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Abstract

The Multi-vehicle Covering Tour Problem and the Bi-Objective Multi-vehicle Covering Tour Problem

have been studied for more than thirty years. Both problems have several practical applications in in-

dustry. In this paper, we propose an effective exact method for the Multi-vehicle Covering Tour Problem

based on column generation techniques. The effectiveness of the exact method is owed to tailored dom-

inance rules and completion bounds. To validate our approach, we conducted extensive computational

experiments on instances from literature. The comparison with state-of-the-art methods shows the ef-

fectiveness of the proposed method. In particular, seven open instances are closed to optimality for the

first time, and the best lower bounds of the six open instances are improved. The exact method for the

Multi-vehicle Covering Tour Problem is also embedded in a ε-constraint exact method to solve its bi-

objective counterpart. Computational results show that the lower bound set provided by this bi-objective

exact method is stronger than those provided by the state-of-the-art method from the literature.

Keywords: Combinatorial Optimization, Multi-Vehicle Covering Tour Problem, Bi-objective

optimization, Vehicle Routing Problems, Column Generation

1. Introduction

The Covering Tour Problem (CTP) was introduced by Current and Schilling (1989) as a generalization

of the Traveling Salesman Problem where not all cities of the network have to be visited. However,

they must be within some predetermined covering distance from the nearest visited city. Current and

Schilling (1994) view the CTP as the design of a bi-level transportation networks. A main vehicle

performs a minimum length tour to serve some subsidiary points, and any point that does not belong to
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the tour can reach the nearest visited point in decent time. In the Multi-vehicle Covering Tour Problem

(MCTP), several vehicles are available to perform the tours.

Covering tour problems have interesting real-life applications, such as, humanitarian logistics, re-

gional development, urban patrolling, and health-care management. In humanitarian logistics, Naji-

Azimi et al. (2012) and Nolz et al. (2010) perform survival goods distribution throughout disaster area;

the relief teams can only visit a few satellite distribution centers, and the population directly goes to

these centers if they are close enough from their homes. In regional development, Current and Schilling

(1994) and Labbé and Laporte (1986) determine locations for overnight mail service accessible for the

complete population and for post boxes. Oliveira et al. (2015) plan routes for urban patrolling that pass

through some important points,such as schools and hospitals and near some other convenient points, such

as public parks and bank agencies. Hodgson et al. (1998) and Hachicha et al. (2000) both manage the

health care in rural areas where a medical team is supposed to visit a small subset of villages so that each

inhabitant is able to reach its nearest village in an acceptable amount of time.

1.1. Problem Description

The MCTP aims at finding the minimum-cost routes over a network that fulfill the requirements of

different nodes. Some nodes must be visited by the vehicles whereas some other nodes have to be

covered. A node is covered if it is situated within a predefined covering distance from its nearest visited

node.

Let G = (V, E) be an undirected graph. The vertex set V is defined as V = {0}∪M∪O∪C, where 0 is

the depot, M and O are respectively the sets of mandatory and optional service points (i.e., nodes to visit),

and C is the set of customers (i.e., nodes to cover). The edge set E is defined as E = {{i, j}|i, j ∈ V, i < j}.

A distance di j is associated with each edge {i, j} ∈ E. At the depot, a set K of |K| homogeneous vehicles is

located. The vehicles have to perform a set of routes that visits the mandatory service points, and can visit

the optional service points. A visit to an optional service point i ∈ O allows to cover all customers j ∈ C

such that di j ≤ η, where η is the maximum coverage distance. If a route r visits a service point i ∈ O that

covers customer j ∈ C, we say that route r covers customer j. The customers must be covered by at least

one route. Each route cannot visit more than n service points, and the sum of the distances of the edges

traversed by a route cannot exceed the maximum distance d. The goal of the MCTP is to design a set of

routes such that the total distance of the routes is minimized, the mandatory service points are visited,

and the customers are covered. The MCTP is an NP-hard problem as the MCTP reduces to the Distance
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Figure 1: Example of an MCTP with one mandatory service point, three optional service points, and four customers: the

corresponding graph on the left panel, and a feasible solution on the right panel

Constrained Vehicle Routing Problem (Toth and Tramontani (2008)) if V = M and cardinality constraints

are relaxed or to the Vehicle Routing Problem with unit demands (Godinho et al. (2008)) if V = M and

maximum distance constraints are relaxed.

