
HAL Id: hal-02413636
https://laas.hal.science/hal-02413636

Submitted on 16 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalable Monitoring Heuristics for Improving Network
Latency

Maxime Mouchet, Martin Randall, Marine Ségneré, Isabel Amigo, Pablo
Belzarena, Olivier Brun, Balakrishna Prabhu, Sandrine Vaton

To cite this version:
Maxime Mouchet, Martin Randall, Marine Ségneré, Isabel Amigo, Pablo Belzarena, et al.. Scalable
Monitoring Heuristics for Improving Network Latency. NOMS 2020 : IEEE/IFIP Network Operations
and Management Symposium, Apr 2020, Budapest, Hungary. �10.1109/NOMS47738.2020.9110341�.
�hal-02413636�

https://laas.hal.science/hal-02413636
https://hal.archives-ouvertes.fr

Scalable Monitoring Heuristics for Improving

Network Latency

Maxime Mouchet, Martin Randall, Marine Ségneré, Isabel Amigo,
Pablo Belzarena, Olivier Brun, Balakrishna Prabhu, Sandrine Vaton ∗

December 16, 2019

Abstract

We consider a routing overlay in which the delay of a path can be
obtained at some fixed cost by sending probe packets, and investigate
the joint minimization of the probing cost and the routing delay. As-
suming that link delays are modelled by Markov chains, this problem
can be cast as a Markov Decision Process (MDP). Unfortunately, com-
puting the exact solution of this MDP is prohibitively expensive due
to the well-known “curse of dimensionality”. In this work we propose
two scalable approaches that are fast enough to provide efficient so-
lutions on practical time scales. We analyze the complexity of both
approaches, and evaluate their accuracy in small synthetic scenarios
for which the optimal monitoring policy can be computed. Finally, the
robustness and the scalability of the proposed solutions are analyzed
using real delay data collected over the Internet.

1 Introduction

Accurate and fine-grained network monitoring makes it possible to establish
a real-time map of the state of the network, and thus to quickly react to ad-
verse events or to make optimal resource-allocation decisions. Nevertheless,
traditional network monitoring techniques can generate a significant amount
of traffic thereby degrading the overall network performance. This is partic-
ularly true when active network probing techniques are used, and when the
number of resources and metrics to handle is large. In many situations, there
is a trade-off between the cost of monitoring resources, which brings more
accurate state information, and the quality of resource-allocation decisions.

∗M.Mouchet, I. Amigo and S. Vaton are with IMT-Atlantique, Brest, France. M.
Randall and P. Belzarena are with Instituto de Ingenieŕıa Eléctrica, Universidad de la
República, Uruguay. O. Brun, B. Prabhu and M. Ségneré are with LAAS-CNRS, Univer-
sité de Toulouse, CNRS, Toulouse, France.

1

For instance, such a situation occurs with routing overlays deployed over
the Internet [1, 2]. In a routing overlay, the nodes actively probe the quality
of the Internet routes between them and each node can act as a relay for the
messages exchanged between other nodes. Hence, even if the underlying IP
mechanisms for computing routes are unchanged, the overlay can influence
the overall path taken by packets by adding intermediate routing hops. If it
happens that the direct Internet path between a source node and a destina-
tion node of the overlay is unavailable or has an unacceptable performance,
it becomes possible to transfer data via an alternate path in the complete
graph formed by all overlay nodes. However, active monitoring of the qual-
ity of Internet paths by sending probe packets is costly. As the number of
overlay links grows as O(n2) with the number n of overlay nodes, probing all
overlay links quickly become overwhelming [3]. It was reported in [4] that
a reasonable overlay can support only about 50 routers (see also [5, 6, 7]).

Another situation in which the minimization of the active probing traf-
fic might be desirable is for the dynamic load-balancing of application flows
over multiple WAN connections in software-defined wide area networks (SD-
WAN). Consider for instance two or more satellite access links operating over
distinct frequencies and assume that we need to dynamically select the link
with the greater available data rate. The performance of each access link
may vary drastically over time (e.g., due to satellite jamming) and there-
fore it has to be monitored over time. However, due to the scarcity of
radiofrequency resources, excessive probe packets generation is susceptible
to produce a significant load which can disturb the operation of the net-
work. Instead of probing all access links at all time, it makes sense to use a
parsimonious strategy trading-off accuracy against monitoring effort.

In this paper, we focus on routing problems and study the trade-off
between the monitoring cost and the optimality of routing decisions. The
quality of routing decisions can of course be improved by monitoring paths
more often, but at an increased monitoring cost. Our goal is to devise parsi-
monious monitoring methods allowing to drastically reduce the monitoring
overhead but yet sufficiently accurate to enable near-optimal routing deci-
sions. The key idea is that, provided the quality of paths is stable over
sufficiently long periods of time, it is not necessary to observe everything at
all times in order to make good routing decisions. The proposed methods de-
cide at each measurement epoch which of the paths should be monitored, if
any, instead of systematically probing all paths. To start with, and because
large scale measurement campaigns are publicly available for validations, we
consider as paths quality of service (QoS) metrics the round trip time (RTT)
delay.

2

1.1 Related work

The design of parsimonious monitoring strategies was discussed a few years
ago in the context of overlay networks in [8, 9]. The authors propose
learning-based solutions and experimentally show that near-optimal per-
formances can be obtained with a significantly reduced monitoring effort.
These works assume, however, that a given number of overlay paths has to
be measured at each measurement epoch, whereas we seek for an optimal
trade-off between monitoring cost and network latency.

