ρ j = A σ k x k + B σ k -ρ j . Our objective is to rewrite the previous expression using x k -ρ σ k , in order to take the full benefits of the negative terms of the Lyapunov increment. Simple manipulations yield

x k+1 -ρ j = A σ k (x k -ρ σ k ) + A σ k ρ σ k + B σ k -ρ j .
Let us now introduce a new vector, χ k , given by

χ k = (x k -ρ σ k ) P 1 , (10) 
and matrix W = P -1 0 and then, we obtain the following expression

x k+1 -ρ j = [A σ k W A σ k ρ σ k + B σ k -ρ j ] χ k .
Hence, gathering all the terms in the sum and using the notations introduced in Theorem 4, we have

∆V (x k ) = χ k Φ(σ k , λ (σ k ) )χ k , (11) 
where matrix Φ(σ k , λ (σ k ) ) is given by

Φ(σ k , λ (σ k ) ) = A σ k (λ (σ k ) ) B σ k (λ (σ k ) ) D -1 σ k (λ (σ k ) ) A σ k (λ (σ k ) ) B σ k (λ (σ k ) ) - W 0 0 0 .
It is worth noting that the components of λ (i) are assumed to be strictly positive. Now, that the difference Lyapunov function has been properly expressed, the next step consists in ensuring its negative definiteness only outside the attractor defined in (3). To do so, we use notations χ k and W introduced above and we note that any vector x k outside of the attractor verifies

x k -ρ σ k 1 P 0 0 -1 x k -ρ σ k 1 = χ k W 0 0 -1 χ k > 0.
(12) The previous problem can be rewritten as

χ k Φ(σ k , λ (σ k ) )χ k < 0
for all vector χ k that verifies (12). Using an S-procedure, this problem is equivalent to the existence of a positive scalar µ, such that,

Φ(σ, λ (σ k ) ) + µ W 0 0 -1 ≺ 0.
Then, the proof of the first item is concluded by application of Schur complement to the first term of Φ(σ k , λ (σ k ) ), leading to inequality (8).

To conclude the proof, it remains to prove that A is invariant, corresponding to the second item. Assume that

x k is in the attractor at a given instant k, i.e. V (x k ) < 1.

Together with (8), we know that the following inequality

V (x k+1 ) = V (x k ) + ∆V (x k ) = V (x k ) -µ(V (x k ) -1) +χ k Φ(σ k , λ (σ k ) ) + µ W 0 0 -1 χ k ≤ (1 -µ)V (x k ) + µ
holds where the last inequality has been obtained from the negative definiteness of inequality ( 8). The assumptions that x k is in the attractor and that µ ∈ (0, 1) yield V (x k+1 ) ≤ (1 -µ) + µ = 1, which guarantees that x k+1 also belongs to A.

Comment on the centers ρ i and on translated models

Usually for this class of switched affine systems, it is first required to define a translated system where the origin becomes located at a desired operating point. The reader may refer to [START_REF] Deaecto | Stability analysis and control design of discrete-time switched affine systems[END_REF], for instance. It is then important to stress whether the attractor is affected by this translation. To better understand this issue, let us define the translated variable z = x -δ, where δ is any vector in R n . The new dynamics are given by   

z k+1 = A σ k z k + Bσ k , k ∈ N, σ k ∈ K, z 0 ∈ R n , (13) 
where Bσ k = (A σ k -I)δ + B σ k . Then, the following proposition holds. Proposition 5. Assume that (µ, W, {ρ i , λ (i) } i∈K ) is a solution to the optimization problem of Theorem 4 for the original systems (A i , B i ) i∈K . Then, (µ, W, {ρ i -δ, λ (i) } i∈K ) is a solution to the same optimization problem but for the translated system (A i , Bi ) i∈K .

Proof. The proof simply consists in noting that the only difference between the original and the translated system appears in the definition of the affine terms that are gathered in matrices B i (λ (i) ).

Proposition 5 stresses that the shifted centers ρ i 's are intrinsically the same, whatever the translation of coordinates. This is an important remark, since it proves that there is no need to apply any change of coordinates before applying Theorem 4.

Comments on the resolution of the non convex problem

As indicated in its statement, the optimization problem of Theorem 4 is non convex due to the multiplication of decision variables, such as for instance λ (i) j W in the definition of matrices D i . However, this problem can be made convex by fixing µ ∈ (0, 1) and λ (i) ∈ (0, 1) K , with i ∈ K. Of course, this is not realistic for large values of K, but for K = 2, the number of parameters to fix is only 3, which is reasonable. This is formulated in the following proposition. Proposition 6. For given parameters µ, γ 1 , γ 2 ∈ (0, 1), the solution including the symmetric positive definite matrix W ∈ R n×n 0 and the vectors

ρ i ∈ R N to the convex optimization problem min W,ρi Tr(W ) (14) subject to the constraints W 0, (15)   -(1 -µ)W 0 Āi (γ i ) * -µ Bi (γ i ) * * -Di (γ i )   ≺ 0, ∀i = 1, 2, (16) where Āi (γ i ) = γ i W A i (1 -γ i )W A i , Bi (γ i ) = γ i (A i ρ i +B i -ρ 1 ) (1-γ i )(A i ρ i +B i -ρ 2 ) , Di (γ i ) = diag(γ i W, (1 -γ i )W ).
Then, the switching function control law

σ k ∈ G 2 (x k ) given by G 2 (x) = argmin i=1,2 (x -ρ i ) W -1 (x -ρ i ), ∀x ∈ R n , (17) 
ensures that A is UGAS for system [START_REF] Hauroigne | Switched affine systems using sampled-data controllers: Robust and guaranteed stabilisation[END_REF].