Figure 1 provides an example of an MCTP and a corresponding feasible solution. The graph of the

MCTP is presented on the left panel. The depot is the node 0, the service points are {1, 2, 3, 4} and the

customers are the set {a, b, c, d}. A dashed blue arrow links an optional service point i ∈ O and a cus-

tomer j ∈ C if j is covered by i (if visited). On the right panel, the black arrows represent a solution

composed of two routes 0 → 1 → 0 and 0 → 3 → 4 → 0. This solution is feasible as the mandatory

service point 4 is visited, and all customers are covered by the routes.

The Bi-Objective Multi-vehicle Covering Tour Problem (BOMCTP) also studied in this paper aims to

minimize the total distance of the routes as first objective and considers the maximum coverage distance η

as a second criterion to minimize. All other input data remain the same as in the MCTP. These two

objectives are conflicting since the larger the value of η, the fewer the number of nodes to visit, and

therefore the smaller the distance to travel.
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1.2. Literature

For the sake of clarity, the literature about covering tour problems is divided into four parts. We discuss

the literature on the CTP, the MCTP, the BOCTP, and the BOMCTP in Section 1.2.1, Section 1.2.2,

Section 1.2.3, and Section 1.2.4, respectively.

1.2.1. Covering Tour Problem

Current and Schilling (1989) formulate the Covering Salesman Problem (CSP) with a two-index formu-

lation. The CSP is similar to the CTP except than the customers are the optional service points that can

be visited and there is no mandatory service points. They devise a heuristic that solves a Set Covering

Problem (SCP) on the original graph and a Traveling Salesman Problem on the resulting graph of each

optimal solution of the SCP. They test their heuristic on an instance with 21 nodes and 39 edges.

Gendreau et al. (1997) propose valid inequalities as well as a branch-and-cut method to solve a two-

index formulation for the CTP. They also introduce a heuristic to find an upper bound at the root node

that generally provides solution within 3% from optimality. They test their exact method on randomly

generated instances with up to 600 nodes and up to 100 service points and solve them in less than two

hours.

Baldacci et al. (2005) formulate the CTP as a two-commodity network flow problem. They compare

their new formulation with the one proposed by Gendreau et al. (1997) and show that the corresponding

lower bound is tighter. They develop a scatter-search metaheuristic and compare a classic scatter search

method with a version that generates violated generalized subtour elimination constraints. They create

random instances in the same way of Gendreau et al. (1997) and with the same size and solved them in

20 minutes at most.

1.2.2. Multi-vehicle Covering Tour Problem

The MCTP was introduced by Hachicha et al. (2000) who formulate the problem with a three-index for-

mulation. They apply three different heuristics for the MCTP: the savings heuristic of Clarke and Wright

(1964), the sweep algorithm of Gillett and Miller (1974), and the route-first/cluster-second heuristic of

Beasley (1983). Each heuristic uses the one developed by Gendreau et al. (1997) for the CTP. The al-

gorithms are tested on randomly generated instances with up to 200 service points and 400 customers.

These instances are solved in less than half-an-hour by the modified sweep algorithm and in less than

4 minutes by the two others heuristics. The route-first/cluster-second heuristic also solves real-life in-
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stances in few seconds. The computational experiments show that the route-first/cluster-second heuristic

is the best compromise between time and quality of the solution.