More recently, in [10] we introduce a theoretical framework for taking
monitoring and routing decisions that offer a good trade-off between moni-
toring costs and the gain in delay from appropriate routing decisions. This
framework is based on Markov Decision Processes (MDPs) and a marko-
vian modeling of path delays. In addition, we demonstrate the pertinence of
performing such parsimonious monitoring strategies in the routing overlay
use-case by simulating a 30-node overlay based on real RTT data obtained
form the RIPE Atlas Internet measurement network [11]. Simulations re-
sults show that even reducing drastically the monitoring load one can obtain
a routing performance almost as good as that one obtained when all paths
are monitored permanently. However, as pointed out, the exact computation
of the optimal monitoring policy is only feasible for small-scale examples. In
the present paper, we adopt the theoretical framework introduced in [10] and
propose scalable monitoring methods which can be used for larger scenarios.

It is also relevant to mention the work on network tomography tech-
niques [12, 13, 14] for inferring the state of network elements from end-to-end
measurements made by a small number of probing nodes (beacons). Some
authors focused on the minimization of the number of beacons [15, 16, 17],
whereas others focused on the selection of the end-to-end paths to be mea-
sured in order to minimize the monitoring overhead [18, 19, 20]. Despite
some similarities, the above works are different from ours in that they focus
on identifying the performance of each individual link with as few end-to-end
probes as possible, whereas in our case the monitoring decisions are driven
by the perspective of lower routing costs.

Similarly, an approach based on Markovian modeling of network path
performance and Markov decision processes has been used to determine op-
timal flow assignment policies for devices with multiple network access [21].
But this work does not consider the problem of parsimonious measurement.

1.2 Contributions

In [10], the trade-off between accurate latency information and monitoring
costs was investigated in the framework of an MDP. However, computing
the exact solution of this MDP is prohibitively expensive and not practical
when the number of paths for each OD pair is not very small.

3

We propose two different heuristics which are fast enough to be used for
online decision-making, and yet often provide close-to-optimal monitoring
policies. The first heuristic is inspired from the Receding Horizon Con-
trol [22], for MDPs with large state space. The second heuristic determines
whether each path individually should be monitored or not by solving an
MDP with a reduced state space in which all other paths are represented by
a single virtual deterministic path.

The performance of these heuristics is evaluated and compared against
those of the optimal policy and the myopic policy (that is, a greedy policy
minimizing the expected immediate cost) on various scenarios constructed
either artificially or from real traces collected over the Internet. It is observed
that these two heuristics work reasonably across these scenarios whereas the
myopic policy can have a widely variable performance. For real traces, it
is shown that the heuristics track closely the minimum delay path at a low
monitoring overhead and provide a significant improvement over the direct
IP path, while having computing times that are compatible with a real-time
implementation.

1.3 Organization of the paper

The paper is organized as follows. In Section 2 we describe our assumptions
as well as the formulation of the problem as an MDP. We then present
our heuristic monitoring schemes in Sections 3 and 4. Numerical validation
results are presented in Section 5. Finally, we give some concluding remarks
in Section 6.

2 MDP Formulation

We consider a decision-maker that has to send packets from a source node to
a destination node. The decision-maker has the choice between P possible
paths and its goal is to choose paths so as to minimize the total delay
incurred by packets.

Each path can be in multiple states, and the value of the delay over
the path is different in each state. The issue is that, although it knows
the statistical models governing state transitions of the paths, the decision-
maker does not directly observe the delay over a path, even when a packet
is sent over it. It is therefore not possible for the decision-maker to infer
information about the state of the paths from packet transmissions. The
decision-maker can, however, decide to monitor at some cost the quality
of certain paths, before sending a packet. An issue is therefore trading off
the cost of monitoring paths, which brings more accurate state information,
with the higher probability of experiencing high transmission delays.

4

2.1 Assumptions and notations

We assume that time is slotted and that packet transmissions occur in
each time slot. The P possible paths are numbered from 1 to P and
P = {1, 2, . . . , P} denotes the set of paths.

The state Xi(t) of each path i evolves randomly at each time slot over
state space Si according to a Discrete Time Markov Chain (DTMC) with
known transition probability matrix Pi. The transmission delay of path i at
time t is a random variable Li(t) which depends on the state of the path:
when the path is in state x ∈ Si, Li(t) = `i,x. We denote by `i the vector
`i = (`i,1, `i,2, . . .). We also define the product space S =

⊗
i∈P Si.

2.2 Decision problem

At each time step, the decision-maker first chooses a vector u(t) ∈ {0, 1}P
and observes the state of the paths i such that ui(t) = 1. The decision-
maker has to pay a fee ci to observe the actual state Xi(t) of path i, so
that the total monitoring cost associated to the monitoring action u(t) is∑

i:ui(t)=1 ci = c · u(t), where c = (c1, . . . , cP). However this information
can be used by the decision-maker not only to make its immediate routing
decision, but also to gain some knowledge on the state of paths for its future
decisions.

Once the observation is made, the decision-maker takes its routing de-
cision. If the decision-maker chooses path i, then it incurs a routing cost
Li(t). We let r(t) be the path chosen at time t by the decision-maker, pos-
sibly taking into account the information brought by all past observations.

