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Abstract
Recently, a two-tank benchmark for detection and
isolation of cyber-attacks has been proposed to
the diagnosis research community to test differ-
ent diagnosis methods. In this work, we use this
benchmark, add some scenarios, and test several
diagnosis techniques to evaluate their diagnos-
ability power. We propose to use a well-known
model-based diagnosis approach to identify the
groups of faults and attacks that are not isolable
or detectable. In a second part, we investigate
improvements provided by data-based diagnosis
techniques and show that they succeed to isolate
faults and attack for this benchmark.

1 Introduction
Connected systems and intelligent systems are largely
widespread in the majority of industrial domains (produc-
tion, transport, networks, aeronautics, space,...). Critical
systems as power plants, water plants, smart grids also rely
heavily on these Information and Communication Technolo-
gies (ICT) to control, to monitor and to manage remotely
several equipments. If ICT has contributed to improve the
control and monitoring of installations it has also exposed
critical systems to a new kind of threats by introducing a
high degree of connectivity. Consequently, these systems
which include both computational resources, communica-
tion capabilities and hardware also called cyber-physical
systems, are exposed to malicious attacks, known as cyber-
attacks. As in any computer system connected to internet
the well known CIA (Confidentiality, Integrity, and Avail-
ability) triad of a cyber-physical system can be threatened
by non-targeted attacks, but it can also fall prey of targeted
attacks. In this case the hacker knows that he is targeting a
control system and the cyber-attack is a malicious act aimed
at degrading or interrupting the operation of an industrial
installation or even destroying it [1]. These attacks exploit
the vulnerabilities of the system and can have a very impor-
tant impact not only from a process point of view but also
from financial and environmental ones. Obviously, the in-
fluence the hacker can have on the system depends on his
knowledge about the system. A prominent example is the
attack on the water distribution system in Queensland, Aus-
tralia [2]. The hacker used a laptop and took the control of
150 sewage pumping stations to release one million liters of

untreated sewage into a storm-water drain connected to lo-
cal waterways. Another example is the Stuxnet attack that
taking the control of actuators and sensors struck the Iranian
nuclear facility causing the failure of the centrifuges. More
recently, we can cite the cyber-attack against Ukraine power
grid that cut power to many customers for about six hours.
Histories and descriptions of cyber-attacks can be found in
[3][4][5][6].

In the context of a classical closed-loop control system ar-
chitecture, the problem of attack diagnosis is getting closer
to the problem of fault diagnosis. Nevertheless, the attack
diagnosis problem addresses a larger spectrum of feared sce-
narios. Indeed, attacks as faults can concern sensors, actu-
ators or the controller itself but the hacker is endowed with
intelligence and has capabilities that multiply the possibili-
ties of attacks. Whatever the attack type, its effect is at least
one of the following: the sensor returns incorrect measure-
ments, the controller sends out incorrect signals, the actu-
ator ignores control input or executes incorrect commands.
According to [7] two main types of attacks can be distin-
guished: those that concern data integrity issued from sen-
sors or controllers (called by the authors deception attacks)
and those of type Denial of Service (DoS) that threat the
signals availability preventing the controller from receiving
sensor measurements or the actuators from receiving con-
trol commands. In the first case, signals are corrupted by
the hacker so that the measurement is incorrect, delayed, re-
played etc.

The growing interest in this problem of attack detec-
tion and diagnosis is reflected in the Diagnosis community.
In [8] an observer based method is developed to diagnose
stealthy deception attack that can enable remote water pil-
fering from automated canal systems. The work of [9] de-
fine the notions of detectability and identifiability of an at-
tack by its effect on output. [10] proposes an approach to
design an input reconstruction filter to identify the effect
of random deception attack on the system behavior in the
context of limited access to sensor measurements. In [11]
the authors propose a frequency based approach to detect
replay attacks on cyber-physical systems. [12] propose an
approach based on the introduction of a filter between the
controller (Programmable Logic Controller) and the sen-
sors/actuators to detect and prevent orders that could dam-
age the system. Additional information issued from a no-
tion of distance between states allow distinguishing cyber-
attacks from classical failures. [13] consider the problem
of intrusion detection and mitigation in supervisory con-
trol systems. Several types of attacks are considered (en-



Figure 1: two-tank system

abling/disabling of actuators events, erase/insertion of sen-
sor events).