Lopes et al. (2013) present preliminary results of a branch-and-price algorithm for the MCTP based

on a new set-partitioning formulation. The solution of the sub-problem is accelerated with a GRASP

metaheuristic. Computational experiments are done on randomly generated instances created as in

Hachicha et al. (2000). They set the maximum distance d equal to 200 and the maximum number of

service points n to 4. Only 5 instances out of 15 are solved in less than 4 hours on instances with up to

400 nodes and with up to 200 service points.

Jozefowiez (2014) presents a set partitioning formulation for the MCTP with fewer constraints than

Lopes et al. (2013). He develops a branch-and-price algorithm in which the sub-problems are formulated

as a ring star problem and solved by a branch-and-cut algorithm. The instances are randomly generated

with up to 60 service points and with up to 150 customers. He chooses to set the maximum distance d

to infinity and to vary the maximum number of service points n between 5 and 8. The bounds of that

formulation are tight, but they take too long to be evaluated.

Ha et al. (2013) propose a new two-commodity flow formulation for the MCTP based on the formu-

lation of Baldacci et al. (2005) for the CTP and some valid inequalities applied for the MCTP. They solve

their formulation with a branch-and-cut method. They also devise a two-phase metaheuristic which first

randomly creates subsets of service points that can cover all customers and then solves a Vehicle Routing

Problem with unit demand on each subset. This metaheuristic provides the initial upper bounds for their

branch-and-cut algorithm. They tested their exact method with the same instances of Jozefowiez (2014).

Their results outperform previous works on exact methods for the MCTP, so their exact method is cur-

rently the state-of-the-art exact method from the literature. Therefore, we will compare their results with

the results achieved by our exact method in Section 4.

Murakami (2014) introduces a column generation-based heuristic for the MCTP. The heuristic out-

performs the heuristics of Hachicha et al. (2000) in terms of cost but not in terms of time. He uses the

same methods applied for the Generalized Multi-Vehicle Covering Tour Problem in Murakami (2018)

where the service points have a demand that can exceed one. The results show the efficiency of the

heuristic based on column generation when compared to Hachicha et al. (2000) on the instances of Joze-

fowiez (2014). The algorithm applied to new randomly generated instances with up to 400 service points

shows good results in reasonable time.
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Kammoun et al. (2017) apply a variable neighborhood search heuristic to the MCTP. They compare

their metaheuristic to the metaheuristic of Ha et al. (2013) on the same instances. Their method obtains

better or equal results than the one of Ha et al. (2013) and faster. The best-known upper bounds of 4 of

the 96 instances are improved. They generate new instances derived from the TSPLIB instances with up

to 700 nodes with 362 service points and show that the metaheuristic can provide good solutions in a few

seconds of computing time..

Recently, Pham et al. (2017) introduced the Multi-vehicle Multi-Covering Tour Problem (MMCTP)

where customers have to be covered a certain number of times. They adapt the formulation and the

metaheuristic of Ha et al. (2013) to the MMCTP. Randomly generated test instances are created following

the process of Jozefowiez (2014) and, in addition, choosing the number of times customers needs to be

visited. The instances involve up to 200 nodes with 50 service points.

Flores-Garza et al. (2017) also introduce a variation of the MCTP called the Multi-vehicle Cumulative

Covering Tour Problem that minimizes the sum of arrival times at each service point. They use a three-

index formulation to solve their problem as well as a GRASP method. They test the efficiency of their

heuristic on the same instances of Jozefowiez (2014).

1.2.3. Bi-Objective Covering Tour Problem

Current and Schilling (1994) present two problems called the Median Tour Problem and the Maximal

Covering Tour Problem that are bi-objective versions of the CSP presented in Current and Schilling

(1989). The two problems aim to minimize the total tour length. The Median Tour Problem also mini-

mizes the total travel distance of unvisited nodes to their nearest visited node weighted by their demands.

On the other hand, the Maximal Covering Tour Problem minimizes the demand of nodes not covered by

the tour. They formulate them with a two-index formulation and devised heuristics to solve them. A first

solution that minimizes only one objective is selected as initial solution. The Pareto front is completed

by moving along the front to adjacent solutions in the sense that optimizes the other objectives. They use

a real-life instance of 681 nodes to test their algorithm. An average of 26 points are found in the Pareto

front depending on the initial solution.