In summary, we consider the following setting. At each round t =
1, 2, . . .:

(1) the state Xi(t) of each path i evolves according to a DTMC with
transition probability matrix Pi,

(2) the decision-maker chooses a vector u(t) ∈ {0, 1}P , pays the monitor-
ing cost c · u(t) and observes the state Xi(t) of each path i such that
ui(t) = 1,

(3) the decision-maker sends a packet over path r(t) and incurs a routing
cost Lr(t) (t).

The objective of the decision-maker is to make a trade-off between the
cost of monitoring paths, which brings more up-to-date state information,
and the expected delay (the expected routing cost). Obviously, the optimal
routing decision is to choose the path r(t) with the minimum expected delay.
However, the expected delay of a path depends on the belief of the decision-
maker on the state of that path, since the state is exactly known only for

5

those paths that have been observed. Formally, the goal of the decision-
maker is to take its monitoring and routing decisions so as to minimise

E

{ ∞∑
t=0

ρt
[
Lr(t) (t) + c · u(t)

]}
, (1)

where ρ ∈ (0, 1) is a given positive discount factor.

2.3 Optimal tradeoff as the solution of an MDP

The problem as described above can be cast as an MDP, as we now ex-
plain [10]. Defining yi(t) as the last observed state of path i at time t (just
before measurement) and τi(t) ≥ 1 as the age of this observation, all the
information available to the decision-maker at time t is summarized by the
vector s(t) = (s1(t), s2(t), . . . , sP (t)), where si(t) = (yi(t), τi(t)) because of
the Markov property satisfied by each path i. We shall refer to the vector
s(t) as the information state or belief state just before measurement at time
t.

Given an information state s, the decision-maker can compute for each
path i the vector bi(si) = eyiP

τi
i , where ei is a vector whose components

consist of one 1 in position i and otherwise 0s. The vector bi(si) corresponds
to a probability distribution on Si representing the decision-maker’s current
belief on the state of path i. bi,x(si) = P(Xi = x) represents the probability,
as estimated by the decision-maker from past measurements, that path i is
in state x ∈ Si at time t before it takes its monitoring decision.

Note that the information state s(t) has the Markov property: the next
information state s(t + 1) depends only on the current information state
and the monitoring action u(t) taken, but not on past information states.
It follows that the information state s(t) evolves according to a controlled
Markov chain with transition probabilities

π(s, s′;u) =
P∏
i=1

πi(si, s
′
i;ui), (2)

where, for any two states si = (yi, τi) and s′i = (y′i, τ
′
i) in Si × {1, 2, . . .}

πi(si, s
′
i;ui) =


1 if ui = 0, s′i = (yi, τi + 1)

bi,x(si) if ui = 1 and s′i = (x, 1)

0 otherwise.

(3)

The decision-maker’s optimal routing decision is to transmit the message
over the path with the minimum expected transmission delay. Whereas the
information state s(t) is the belief of the decision-maker on the states of the
different paths just before measurement, the routing decision r(t) is taken

6

just after measurement. Conditioning on the information available to the
decision-maker just after measurement, the minimum expected delay is

D(s,x;u) = min
i

ui`i,xi+(1− ui)
∑
y∈Si

bi,y(si)`i,y

 (4)

where x ∈ S.
In other words, once it has observed the states of the paths i for which

ui = 1, the decision-maker chooses to send its message over the path with
the minimum expected delay. This can be the monitored path with the
minimum observed delay, or a path which has not been monitored but which
has a lower expected delay given the belief on its state. It follows that the
expected cost of monitoring decision u in information state s is

D̄(s;u) = c · u +
∑
x∈S

(
P∏
i=1

bi,xi(si)

)
D(s,x;u). (5)

2.4 Value function

Given a stationary monitoring policy µ associating to every possible infor-
mation state s a vector µ(s) ∈ {0, 1}P , which represents the monitoring
decision (u1, . . . , uP) in state s, we define the value of state s under this
policy as

Vµ(s) = Eµ

{ ∞∑
t=0

ρtD̄(s(t);µ(s(t))) | s(0) = s

}
. (6)

Let V ∗(s) = minµ Vµ(s) be the value of information state s under the
optimal policy. The dynamic programming equation, or Bellman equation,
is then

V ∗(s) = min
u

[
D̄(s;u) + ρ

∑
s′

π
(
s, s′;u

)
V ∗(s′)

]
, (7)

and the optimal action in state s corresponds to the vector u achieving the
minimum in (7).

A classical approach to solve the Bellman equation is to use the value
iteration algorithm

Vn+1(s) = min
u

[
D̄(s;u) + ρ

∑
s′

π
(
s, s′;u

)
Vn(s′)

]
, (8)

which converges at a geometric rate to the optimal value function V ∗. Other
approaches, such as the policy iteration algorithm, also exist [23].

7

But the numerical complexity of the value iteration algorithm (8) be-
comes very large when the number of considered paths P is not extremely
small. Indeed the discrete information state is s = (s1, s2, . . . , sP), where
si = (yi, τi). In order to have a finite state space one can assume that
τi ≤ τmax where τmax is a large enough upper bound on the time between
two measurements. If we assume that each path has K possible states, that
is, |Si| = K for all i ∈ P, then the total number of information states s is
S = (τmax K)P , whereas the total number of actions is A = 2P . As the
complexity of the value iteration algorithm (8) is proportional to S and A,
computing the optimal policy quickly becomes prohibitively expensive.