Proof. The proof is obtained by the introduction of parameters γ i , such that, for K = 2, we have λ

(i) 1 = γ i and λ (i) 2 = 1 -γ i .

SIMULATION RESULTS

Through this section, we aim at illustrating our contributions through two examples that have been already treated in the literature. Example 7. Consider the discrete-time switched affine system borrowed from [START_REF] Deaecto | Stability analysis and control design of discrete-time switched affine systems[END_REF], as modeled in [START_REF] Hauroigne | Switched affine systems using sampled-data controllers: Robust and guaranteed stabilisation[END_REF], with two modes (K = 2) and the following matrices

A i = e FiT , B i = T 0 e Fiτ dτ g i , ∀i ∈ {1, 2} , (18)
where T , referring to a sampling period is taken equal to 1 and where matrices F i and g i for i ∈ K are given by

F 1 = 0 1 0 0 0 1 -1 -1 -1 , F 2 = 0 1 0 0 0 1 0 -1 -1 , g 1 = 1 0 0 , g 2 = 0 1 0 .
In [START_REF] Deaecto | Stability analysis and control design of discrete-time switched affine systems[END_REF], the authors considered the convergence of the state trajectories to an invariant set around a desired equilibrium. Therefore, they solved the problem by introducing an auxiliary variable and defining the translated system with that variable. In Section 3.2, we comment and prove that the solution found for system (1) is a solution for system (13).

As it has been commented in Section 3.3, the optimization problem is non convex. Using a gridding procedure to fix the parameters µ and γ i , the resulting optimization problem becomes convex and is solvable using SDP software as the CVX solver in Matlab (see [START_REF] Grant | Cvx: Matlab software for disciplined convex programming[END_REF]). The following numerical results are obtained: µ = 0.7929, γ 1 = 10 -5 , γ 2 = 1 -10 -5 , W = 5.6 -4 2 -4 6.2 -4.2 2 -4.2 7.4

.10 -10 , ρ 1 = 0.1 0.4 0.37 , ρ 2 = 0.69 -0.2 -0.6

.

Figure 1 shows the trajectories of the system. The centers are indicated by the two red crosses. With the full view of the temporal evolution, we cannot see the ellipsoids drawing the attractor. However, they appear after performing a zoom of them in the two windows. These views allow us to see the convergence of the trajectories toward the interior Example 8. Now, we take the example 1 given in [START_REF] Egidio | Novel practical stability conditions for discrete-time switched affine systems[END_REF]). The considered system is a discretetime switched affine system discretized using (18) with T = 0.5 which provides the following matrices :

F 1 = -5.8 -5.9 -4.1 -4 , F 2 = 0.1 -0.5 -0.3 -5 , g 1 = [ 0 -2 ] , g 2 = [ -2 2 ] .
Considering the gridding procedure used in Example 1 to find the parameters µ and γ i ∀i ∈ {1, 2}, we have µ = 0.997, γ 1 = 10 -5 , γ 2 = 1 -10 -5 , W = [ 1.3 0.5 0.5 1.8 ] .10 -10 , ρ 1 = -1.7 0.47 , xρ 2 = -0.54 0.33 .

-10 -5 0 5

x Figure 3 shows the trajectory of the state x k from the initial state toward the two shifted ellipses. Note that the ellipses depicted on this figure present such a reduced size that they are represented by a cross in each center, ρ i . In addition, the dotted line S, defined by (x -ρ 1 ) W -1 (x -ρ 1 ) = (x -ρ 2 ) W -1 (x -ρ 2 ) portrays the switched surface, which separates the space into two regions. One can see which mode is active depending on which side the state x k is.

Moreover, in the concerned figure, we compare the result given in [START_REF] Egidio | Novel practical stability conditions for discrete-time switched affine systems[END_REF] with our main result.

The readers are able to see the different set sizes. The dashed ellipsoids represent the invariant set obtained in [START_REF] Egidio | Novel practical stability conditions for discrete-time switched affine systems[END_REF] while the invariant set obtained from Proposition 6 is illustrated by the crosses as commented above. Note that our approach provides a attractor at least 10 9 smaller than the one provided in [START_REF] Egidio | Novel practical stability conditions for discrete-time switched affine systems[END_REF]. arising from the stability analysis of switched systems, an accurate characterisation of the attractor is formulated. The parameter of the control law are obtained through the solution of a non convex optimization problem, that can be efficiently solved using a gridding procedure in the situation of 2-modes switched affine systems.

This contribution opens many directions for future investigations. First, the numerical results exposed in this paper lead to the reasonable idea of considering attractor that are defined by the union of several points. A formal proof of this needs to be investigated. A second direction is related to the fact that the main contributions of this paper present a non convex optimization problem that may be difficult to solve in case of large number of modes. This problem requires a particular attention and producing a method that can overcome this issue would be highly relevant.
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 12 Fig. 1. Trajectories of system (1) for Example 1 in the state space. Two windowsshow the attractor located around the shifted centers. of the two ellipsoids, which differ only by their center. An alternative interpretation of the previous figure is shown on Figures 2, where the evolution of x k -ρ σ k with respect to k is plotted. One can see from this figure that the trajectories are indeed converging to the centers ρ i . It is also of interest to point out that the switching law tends to a periodic behaviour and that the state converges to a cycle k → ρ σ k .
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 3 Fig. 3. Trajectories of system (1) for Example 2 in the state space. The switching surface (dotted line), the centers ρ 1 and ρ 2 (red crosses) and the invariant set (dashed line) from (Egidio and Deaecto, 2019).

Finally, one canFig. 4 .

 4 Fig. 4. Evolution of the Lyapunov function V (x k ) for Example 2.
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