Jozefowiez et al. (2007) introduce another bi-objective version of the CTP where the first objective

is not changed and the other one aims to minimize the maximum coverage distance η. Jozefowiez et al.

(2007) design a two-phase metaheuristic that uses the solution of a multi-objective evolutionary algo-

rithm as input for the branch-and-cut of Gendreau et al. (1997). They make computational experiments
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on randomly generated data with up to 120 service points and 360 customers and a real-life instance

of Hodgson et al. (1998). They compare their metaheuristic with an exact method: the branch-and-cut

algorithm of Gendreau et al. (1997) embedded in the ε-constraint method. The metaheuristic gives good

quality solutions and runs faster on larger instances.

Nolz et al. (2010) propose a heuristic based on genetic algorithms and variable neighborhood search

to solve a BOCTP that minimizes the distance between uncovered customer and the nearest visited

service point and that minimizes either the tour length or the latest arrival time at a service point. They

use real-life instances for the experiments with up to 41 service points.

1.2.4. Bi-Objective Multi-Vehicle Covering Tour Problem

Tricoire et al. (2012) introduce a bi-objective stochastic multi-vehicle covering tour problem that min-

imizes both the total tour length plus the cost of the distribution centers opening and the expected un-

covered demand. The demand of customers are uncertain and are approximated by an empirical sample

distribution. Each service point has a maximal capacity of affected customers. They embed a branch-and-

cut technique in an ε-constraint method to solve their BOMCTP. A heuristic based on the ε-constraint

algorithm is also devised that allows a fixed gap tolerance for each optimal solution of the Pareto front.

Real-life data are used to test their method with up to 30 nodes and a time limit of three days. The Pareto

front can vary between 6 to 112 optimal solutions. Their heuristic seems to give a good approximation

of the Pareto front within reasonable times.

Oliveira et al. (2015) plan urban patrolling routes in which the total distance of the selected routes

is minimized whereas the second objective aims to maximize the fairness between the routes in terms of

number of customers visited. They transform the second objective into a constraint and apply different

heuristics to the instances of Ha et al. (2013) and real-life instances.

Artigues et al. (2018) construct the lower bound set of a bi-objective version of the MCTP where the

first objective is to minimize the total routes length and the other one minimizes the maximum coverage

distance η. They use column generation techniques embedded in an ε-constraint method. To the best of

our knowledge, no exact method on the bi-objective MCTP as formulated in Artigues et al. (2018) has

been proposed in the literature.

Table 1 aggregates the different papers on the BOCTP and the BOMCTP found in literature. The

second column |K| indicates the number of available vehicles at the depot. The remaining columns

represent the different objectives used the literature, namely:
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• Total cost: minimization of the total cost of the routes;

• Customers traveling distance: minimization of the total travel distance between unvisited nodes

and their nearest visited node;

• Uncovered demand: minimization of the demands not covered by the routes;

• Maximum coverage distance: minimization of the maximum coverage distance;

• Latest arrival: minimization of the latest arrival time at a service point;

• Fairness: maximization of the fairness between the routes.

Our study on the BOMCTP will focus on the two objective functions investigated by Artigues et al.

(2018).
Table 1: Table on the literature of the BOCTP

Customers Maximum
Total traveling Uncovered coverage Latest

Authors |K| cost distance demand distance arrival Fairness

Current and Schilling (1994) 1 x x
1 x x

Jozefowiez et al. (2007) 1 x x
Nolz et al. (2010) 1 x x

1 x x
Tricoire et al. (2012) m x x
Oliveira et al. (2015) m x x
Artigues et al. (2018) m x x

1.3. Overview of the paper

This paper aims to solve both the MCTP as studied by Hachicha et al. (2000), Lopes et al. (2013),

Jozefowiez (2014), Ha et al. (2013), Murakami (2014) and Kammoun et al. (2017) and the BOMCTP

introduced by Artigues et al. (2018) that aim to minimize both the total distance of the routes and the

maximum coverage distance η. A new state-of-the-art exact algorithm is proposed, and it strictly outper-

forms existing methods from the literature. It is also applied successfully to solve the bi-objective variant

of the problem.