3 Heuristic 1: A Receding Horizon approach

In this section, we consider an approximation scheme for solving the MDP
formulation. This approach creates a stationary policy using an approxi-
mated solution with a fixed finite-horizon of the given infinite-horizon MDP.
Let us recall that a finite-horizon MDP is a problem in which the sum which
appears in Equation (1) is limited to a finite number of terms.

3.1 Initial formulation

First, it is important to remark some properties of this type of approxima-
tion. In order to approximate an infinite horizon MDP, one possible way
is to use a finite-horizon optimization (which is different from the reced-
ing horizon approximation introduced in this section). The finite-horizon
approximation leads to a control sequence µ(0), µ(1), . . . , µ(H − 1) which
begins at the current time t and ends at some future time t+H − 1, where
H is the horizon over which we are optimizing. This fixed horizon approx-
imation suffers from an important drawback: the policy obtained is not
stationary and so we have different optimal actions for the same state at
different decision times.

The above issue is addressed by the receding horizon approach [22], which
can be explained as follows:

1. At time t and for the current state s, solve the MDP problem over a
fixed future horizon {t, t+H − 1}.

2. Apply only the first action of the resulting optimal policy.

3. Determine the state reached at time t+ 1.

4. Repeat step 1 at time t+ 1 over the interval {t+ 1, t+H}.

The policy obtained has a receding horizon interpretation: the decision
optimizes over the current cost plus the expected cost of looking H steps
ahead. This decision is applied recursively; the future is taken into account,

8

but at a limited level of complexity since the number of states considered is
considerably reduced.

The receding horizon approximation is implemented as follows. We use
the initial steps of the value iteration algorithm (see Equation (8)) to ap-
proximate the optimal policy. Starting from V 0(s) ≡ 0, for the current state
s we have

V 1(s) = min
u

[
D̄(s;u) + ρ

∑
s′

π
(
s, s′;u

)
0

]
. (9)

This first step gives the myopic policy minimizing the expected immedi-
ate cost and disregarding future costs. In some particular cases, the myopic
policy may already provide satisfactory results.

To improve on it, we apply h steps of the value iteration algorithm by
iterating over

V h(s) = min
u

[
D̄(s;u)+ ρ

∑
s′

π
(
s, s′;u

)
V h−1(s′)

]
, (10)

for h = 1, 2, . . . ,H, and the optimal policy µh(s) in information state s
corresponds to the vector u achieving the minimum in (10).

Therefore, in order to find V H(s) we build a tree of all possibles states
visited within H steps starting at s. That is, for each action u we first find
the set of all possible states s′ from s. Then, for each s′ and for each action
u we find the set of possible next states s′′, and so on, H times. This is
represented in Figure 1, where for illustration purposes we have taken the
case of two paths (P = 2), K states per path and H = 2.

Once the tree is built, we are able to go H steps forward from s. As
described in Algorithm 1, we start applying the Bellman equation, first for
obtaining V 1, then for V 2, until we find V H , V 0 being initialized to 0.
This recursive algorithm returns at each step the value function V h and the
optimal policy uh, but the latter is only used at step H to apply action
uh(s) in the current state s.

3.2 Complexity analysis

The problem with this first receding horizon algorithm is that each infor-
mation state (white nodes in Figure 1) has (1 +K)P successors in the tree.
Then, for going up to horizon H we would have ((1 + K)P)H information
states to take into account.

Fortunately, looking at the structure of the information state space of our
problem we can see that at each depth of the tree there are many duplicated
information states.

More precisely, to see which information states are present at depth H
without duplicates, it is sufficient to find, for each path i, the possible values

9

s

11

s
′

1

11

s
′′

1
...s

′′

K2

10 01 00

... s
′

K2

10 01

11

s
′′

1
...s

′′

K2

10 01 00

...

00

11 10 01 00

V 2

V 1

V 0

Figure 1: An illustration of the information states (white nodes) visited
when executing the receding horizon approximation with P = 2 paths with
K states each and an horizon H = 2. Black nodes represent the possible
actions in each state. We start building the tree at depth 0 (the root) and
finish at depth H. We then calculate V 0 at depth H, and go up to calculate
V H at the current information state (root of the tree).

the associated coordinate of the information state si can take, and combine
this information for all paths.

Let’s consider one path, say path i at depth H, and let’s see the possible
values that sHi can take. We note that for quantifying the different values sHi
can take it does not matter how many times path i has been measured, but
it does matter when was the last depth at which it was measured, for a new
measure resets the lag τ , and gets the path on one of the K possible states
of the path. After H steps, this path will be in state (y0i , τi + H) if it has
never been measured. If it has been measured for the last time at depth h =
1, . . . ,H, then it will be in state (yhi , H−h+1), where yhi can take any of the
K possible state values in Si. Hence, we have (1+KH) distinct information
states at depth H for each of the P paths. This results in (1+KH)P possible
information states for the whole network, at depth H. We therefore conclude
that the complexity of the receding horizon approximation is linear in H and
K, while it is exponential in the number of paths P . We address this issue
in the following subsection.

3.3 Complexity reduction

As discussed above, the number of information states increases exponentially
with the number of paths P . However, if we restrict the number of paths
that can be measured at each step to at most one path (thereby considering
only a subset of the action space), then the number of possible information
states is considerably reduced.