Recently a two-tank system well known in the diagno-
sis community [14] has been extended and proposed to the
scientific community to test different approaches of detec-
tion and isolation of cyber-attacks. To initiate the work the
authors considered a classical model-based approach (Ana-
lytical Redundancy Relations) [15]. This paper is an answer
to this invitation. The contribution of the paper is to show
that the initial results obtained from Analytical Redundancy
Relations can be improved by the use of data-based meth-
ods.

This paper is organized as follows. Section 2 presents the
two-tank benchmark. Section 3 describes the different exist-
ing scenarios of faults and attacks, as well as some new sce-
narios proposed in this work. Model-based Diagnosis tech-
niques are applied on the two-tank in Section 4 for detect-
ing and isolating faults and attacks. The use of Data-based
methods is developed in Section 5. Section 6 concludes the
paper.

2 Benchmark Description
The two-tank benchmark is illustrated in Figure 1. The goal
of the system is to provide water to customers with a con-
tinuous flow Qo. A valve Vo simulates the consumer. Vo is
opened in nominal mode.

The system consists in two tanks T1 and T2 in series. h1
and h2 are supposed to be the water level in T1 and T2, re-
spectively. T1 is filled by a pump P1 controlled by a PI level
controller acting on the inlet flow Qp. It is assumed that Qp

is proportional to the PI controller output Um
p , that is mea-

sured. Note that in the article, the letter "m" is added to a
variable when it is measured. The water flow between the
two tanks is Q12. It can be controlled by an ON/OFF valve
Vb. The water levels in the two tanks may be affected by
real leaks but also by attacks simulating a leak. Vf1 (resp
Vf2 ) denotes a leakage in T1, (resp. in T2) while Qf1 (resp.
Qf2 ) is an attack. Two sensors provide the measurements of
the real water levels of the tanks: hm1 (for water level in T1)
and hm2 (for water level in T2).

A detailed description of the dynamic model of the fault-
less two-tank system is given in [14].

The input u of the system is supposed to be known.

u =

Q
m
p

Um
b

Um
0

Um
p

 (1)

where Qm
p is the measured flow from the pump P1, Um

b
represents the position of valve V m

b (0 if the valve is open,
1 if the valve is closed), Um

o is the position of the valve Vo,
and Um

p corresponds to the PI controller output.

3 Fault and attack scenarios
The next sections presents the faults and attack scenarios
implemented in the two-tank system benchmark.

3.1 Fault Scenarios
A set of fault scenarios has been described in [14].

f0 faultless mode: the process runs without fault.

f1 Pump fault: from 40s up to 120s the pump is simulated
off (like if it is broken).

f2 Level sensor mh1 stuck at zero fault: from 40s up to
120s the output of the sensor is stuck at zero.

f3 Level sensormh2 fault: from 40s up to 120s the output
of the sensor is stuck at zero.

f4 Leakage fault in Tank T1 from 40s up to 120s. Qf1 =
10−4m3/s.

f5 Leakage fault in Tank T2 from 40s up to 120s. Qf2 =
10−4m3/s.

f6 Sensor fault for the pump P1 flow: the sensor is stuck
at zero from 40s to up to 120s.

f7 Valve Vb stuck-closed fault: vb is stuck closed from 40s
to up to 150s.

f8 Valve fault: Um
b is stuck at zero from 40s to 120s.

Some additional fault scenarios have been defined and
tested in this article.

f9 Pump sensor fault: Qm
p is stuck at zero from 40s to up

to 120s.

f10 PI controller fault: Up is always equal to zero from 40s
to up to 120s.

f11 Valve Vb stuck-open fault: vb is stuck open from 40s to
up to 150s.

f12 Level sensor mh1 stuck at non-zero fault: from 40s up
to 120s the output of the sensor is stuck at a non-zero
value, here hm1 = 0.4.

3.2 Attack Scenarios
In this article we consider as in [15] that the final objective
of an attacker is to steal water but we consider also the case
where the aim of the attacker is the destruction of the in-
stallation or the degradation of the behaviour. We consider
an active attacker who has the ability to altering the cyber-
physical system by exploiting system security design holes.
The attacks can then have some effects on the sensors so
that they return incorrect measurements, on the actuators to
execute incorrect control actions but also on the controller
to perform a physical action on the two-tank system.