Section 2 presents the mathematical formulation, the exact method used to solve MCTP and the main

ingredients of the exact method. Section 3 explains how to embed our method in an ε-constraint method

to solve the BOMCTP. Section 4 shows the computational results of the proposed methods on the MCTP

and the BOMCTP. Finally, Section 5 summarizes some conclusions and future research directions.
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2. An Exact Method for the MCTP

In this section, we present a mathematical formulation of the MCTP and describe the exact method we

propose to solve the MCTP to optimality.

2.1. Mathematical Model

The following formulation of the MCTP has been introduced in Lopes et al. (2013). Let R be the set

of all feasible routes. Each vehicle performs a route r ∈ R that starts at the depot, visits some service

points denoted by S r, and returns to the depot. The cardinality of r is denoted by qr. A route is said

to be feasible if it does not visit more than n service points, i.e., qr ≤ n, and the sum of the distance of

the traversed edges, denoted by dr, does not exceed the maximum distance d. For each route r ∈ R and

each service point i ∈ M ∪ O, let air be a binary coefficient equal to 1 if route r visits service point i.

Moreover, for each route r ∈ R, let Cr ⊆ C be the subset of customers covered by r (i.e., by the visited

service points S r). For each customer i ∈ C, let bir be a binary coefficient equal to 1 if i ∈ Cr and 0

otherwise. Let us introduce a binary variable xr ∈ {0, 1}, r ∈ R, which indicates if the route is selected

(xr = 1) or not (xr = 0). The MCTP can be formulated as follows [Lopes et al. 2013]:

min z =
∑
r∈R

dr xr (1)

s.t.
∑
r∈R

air xr = 1 i ∈ M (2)

∑
r∈R

air xr ≤ 1 i ∈ O (3)

∑
r∈R

bir xr ≥ 1 i ∈ C (4)

∑
r∈R

xr ≤ |K| (5)

xr ∈ {0, 1} r ∈ R (6)

The objective function (1) minimizes the total distance of the selected routes. Constraints (2) ensure

that all mandatory service points are visited whereas constraints (3) allow to visit optional service points

if necessary. Due to constraints (4), every customer has to be covered at least once. Constraint (5)

guarantees that at most |K| routes are selected. Finally, constraints (6) define the range of the decision

variables.

Let us notice that constraints (3) are redundant if the distance matrix d satisfies the triangular in-

equality and the graph G is complete. Otherwise, constraints (3) are necessary unless a solution can visit
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a service point without serving it. Some papers in the literature keep such constraints (Hachicha et al.

(2000), Lopes et al. (2013), Ha et al. (2013)) whereas some others do not (Jozefowiez (2014), Artigues

et al. (2018)). We keep the constraints as we do not wish to make hypothesis on the instances and design

a generic algorithm.

The exact method used to solve the MCTP is based on formulation (1)-(6) and on the exact method

proposed in Baldacci et al. (2008) for the Capacitated Vehicle Routing Problem. It consists of four main

steps:

1. By using column generation, compute a lower bound LB corresponding to the optimal solution of

the linear relaxation of formulation (1)-(6) and its associated dual solution.

2. Compute an upper bound UB to the MCTP.

3. Generate the set R of all feasible routes with a reduced cost, with respect to the dual solution

computed at Step 1, less than or equal to the gap, UB − LB.