Indeed, consider an information state s = (si)i=1...P . The number of

10

Algorithm 1 Receding Horizon

1: function RecedingV(s, h)
2: inputs: state s, depth h
3: if h = 0 then
4: V 0(s)← 0
5: return V 0(s), any u
6: else
7: for each state s′ reachable from s do
8: V h−1(s′),uh−1∗ ← RecedingV(s′,h− 1)
9: end for

10: D̄(s, .)← solve Eqn. (5) for each action u
11: V h(s)← minu

[
D̄(s;u) + ρ

∑
s′ π(s, s′;u)V h−1(s′)

]
12: uh∗ ← arg minu

[
D̄(s;u) + ρ

∑
s′ π(s, s′;u)V h−1(s′)

]
13: return V h(s),uh∗

14: end if
15: end function
16: function Main(s, H)
17: inputs: current state s, receding horizon depth H > 0
18: V H(s),uH∗ ← RecedingV(s,H)
19: return uH∗

20: end function

different information states at level H is given by the different values each
component of such vector (i.e. si) can take. Consider a departure informa-
tion state of the form (yi, τi)i=1...P . As in the previous case, the values si can
take are (yi, τi +H −h), yi being any of the K states of path i, and h being
the level with the highest depth where path i is measured. Note thus that
what determines the different information states at level H is given by the
different paths that are measured within H levels, and the possible different
values h can take. This is quantified in (11),

P∑
n=0

P (H,n)

(
P

n

)
Kn=

H∑
n=0

H!

(H−n)!

P !

(P − n)!n!
Kn, (11)

where P (H,n) represents the number of n−permutations of H.
The intuition behind (11) is as follows. From root to level H, consider

n different paths that are measured, this leads to Kn different information
states at level H. In addition, this n paths can be any of the P available
paths, we have thus n-combinations of P possibilities to choose n paths to be
measured. In addition, the order on which the paths are measured provides
different information states. We have n-permutations of H orderings of
measurements. Finally, n takes all values from 0 to P . Note that if P > H,
(11) is still valid since terms from P + 1 onwards are equal to 0.

We shall evaluate the receding horizon approach along with this con-
straint on the number of actions in Section 5.

11

4 Heuristic 2: Reducing the MDP’s state space

We now propose an heuristic that reduces the dimension of the state space
over which the value iteration is performed in (8). Indeed, the main draw-
back of (8) is that the state space grows exponentially in the number of
paths to be explored.

Instead, we propose to compute the optimal policy for each path locally
using a value iteration algorithm and assuming that the other paths can be
summarized by one virtual path. That is, to take the monitoring decision
for each path i, we solve an MDP with two paths. One of them is the path
in question and the other one is a virtual deterministic path that reflects
the behaviour of the other paths. We further assume that the virtual path
is not controlled, which simplifies even more the computation of the optimal
policy for the path in question.

The proposed approach decomposes the original MDP into P smaller
MDPs, one for each path. For path i, we first compute the expected delay,
D̄−i of the other paths1 given the current beliefs and the actions assuming
that these actions would be carried out in the next step. That is,

D−i(·) = min
j 6=i

uj`j,xj + (1− uj)
∑
y∈Sj

bj,y(sj)`j,y

 . (12)

and

D̄−i =
∑

x∈S−i

 P∏
j=1,j 6=i

bj,xj (sj)

 D−i(·). (13)

Remark that (13) is similar to (5) but for two main differences. First, path
i is excluded in the computation of the mean delay which depends upon the
current state and the current actions of the other paths only. Second, the
cost of monitoring of the other paths is not taken into account. Since the
monitoring decisions on the other paths are fixed, we know what delay to
expect from these paths. The decision problem for path i, is to determine
whether by monitoring it we can get a better delay than that of the other
paths. Thus, we do not need to take into account the monitoring cost of the
other paths.

To make the notation easier to read, we have not made explicit the
dependence of D−i on (s−i,x−i;u−i), i.e. we just write D−i instead of
D−i(s−i,x−i;u−i). We shall do the same in the rest of the paper whenever
this does not lead to ambiguity.

Now that the delays of the other paths are represented by a deterministic
quantity D̄−i, we solve an MDP for path i assuming that it is in competition

1We shall hereon use the notation x−i to mean a quantity for all other paths except
path i are considered.

12

with a path of delay D̄−i. Towards this end, we first compute the expected
routing cost for action ui as was done in (5) but with one deterministic path:

Di(·) = min

ui`i,xi +(1− ui)
∑
y∈Si

bi,y(si)`i,y, D̄−i

 ,

and
D̄i(·) = ci ui +

∑
xi∈Si

bi,xi(si)Di(·). (14)

The Bellman equation for the MDP for path i is given by:

V (si) = min
ui

D̄i(·) + ρ
∑
s′i

πi
(
si, s

′
i;ui

)
V (s′i)

 . (15)

This heuristic is meant to be applied online in an iterative fashion. We
are given some initial states and monitoring actions for each path. At each
decision epoch, we solve an MDP for each path to determine its local optimal
monitoring action. These monitoring actions are then implemented. Based
on the observations, the optimal path is chosen and the states are updated
for the next decision epoch. The details are given in Algorithm 2. Note that
the step requiring the most computation resources is Step 7 in which the
Bellman equation is solved for path i. This step has complexity O((Kτmax)2)
for one path, which translates into a complexity of O(P (Kτmax)2) at each
decision epoch.