We recall here the set of attack scenarios defined in [15].



a1 Short-term water theft from T1: this scenario is similar
to the scenario with fault f4. The difference is that it
is cast maliciously, with the purpose of stealing water
from T1. Vf1 = 10−4m3/s from 40s up to 80s.

a2 Short-term water theft from T1 with hiding signal
added to the measurement from 40s up to 80s. The
theft is hidden by adding a signal to the output of the
level sensor in tank T1. The PI controller works as if
nothing had happened.

a3 Long-term water theft from T1 with hiding signal
added to the measurement: the attack is the same as
a2 but its duration is extended so that Tank T1 might
become empty, affecting the tank T2 and Q0 due to in-
terconnection.

a4 Long-term water theft from T1 with small signal added
to the measurement: the attack is the same as a3 but
the added signal only compensates 50% of the stolen
water, so that the pump will compensate half the theft
and the attack will be harder to detect.

a5 Short-term water theft from T2 (same as a1) Vf2 =
10−4m3/s from 40s up to 80s.

a6 Short-term water theft from T2 with hiding signal
added to the measurement from 40s up to 80s (see a2).

a7 Long-term water theft from T2 with hiding signal
added to the measurement (see a3).

a8 Long-term water theft from T2 with small signal added
to the measurement (see a4).

a9 Replay attack from 160s to up to 200s: the hacker
records the measurements coming from the sensors
without stealing water from the tanks. Then, when the
system has reached its steady-state, the hacker steals
water while replacing the sensor values by the recorded
ones.

A set of five new attacks has been added to this initial set
as follows:
a10 Overflow with sensor hack from 40s up to 120s: the

objective is not to steal water but to destroy the system.
The value of hm1 is modified to simulate a fake leak-
age, so that the pump compensates and causes a water
overflow in T1.

a11 Overflow with controller hack from 40s up to 120s: the
hacker disconnects the PI controller and sets a too high
water flow so that there is an overflow in T1.

a12 Sensor hack without theft in tank T2 from 40s up to
120s: the objective is not to steal water but disturb the
system. The sensor value in T2 is corrupted so that
hm2 remains constant, while the tank is emptied by the
customers.

a13 Water theft from T2 when V0 is closed from 40s to up
to 120s: whenQ0 = 0, the hacker pretends to be a user
but the flows are different.

a14 Water theft from T2 when V0 is closed from 40s to up
to 120s: whenQ0 = 0, the hacker pretends to be a user
and the flows are the same.

4 Model-based diagnosis techniques on the
benchmark

In this article we extend the diagnosis results obtained on
the two-tank system based an Analytical Redundancy Re-

lations [16]. Nevertheless, it would be interesting to inves-
tigate other model-based approaches notably to take advan-
tage of the dynamical information embedded in the fault and
attack profiles. By considering the hybrid nature of the two-
tank system, model based approaches developed in the field
of switched systems could be investigated as observer based
methods.

4.1 Analytical Redundancy Relations
A set of four Analytical Redundancy Relations (ARR) has
already been described in [14] and four residuals have been
included in the benchmark. We aim to use them for fault
detection and isolation, but also for attack detection and iso-
lation.

As a reminder, the ARR are calculated as:

r1(t) = −CvbU
m
b (t)sign(h

m
1 (t)− hm

2 (t))
√
|hm

1 (t)− hm
2 (t)|

+Q
m
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dhm
1
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m
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m
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m
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m
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∫
(h1,ref − h
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0 if U
m
p (t) ≤ 0

Qpmax if U
m
p (t) ≥ qp,max

(2)

with: Cvb the hydraulic flow coefficient of the valve Vb,
Ai,(i=1,2) the cross-section of the cylindric tank Ti, Cvo the
hydraulic flow coefficient of the valve Vo, KP and KI the
coefficients of the PI controller. The numerical values of
these parameters are given in [15] and [14].

Two additional residuals have been included in the bench-
mark, supposing that the pressures in tank T1 and T2 may be
measured by two new sensors.

We then defined:
r5(t) = Pm1 (t)− ρ.g.hm1 (t)− Patm

r6(t) = Pm2 (t)− ρ.g.hm2 (t)− Patm
(3)

4.2 Definition of detectability and isolabity for
faults and attacks

Let F = {f1, . . . , fnf } be the set of faults of the system,
A = {a1, . . . , ana} be the set of attacks. Let f0 corresponds
to the nominal mode without any fault or attack. We define
in this section some fundamental definitions for fault diag-
nosis and attack detection and isolation.