4. Solve formulation (1)-(6) with the set R to optimality with a general-purpose MILP solver.

The four steps of the exact method are described in the next sections, 2.1-2.4. In the following,

let λi ∈ R (i ∈ M), γ j ≤ 0 ( j ∈ O), σk ≥ 0 (k ∈ C) and, γ0 ≤ 0 be the duals associated to constraints (2),

(3), (4) and (5), respectively. Furthermore, let us denote by Master Problem (MP) the linear relaxation

of formulation (1)-(6) and by Restricted Master Problem (RMP) the Master Problem with a restricted set

of columns.

2.2. Step 1: Computing Lower Bound LB

The lower bound LB is computed by using column generation. The set of routes R̃ is initialized with all

feasible routes of cardinality one and two plus an artificial route that visits all service points and has a

large enough cost d̃.

The pricing sub-problem for the MCTP corresponds to an Elementary Shortest Path Problem with

Resource Constraints (ESPPRC) which is known to be strongly NP-hard (Dror (1994)) and can therefore

be time-consuming to solve. To accelerate the solution of the ESPPRC, we apply the ng-route relaxation

(introduced by Baldacci et al. (2011)) and propose tailored dominance rules and completion bounds as

well as a stabilization technique and a heuristic algorithm to efficiently price out columns.
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2.2.1. Ng-routes relaxation

The ng-routes relaxation, introduced by Baldacci et al. (2011), is an efficient relaxation of the ESPPRC

which obtains near-elementary routes in limited computing times. This relaxation usually allows to

construct routes containing long cycles in terms of distances on the edges. By construction, short cycles

are discarded. The new pricing sub-problem solved when pricing out ng-routes with negative reduced

cost is the ng-Shortest Path Problem with Resource Constraints (ng-SPPRC).

The ng-routes relaxation can be summarized as follows. For each service point i, a set Ni of cardi-

nality ∆ is pre-defined. Such a set Ni contains i plus the ∆ − 1 service points that are closest to i.

For each path p = (0, i1, i2, .., inp) that starts at the depot, visits a set of service points i1, i2, .., inp , and

ends at service point inp , an ng-set NGp ⊆ Ninp
is computed as follows:

NGp = {ik, k = 1, .., np − 1|ik ∈ ∩
np

j=k+1Ni j} ∪ {inp}

An ng-set contains the forbidden service points, i.e., the points that have already been visited by the

path and that are considered too close to return to. A feasible ng-path is a non-necessarily elementary

path p = (0, i1, i2, .., inp) that starts at the depot, satisfies the maximum cardinality constraint, the maxi-

mum distance constraint and the ng-elementarity, and ends at the service point inp . Any ng-path where

inp = 0 is a feasible ng-route. The set R of feasible routes in formulation (1)-(6) is now replaced with the

set R′ of feasible ng-routes.

2.2.2. Labeling algorithm

Solving the ng-SPPRC consists of dynamically generating routes with a negative reduced cost with

respect to the dual solution (λ, γ, σ) of RMP via a labeling algorithm. A label L is a feasible ng-path

that starts at the depot, visits a set of service points S L, covers the customers CL, ends at the service

point vL with an ng-set NGL, has cardinality qL, traveling distance τL and reduced cost cL. Let us define

the reduced cost of edge {i, j} as:

d′i j = di j − (ei + e j)/2 ∀{i, j} ∈ E, i ∈ O ∪ M ∪ {0} (7)
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with

ei =


λi i ∈ M

γi i ∈ O

γ0 i = 0

The label extension of L from vL to a service point w ∈ {O∪M}\NGL gives the new label L′ according

to propagation rules (8)-(13):

vL′ = w (8)

qL′ = qL + 1 (9)

τ′L = τL + dvLw (10)

CL′ = CL ∪Cw (11)

cL′ = cL + d′vLw −
∑

i∈Cw\CL

σi (12)

NGL′ = (NGL ∩ Nw) ∪ {w} (13)

where Cw, w ∈ O ∪ M, is the set of customers of C that can be covered by w and Nw, w ∈ O ∪ M, is the

pre-defined ng-sets at service point w.