Algorithm 2 Heuristic 2

1: input: s(0) initial state
2: n← 1 // decision epoch
3: while true do
4: u(n) ← 0
5: for i ∈ P do // determine which paths are monitored

6: D−i ← solve (13) with s
(n−1)
−i and u

(n)
−i as inputs

7: Solve Bellman equation (15)

8: u
(n)
i ← optimal action in state s

(n−1)
i

9: end for
10: Implement action u(n) and update s(n)

11: From the observed delays, compute optimal path
12: n← n+ 1
13: end while

An important remark is that the locally optimal monitoring action com-
puted in Step 8 is used to update the current monitoring action vector.

13

Once the monitoring action for path i is known at epoch n, it is logical to
use this information to compute the deterministic expected delays for paths
for which the monitoring action is computed after that of path i. This asyn-
chronous update of the monitoring actions means that the quality of the
heuristic will depend upon the order in which the paths are iterated upon
in Step 5 of the heuristic. In the numerical section, we shall assume that
this order corresponds to the order of decreasing expected delays.

5 Numerical Results

Two types of validation results are presented in this section. We first de-
scribe in Section 5.1 the results obtained with small synthetic scenarios for
which the optimal monitoring policy can be computed. The goal is to eval-
uate and compare the accuracy of the proposed monitoring solutions. In
Section 5.2, we evaluate the robustness and the scalability of the proposed
solutions using latency data collected over the Internet.

5.1 Synthetic scenarios

The first example shows that the myopic policy can have relatively bad
performance compared to the heuristics. There are two paths with two
states each. The delays are given by `1 = `2 = (0.01, 100), and the transition
matrices are as follows

P1 = P2 =

(
β 1− β

1− β β

)
.

Note that the paths have symmetric parameters. For c = 25, ρ = 0.99,
and different values of β, we have computed the optimal monitoring pol-
icy for this example, as well as the monitoring policies obtained with the
proposed heuristics. The latter policies have been evaluated using the Pol-
icy Evaluation algorithm [23]. The mean relative error (MRE), defined as
1
S

∑
s(Vµ(s) − V ∗(s))/V ∗(s), of our heuristic policies is given in Figure 2.

We observe that the myopic policy performs badly when the transitions of
Markov chains occurs infrequently and there is a large difference between
the delays of the two states.

In the second example, we show that the myopic policy can be better or
equal than both heuristics in some cases. Consider the following example
with three stochastic paths with two states each. The delays are given by
`1 = (1, 3), `2 = (12 , 4), and `3 = (14 ,

15
4), and the transition matrices are as

follows:

P1 =

(
0.9 0.1
0.1 0.9

)
, P2 =

(
0.8 0.2
0.3 0.7

)
, P3 =

(
0.65 0.35
0.35 0.65

)
.

14

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
R
E
(%

)

β

Heuristic 2
Myopic Policy

Heuristic 1 - H = 2
Heuristic 1 - H = 3
Heuristic 1 - H = 4

Figure 2: Example 1 - MRE in % of the myopic policy and of both heuristics.

Note that the steady state expected delays of the three paths are very
close (1.99, 1.9 and 2). The maximum age of an observation is taken to be
τ1max = 20 for path 1, whereas we use τ2max = τ3max = 10 for the two other
paths. It yields S = 16, 000 belief states. Table 1 gives the MRE for our
heuristic policies and for different values of ρ and c.

We observe from the above two examples that the two heuristics perform
relatively well in both settings whereas the myopic policy has a much more
variable performance.

5.2 Validation against real latency data

In order to assess the applicability of our results against a real-world sce-
nario, in which our Markovian assumptions are not perfectly met, we simu-
late an overlay using NLNog RTT measurements. These RTT measurements
were collected in 2014 during an Internet-scale experiment where 20 nodes
of the NLNog ring2 were used. The RTT was measured between every pair
of nodes every two minutes for a period of 5 days using the ICMP-based
ping utility, resulting in 3836 samples per origin-destination pairs (see [8]
for further details). This dataset is particularly convenient as measurements
are performed between every nodes in a full-mesh topology. Hence we can

2The NLNog ring is a network of 517 nodes scattered over 55 countries (see
https://ring.nlnog.net).

15

ρ c MRE of MRE of MRE of
Heuristic (%) Myopic Policy (%) Receding (%)

0.99 0.5 9.19 0.60 0.08
0.99 0.25 6.68 0.88 0.20
0.99 0.125 7.21 0.10 0.10
0.99 0.0625 7.86 0.15 0.15

0.999 0.5 11.97 0.724 0.19
0.999 0.25 7.45 1.00 0.30
0.999 0.125 5.50 0.23 0.23
0.999 0.0625 6.97 0.27 0.27

Table 1: Example 2: Mean relative errors over all belief states of the Heuris-
tics proposed. For the receding horizon we used an horizon of H=3, without
the restriction on measuring only one route at each step.

simulate the delay between two nodes A and B going through a proxy node
C by summing-up the measurements between A and C, and C and B. For
each origin-destination (OD) pair in the dataset, we select alternative paths
going through one proxy node that have a shorter delay at-least 10% of the
time.