We recall here the definition of a fault signature matrix
and extend it for the attacks.
Definition 1 (Fault Signature). Given a set ARR com-
posed of nr ARR and F the set of considered nf faults for
the system; consider the function ARR × F −→ {0, 1},
then the signature of a fault f ∈ F is the binary vector
FS(f) = [τ1, . . . , τnr ]T where τk = 1 if f is a variable of
the equation used to form arrk ∈ ARR, otherwise τk = 0.

The same definition holds for attacks.
Definition 2 (Attack Signature). Given a set ARR com-
posed of nr ARR and A the set of considered na attacks
for the system; consider the function ARR×A −→ {0, 1},
then the signature of an attack a ∈ A is the binary vector
FS(a) = [τ1, . . . , τnr ]T where τk = 1 if a is a variable of
the equation used to form arrk ∈ ARR, otherwise τk = 0.



We can then define the fault and attack signature matrix
as follows:
Definition 3 (Fault and attack signature matrix FASM ).
The signatures of all the faults in F and of all the at-
tacks in A together constitute the fault and attack sig-
nature matrix FASM for the system, i.e FASM =
[FS(f1), . . . , FS(fnf ), FS(a1), . . . , FS(ana)]T .

This matrix obviously implies what is usually called the
fault signature matrix and what could be called the attack
signature matrix.

From the FASM detectability and isolability properties
can be defined for faults and attacks.
Definition 4 (Detectable fault). A fault f ∈ F is detectable
in the system if FS(f) 6= FS(f0).

The same definition can be applied for attacks.
Definition 5 (Detectable attack). An attack a ∈ A is de-
tectable in the system if FS(a) 6= FS(f0).
Definition 6 (Isolability). Two faults or attacks fa ∈ F ∪
A and fa′ ∈ F ∪ A are isolable in the system if they are
detectable and if FS(fa) 6= FS(fa′).
Definition 7 (Diagnosability group). Two faults or attacks
fa ∈ F ∪ A ∪ {f0} and fa′ ∈ F ∪ A ∪ {f0} are in the
same diagnosability group if they are not isolable from each
other.

In others words, a group of diagnosability is defined as
a set of behaviours (nominal, faulty or attacks behaviours)
that can not be isolated two by two as their signatures are
identical.

4.3 Fault and attack signatures
Some diagnosis results have been provided in [14] but no
link between the fault scenarios and the residuals have been
clearly established. Here, we aimed at giving the fault and
attack signatures for each defined scenario.

Using the four first residuals we succeeded in defining
eight diagnosability groups as presented in Table 1.

From Table 1, we can deduce that all faults and attacks
are detectable, except the replay attack. Only 3 faults (f1,f6
and f10) are isolable from the others and from the attacks.
Attacks are always included in diagnosability groups with
at least one fault so it is impossible to distinguish them from
faults with the ARR approach.

We also tried to take benefit from the two additional resid-
uals obtained from pressure sensors (see section 4.1). From
Table 2, we can deduce that all faults and attacks are de-
tectable, except the reply attack, as with 4 residuals. The
2 new residuals increase isolability power: for example di-
agnosability group G2 has been split into 3 other diagnos-
ability groups G21, G22 and G23, while G4 is divided into 2
diagnosability groups. The only interesting point is thatG42

only refers to attack scenarios a6, a7, a8 and a12 so that it
is possible to distinguish fault from attack in these cases,
moreover f3 is now isolable. However, much ambiguity re-
mains between faults and attacks in 5 diagnosability groups
(G21, G3, G41G6, G8).

4.4 Results
An HMI has been provided in the matlab benchmark to visu-
alize online the residuals value and the possible diagnoses.
For example, we simulated scenario f9 and found the results
illustrated on Figure 2. r4 is equal to 0, then rises to 1 at 41s.

Figure 2: Residual values for scenario f9

r1 is equal to 0, then rises to 1 at 44s. The other residuals re-
main equal to zero. Consequently, the diagnosis hypotheses
are the following: from 0s to 41s, the diagnosis hypothesis
in {f0, a9}. Between 41s and 44s, it is {f1}, then from 44s,
the final diagnosis hypothesis is {f9, a11}. It can be noticed
that the detection delay is then about 1s and the isolation
delay is about 4s in this case.