Propagation rules (8), (9), (10), (13) are commonly used in column generation algorithm for many

routing problems. On the contrary, rules (11) and (12) are specific for the MCTP as they depend on

the set of customers C. Propagation rule (11) updates the covered customers set of CL by adding all

customers in C that are covered by the service point w. Propagation rule (12) updates the reduced cost

by adding, to the cost of label L, the reduced cost of edge {vL,w} and by removing the dual variables of

customers covered by w that are not covered by L.
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2.2.3. Dominance rule

The following dominance rule can be used to discard labels that cannot generate an optimal ng-route. A

label L1 dominates a label L2 if the following conditions are satisfied:

vL1 = vL2 (14)

qL1 ≤ qL2 (15)

τL1 ≤ τL2 (16)

NGL1 ⊆ NGL2 (17)

cL1 ≤ cL2 −
∑

i∈CL1\CL2

σi (18)

and one of the conditions (14)-(18) is strictly satisfied. The first four conditions (14)-(17) ensure

that every service point i ∈ O ∪ M that can be attained by propagating label L2 can also be attained

by L1. Condition (18) states that any propagation of label L1 has a lower cost of the same propagation of

label L2. The correctness of the dominance conditions (14)-(18) is proved by the following proposition.

Proposition 1. Given two labels L1 and L2 satisfying rules (14)-(18), any extension of L2 will be domi-

nated by the same extension of L1.

Proof. Let us suppose i is a service point accessible for both L1 and L2, and i only covers customer j. Let

L1
e (respectively L2

e) be the extension of L1 to i (respectively L2). According to the extension rule (12),

the following situations can occur:

• j ∈ CL1 and j ∈ CL2 . Then, cL1
e

= cL1 + d′vL1 i and cL2
e

= cL2 + d′vL1 i. Thus, cL1
e
≤ cL2

e
.

• j ∈ CL1 and j < CL2 . Then, cL1
e

= cL1 + d′vL1 i and cL2
e

= cL2 + d′vL1 i − σ j. However, the rule (18)

already ensures that the reduced cost cL1 is lower or equal than reduced cost cL2 minus the dual

value σ j ≥ 0. Thus, cL1
e
≤ cL2

e
.

• j < CL1 and j ∈ CL2 . Then, cL1
e

= cL1 + d′vL1 i − σ j and cL2
e

= cL2 + d′vL1 i. Thus, cL1
e
≤ cL2

e
.

• j < CL1 and j < CL2 . Then, cL1
e

= cL1 + d′vL1 i − σ j and cL2
e

= cL2 + d′vL1 i − σ j. Thus, cL1
e
≤ cL2

e
.

As rule (18) states that the reduced cost σi ≥ 0 of every customer i covered by L1 but not covered

by L2 is subtracted from the reduced cost of cL2 , any extension of L2 is dominated by the same extension

of L1.
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2.2.4. Completion bounds

The following completion bounds can be used to discard labels that cannot generate an ng-route with a

negative reduced cost. The completion bounds presented in this subsection are the most straightforward

way to apply the completion bounds of state-of-the-art methods for solving vehicle routing problems.

A backward ng-path (NG, q, i) is a non-necessarily elementary path p = (i|S p |, .., i1, 0) that starts at

the service point i|S p | = i, visits a set of service points S p such that NGp = NG, has a cardinality q = qp,

and ends at the depot.

Let f (NG, q, i) be a lower bound on the least-reduced cost of a backward ng-path (NG, q, i). The

dynamic programming algorithm to compute these bounds are explained in Baldacci et al. (2011). For

all backward ng-path p starting at the service point vp, of cardinality qp and of visited service points S p,

the reduced cost of p is bounded as follows:

cp ≥ min
NG⊆S p∩Nvp

f (NG, qp, vp)

Let us introduce F(S p′ , qp′ , vp′) the lower bound on the reduced cost of all ng-routes that can be

constructed by extending the forward ng-path p′.