Out of the 380 OD pairs, we selected 4 OD pairs for which 1) a significant
decrease in the round-trip delay can be achieved by selecting another path
than the direct IP route, and 2) for which the minimum-latency route is not
always the same. These OD pairs are described in Table 2. We also give the
processing time per time step of both heuristics for each of the these OD
pairs. In all cases, the processing time is much lower than the 2 minutes
between decision points. The Markovian model for each OD pair has been
learnt using the HDP-HMM (Hierarchical Dirichlet Process Hidden Markov
Model) approach described in [24]. In contrast to the classical HMM where
the number of states must be known at learning time, the HDP-HMM treats
the number of states as unknown and sample it from the data, alongside the
other model parameters. Inference is performed in linear time (with respect
to the number of data points) using Gibbs sampling. This allows us to
obtain Markovian models for real Internet delay measurements where the
ground truth on the number of network states is not known. Note that in
most cases the computation of the optimal monitoring policy is prohibitively
expensive.

Assuming that τmax = 100, ρ = 0.99 and c = 0.5, we then ran the heuris-
tic presented in algorithm 2 and receding horizon described in algorithm 1
for each OD pair to compute the monitoring decision u(t) and the routing
path r(t) at each time step t = 1, . . . , 3836. The approach used is similar to
the one described in [10]. In particular, we have simplified the HMM models

16

Origin-Destination Number Number of Processing time (s)
pair of paths belief states H RH

Haifa-Santiago 4 ≈ 3.1× 1015 14.5 35.6
Paris-Santiago 4 ≈ 7.9× 1016 35.8 21.9
Paris-Tokyo 2 13, 950 6.1 0.04
Singapore-HongKong 3 ≈ 1.1× 1010 2.66 8.3

Table 2: Number of paths and number of belief states for the selected origin-
destination pairs.

of the paths to MC models, by neglecting the Gaussian noise of the HMM
model and considering only mean values. It is also worth mentioning that
since we do not directly observe the state of a monitored path, this state
was estimated as the most likely state of the HMM given past observations.

The results obtained for these 4 scenarios are summarized in Table 3,
where H-S stands for Haifa-Santiago, P-S for Paris-Santiago, etc. Figures
3 (resp. 4) shows the latencies obtained with Heuristic 2 (resp. 1) for
the Singapore-HongKong (resp. Haifa-Santiago) scenario. In this case, the
heuristic monitors only 1.06 (resp. 0.29) paths on the average out of the 4
paths (that is, each path is monitored only 25% (resp. 7%) of the time), and
yet the routing performance in terms of delay is very close to the performance
that one could get if all paths were constantly monitored. We also note a
delay reduction with respect to the direct IP path. We should however point
out that significantly improving over the IP path is not always possible (this
is the case for the Paris-Tokyo OD pair). It is also worth emphasizing that
achieving the minimum delay most of the times is difficult when the RTTs
have a great variability (as is the case for the Haifa-Santiago OD pair),
mainly because the routing decisions are based solely on the expected values
of the paths’ delays.

O-D
pair

Avg. number
of measures

% of time min
delay is reached

gap to
min delay (%)

H2 H1 MP H2 H1 MP H2 H1 MP

H-S 0.70 0.29 0.12 74 87 84 1.6 0.2 0.3
P-S 0.28 0.11 0.05 88 97 93 0.7 0.1 0.2
P-T 0.0 0.02 0.002 79 88 84 0.2 0.1 0.2
S-H 1.06 0.56 0.4 99 98 98 0.3 0.8 0.8

Table 3: Summary of the results achieved for the 4 considered OD pairs,
where H2 stands for heuristic 2, H1 for heuristic 1 (receding horizon approx-
imation) and MP for the myopic policy. We used an horizon of H=3 for the
receding policy.

17

 0

 50

 100

 150

 200

 250

 300

 350

 0 500 1000 1500 2000 2500 3000 3500 4000

D
�
��
�

 (
�
�
�

time (minutes)

IP path
via Narita
via Tokyo
heuristic 2

Figure 3: End-to-end delay between Singapore and Hong Kong. On average,
Heuristic 2 monitors only 1.06 paths per time step, and yet it provides the
minimum delay 99.2 % of the time.

6 Conclusion and future work

We proposed two scalable monitoring heuristics for the problem of jointly
optimizing end-to-end delay and monitoring cost over an origin-destination
pair in an overlay network. Numerical evaluation on real as well as synthetic
data show both the heuristics have good performance in terms of delays
and costs and can generate a decision in a few seconds which makes them
implementable on practical time-scales where decisions are made every few
minutes.

As for the next steps, it would be interesting to have theoretical guaran-
tees on the inefficiency of the heuristics. Further, we are also investigating
scalable heuristics for other performance metrics such as bandwidth and
energy.

18

0 500 1000 1500 2000 2500 3000 3500 4000

Time (minutes)

280

300

320

340

360

380

D
el

ay
 (

m
s)

Haifa_Santiago
IP path
Minimal Delay / RH(=0.99,H=3)
via Curitiva
via Dublin
via Boston

Figure 4: End-to-end delay between Haifa and Santiago de Chile. On aver-
age, Heuristic 1 monitors only 0.29 paths per time step, and yet it provides
the minimum delay 87.4 % of the time.

Acknowledgment

The work of Martin Randall and Pablo Belzarena was partially supported by Agen-
cia Nacional de Investigación e Innovación, Uruguay. The work of Marine Ségneré
was partially funded by a contract with Direction Générale de l’Armement (DGA),
France.

19

References

[1] M. Beck, T. Moore, and J. Plank, “An end-to-end approach to globally scal-
able programmable networking,” in in Proceedings of the ACM SIGCOMM
workshop on Future directions in network architecture, A. Press, Ed., 2003.