5 Data-based Diagnosis techniques on the
benchmark

Since model-based methods are not satisfactory, we decided
to consider data-based methods. The final goal is the fu-
sion of model-based and data-based methods, as proposed
in [17][18]. At first, we would like to check the efficiency
of data-based methods to better isolate faults from attacks
for simple cases.

The fault diagnosis and attack isolation problem can be
formulated as a classical classification problem. The faults
and attacks are considered as different classes in the classi-
fication problem. Thanks to simulation, we created a large
set of data for each scenario and tried to apply common
methods of the machine learning literature, focused on su-
pervised learning with a classification goal, each class corre-
sponding to a fault or an attack. These methods are basically
Discriminant Analysis [19], K-Nearest Neighbors [20], de-
cision tree or bagged and boosted decision trees [21]. The
goal was then to find a predictive model based on both input
and output data.

5.1 Features
The two-tank system has mainly 6 observable variables that
have been taken as features and that correspond to the sensor
data for the state variables (water level in each tank) and to
the inputs. The features are then hm1 , h

m
2 , Q

m
p , U

m
b , U

m
0 and

Um
p . Note that the classification methods have been tested

without taking into account the additional pressure sensors
proposed for deriving residuals r4 and r5.

5.2 Training Set
Each scenario has been run 10 times and each run varies be-
cause of noises included in the simulation. Each of them has
a duration of 250s with a sampling period of 1s, so that each
run corresponds to 250 input data. Each input data has been
tagged by one of the 17 simplified tags, defined in Table 3.
These simplified tags have been used because some scenar-
ios seemed to be exactly the same physically. Future work
could investigate the search of differences between them.

As all the scenarios already include some "normal" data
(for example, from t=0s up to t=40s, all the data will be



Diagnosability group FS Physical explanation
G1 : f1 [0001]T Failure pump
G2 : f2, f3, f7, f8, f11, f12, a2, a3, a4, a10 [1100]T Impact on T1
G3 : f4, a1 [1000]T Leakage in T1
G4 : f5, a5, a6, a7, a8, a12, a13, a14 [0100]T Impact on T2
G5 : f6 [0011]T Sensor fault for P1 flow
G6 : f9, a11 [1001]T Problem on Qp

G7 : f10 [0010]T PI controller fault
G8 : f0, a9 [0000]T Reply attack or nominal mode

Table 1: Diagnosability groups with 4 residuals

Diagnosability group FS Physical explanation
G1 : f1 [000100]T Failure pump
G21 : f2, f12, a2, a3, a4, a10 [110010]T Level sensor mh1 involved
G22 : f3 [110001]T Level sensor mh2 involved
G23 : f7, f8, f11 [110000]T Problem on Vb
G3 : f4, a1 [100000]T Leakage in T1
G41 : f5, a5, a13, a14 [010000]T Impact on T2
G42 : a6, a7, a8, a12 [010001]T Attack on T2
G5 : f6 [001100]T Sensor fault for P1 flow
G6 : f9, a11 [100100]T Problem on Qp

G7 : f10 [001000]T PI controller fault
G8 : f0, a9 [000000]T Replay attack or nominal mode

Table 2: Diagnosability groups with 6 residuals

scenario tag scenario tag
f0, a9 f0a9 f9 f9
f1 f1 f10 f10
f2, f12 f2,12 a2, a3, a4 a2,3,4
f3 f3 a6, a7, a8 a6,7,8
f4, a1 f4a1 a10 a10
f5, a5 f5a5 a11 a11
f6 f6 a12 a12
f7, f11 f7,11 a13, a14 a13,14
f8 f8

Table 3: Simplified tags for classification methods

tagged f0a9), we simulate the remaining 25 scenarios (from
f1 to f12 and a1 to a8) over the 27 initial ones. A total
number of 62500 tagged input data have then been stored.

The training was done with Matlab Classification Learner
app, that performs supervised machine learning given a
known set of input data and known responses to the data
(here the tags).

5.3 Validation Scheme and Performances
The chosen validation scheme is the cross-validation
method with 5 folds to partition the data set. The app par-
titions the data into 5 disjoint sets. For each fold, it trains
a model using the out-of-fold observations, then assesses
model performance using in-fold data.

Table 4 gives the performance results for the main meth-
ods included in the Matlab Classification Learner app.