[2] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, and J. van der Merwe,
“The case for separating routing from routers,” in Proceedings of the ACM
SIGCOMM workshop on Future directions in network architecture, A. Press,
Ed., 2004.

[3] C. Thraves Caro, J. Doncel, and O. Brun, “Optimal path discovery prob-
lem with homogeneous knowledge,” Theory of Computing Systems, vol.
https://doi.org/10.1007/s00224-019-09928-w, pp. 1–24, 2019.

[4] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient overlay
networks,” in Proceedings of the Eighteenth ACM Symposium on Operating
Systems Principles, ser. SOSP ’01. New York, NY, USA: ACM, 2001, pp.
131–145. [Online]. Available: http://doi.acm.org/10.1145/502034.502048

[5] K. P. Gummadi, H. V. Madhyastha, S. D. Gribble, H. M. Levy, and D. Wether-
all, “Improving the reliability of Internet paths with one-hop source routing.”
in In Proceedings of the 6th Symposium on Operating Systems Design and
Implementation, 2004.

[6] S.-Y. Hu and G.-M. Liao, “Scalable peer-to-peer networked virtual environ-
ment,” in In NetGames’04: Proceedings of 3rd ACM SIGCOMM workshop on
Network and system support for games. New York, NY, USA: ACM Press,
2004, pp. 129–133.

[7] A. Nakao, L. Peterson, and A. Bavier, “Scalable routing overlay networks,”
SIGOPS Oper. Syst. Rev., vol. 40, no. 1, pp. 49–61, 2006.

[8] O. Brun, L. Wang, and E. Gelenbe, “Big data for autonomic intercontinental
overlays,” IEEE Jour. Selected Areas in Communications (special Issue on
Emerging Technologies in Communications - Big data), vol. 34, pp. 575–584,
2016.

[9] O.Brun, H. Hassan, and J. Vallet, “Scalable, self-healing, and self-optimizing
routing overlays,” in IFIP Networking 2016, Vienna, Austria, May 17-19 2016.

[10] S. Vaton, O. Brun, M. Mouchet, P. Belzarena, I. Amigo, B. Prabhu, and
T. Chonavel, “Joint Minimization of Monitoring Cost and Delay in Overlay
Networks: Optimal Policies with a Markovian Approach,” Journal of Network
and Systems Management, vol. 27, no. 1, pp. 188–232, Jan. 2019.

[11] “RIPE Atlas,” https://atlas.ripe.net/, accessed: 2019-11-26.

[12] D. Rubenstein, J. Kurose, and D. Towsley, “Detecting shared congestion of
flows via end-to-end measurement.” IEEE/ACM Transactions on Networking,
vol. 10, no. 3, p. 381–395, 2002.

[13] A. Coates, A. O. H. III, R. Nowak, and B. Yu, “Internet tomography,” IEEE
Signal Processing Magazine, vol. 19, no. 3, pp. 47–65, May 2002.

20

[14] Y. Vardi, “Network Tomography: estimating source-destination traffic intensi-
ties from link data.” Journal of the American Statistical Association. American
Statistical Association, vol. 91, no. 433, p. 365–377, 1996.

[15] Y. Bejerano and R. Rastogi, “Robust monitoring of link delays and faults in
IP networks.” IEEE/ACM Transactions on Networking (TON), vol. 14, no. 5,
pp. 1092 – 1103, Oct 2006.

[16] J. Horton and A. Lopez-Ortiz, “On the number of distributed measurement
points for network tomography.” in Proceedings of the 2003 ACM SIGCOMM
conference on Internet measurement, 2003, p. 204–209.

[17] Y. A. Pignolet, S. Schmid, and G. Trédan, “Tomographic Node Placement
Strategies and the Impact of the Routing Model.” Proc. ACM on Measurement
and Analysis of Computing Systems, vol. 1, no. 2, pp. 42:1–42:23, 2017.

[18] A. Gopalan and S. Ramasubramanian, “On identifying additive link metrics
using linearly independent cycles and paths.” IEEE/ACM Transactions on
Networking (TON), vol. 20, no. 3, pp. 906 – 916, Jun 2012.

[19] L. Ma, T. He, K. K. Leung, D. Towsley, and A. Swami, “Efficient identification
of additive link metrics via network tomography.” in IEEE ICDCS, 2013.

[20] D. Z. Tootaghaj, T. He, and T. L. Porta, “Parsimonious tomography: Opti-
mizing cost-identifiability trade-off for probing-based network monitoring,” in
IFIP Performance 2017, 2017.

[21] J. P. Singh, T. Alpcan, P. Agrawal, and V. Sharma, “A markov decision process
based flow assignment framework for heterogeneous network access,” Wireless
Networks, vol. 16, pp. 481–495, 2010.

[22] G. C. Goodwin, M. M. Seron, and J. A. D. Doná, Constrained Control and
Estimation. An Optimisation Approach. Springer-Verlag London, 2005.

[23] V. Krishnamurthy, Partially Observed Markov Decision Processes: From
Filtering to Controlled Sensing. Cambridge University Press, 2016. [Online].
Available: https://books.google.fr/books?id=FJSzCwAAQBAJ

[24] M. Mouchet, T. Chonavel, and S. Vaton, “Statistical Characterization
of Round-Trip Times with Nonparametric Hidden Markov Models,” in
IFIP/IEEE IM 2019 Workshop: 4th International Workshop on Analytics for
Network and Service Management (AnNet 2019), Washington, DC, United
States, Apr. 2019.

21