The data-based methods have excellent results for clas-
sifying the different scenarios. Fine-kNN has an accuracy
of 97.9% when only one neighbor is considered, while the
accuracy is 97.4% when 5 neighbors are considered. The

Bagged Trees method has an accuracy of 97.5%.
We show on Figure 3 and 4 the confusion matrices for

the Fine-kNN and for the Bagged Trees methods. The con-
fusion matrix gives the percentage of true class among the
predicted class. As it is possible to see, the worst percentage
of true detection is 78% for the Fine-kNN method and 82%
for the Bagged Trees method.

From Figure 3 and 4, we can deduce that all the defined
tagged cases can be detected by simple data-based methods.
Faults and attacks can be isolated, except a9, a1 and a5.
These three attacks will be studied in future works. How-
ever, the isolation power of data-based methods is much bet-
ter than model-based methods. For example, with model-
based methods, G6 includes f9 and a11 while data-based
methods succeed in isolate both cases. The case f5a5 re-
mains the most difficult case to isolate from others.

5.4 New Data Prediction
We exported the models deduced from the Fine-kNN
method and from the Bagged-Tree method to the workspace
of Matlab and used these trained models to make predictions
using new data.

A new scenario involving a failure of the pump has been
designed, with different flows. From 0 to 40s, the system
has no failure and no attack. From 40s to 120s, the pump
is faulty, then after 120s the system again in nominal mode.
New data have been tested with the predicted models. Fig-
ure 5 shows the prediction results for the Fine-kNN method:
each new data has been well classified, except during the
transition from normal mode to faulty mode where one data
is tagged f6 instead of f1. The same problem occurs when
using the model trained with Bagged Trees.

Another scenario has been tested, involving an attack cor-
responding of scenario a13. Figure 6 shows the prediction



method1 accuracy (%) prediction speed (obs/sec) training time (sec)
Boosted Trees 85.8 21000 88.704
Bagged Trees 97.5 18000 64.451
Medium Tree 77.6 480000 2.826
Fine Tree 88.4 430000 4.4854
Coarse Tree 71.8 500000 2.45
Subspace Discriminant 66.7 12000 36.296
Linear Discriminant 64.6 240000 3.3491
Fine KNN 97.9 47000 8.5107
Medium KNN 96.6 36000 7.143
Coarse KNN 91.2 13000 16.26

Table 4: Performances Results for the main classification included in Matlab

Figure 3: Confusion matrix for the Fine-kNN method



Figure 4: Confusion matrix for Bagged Trees method

Figure 5: Predicted classes on a scenario of type f1

results for the Fine-kNN method: the attack is immediately
detected and tagged a13,14 with a Fine-KNN method, while
the model-based methods kept the ambiguity with fault f5.
The same results are found with the Bagged Trees method.

6 Conclusion
This article presents the use of model-based diagnosis and
data-based techniques for detection and isolation of cyber-
attacks and faults on a two-tank system. A set of 12 fault
scenarios and 14 attack scenarios was described, 9 of which
are new compared to previous works. A first model-based
technique was successfully implemented and tested on the
benchmark. All faults and attacks are detectable, except re-
play attack. By introducing 2 new residuals implemented
on the benchmark the isolability has been increased so that
some attacks can be isolated from faults. However, most of
the time the different scenarios have the same signature. In
this article the authors propose a first step towards fault and
attack detection and isolation. More efficient methods have

Figure 6: Predicted classes on a scenario of type a13

to be tested to take the fault and attacks dynamic into ac-
count. Model-based approaches in the field of switched sys-
tems have been mentioned. Another idea could be to take
advantage of structural analysis to analyze internal dynam-
ics of the model and residuals.

Data-based diagnosis was performed using supervised
machine learning methods. These methods obtained very
good results in isolating faults and attacks and could be used
in the future either alone, either using a fusion solution.
Some aspects of the work however could be consolidated
notably the characterization of the faults and attacks. Unsu-
pervised learning methods were also tested. The goal is to
find hidden pattern or groupings in data. This approach did
not give satisfying results at the moment and should be in-
vestigated deeply. Methods for anomaly detection could be
beneficial to consider cyberattacks not known in advance.
Another research direction is data pre-processing to extract
relevant features to fed machine learning methods. Here
also dynamical aspects could be better considered.
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