F(S p′ , qp′ , vp′) = min
qvp′
≤q≤Q−qp′+qvp′

NG∩S p′=vp′

f (NG, q, vp′)

Therefore, any extension of a forward ng-path p′ has a reduced cost greater than a value δ if:

cp′ + F(NGp′ , qp′ , vp′) > δ

By setting δ = 0, and computing the reduced cost of the ng-path with respect to the dual solu-

tion (λ, γ, σ) of RMP, we use completion bounds to discard ng-paths that cannot be expanded to give an

ng-route with a negative reduced cost.

For the MCTP, the reduced cost depends on the customers covered by a path, but this information

cannot be stored during the algorithm for computing completion bounds. Therefore, the cost used for the

completion bounds is not the reduced cost, but the cost c f defined as follows:

c fi j = d′i j −
∑

k∈Ci\C j

σk ∀{i, j} ∈ E, i ∈ O ∪ M ∪ {0} (19)

where Ci is the set of customers of C that can be covered by i.
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2.2.5. New completion bounds

As previously noticed in 2.2.4, the bound f is not computed with the reduced cost c, but with another

cost c f . The difference lies in the number of times the dual variables σ associated to the customers to

be covered are deducted from the cost. For a path p, both costs cp and c fp are computed by deducting

from the cost cp, the dual variables associated to visited service points. For cp, the dual variable σi of

covered customers i ∈ Cp is subtracted exactly one time. On the contrary, for c fp, the dual variable

for the covered customer i is deducted multiple times, i.e. the number of visited service nodes that can

cover i. Therefore, for each path p, c fp ≤ cp. Thus, the bound f can be strenghened by computing a new

bound g where the dual variables σ are subtracted fewer times than in f .

The idea of the completion bound is to refine F by taking into account, for a forward ng-path p,

the set Cp ⊆ C already covered by p. An ideal completion bound Gideal(S p, qp, vp,Cp) for p can be

computed as follows. We define a new cost cgωi j for each arc (i, j), i, j ∈ O ∪ M ∪ {0} that exclude the

dual values associated to a subset ω ⊆ C:

cgωi j = d′i j −
∑

k∈Ci\{C j∪ω}

σk = c fi j +
∑

k∈Ci∪ω

σk ∀{i, j} ∈ E, i ∈ O ∪ M ∪ {0} (20)

For a subset ω ⊆ C, it is possible to compute gω(NG, q, i) the least-cost cgω backward ng-path (NG, q, i)

using the same algorithm as before. Then, the ideal completion bound can be expressed as:

Gideal(S p, qp, vp,Cp) = min
qvp≤q≤Q−qp+qvp

NG∩S p=vp

gCp(NG, q, vp)

It is important to notice that ∀{i, j} ∈ E, i ∈ O ∪ M ∪ {0} and ∀ω ⊆ C, cgωi j ≥ c fi j. Therefore, the bound

Gideal is better than the bound F as the latter does not consider the vertices already covered by the partial

path. It is also the best possible bound as the vertices in C already covered are not considered in the cost.

A problem is that the bound on a backward ng-path must be pre-computed for every subset ω ⊆ C.

As the number of subset ω is exponential, it is not possible in practice. A solution is to limit the number

of tested subsets ω. To do so, we restrict ω to be a subset of Ψ ⊆ C. The set Ψ is composed of the

MAX S ELECT ED vertices i ∈ C with the highest values σi. We pre-compute the value gω of the

backward ng-path for all subsets ω of Ψ. Then, the completion bound for a forward ng-path p used in

the algorithm is:

G(S p, qp, vp,Cp) = min
qvp≤q≤Q−qp+qvp

NG∩S p=vp

gCp∩Ψ(NG, q, vp)

While G is lower or equal to Gideal, it is still better than the bound F.
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2.2.6. Heuristic

A heuristic is used to speed up the first iterations of the column generation process. It consists of lim-

iting the number of labels for each cardinality q and each ending service point i to a maximum value

MAX LABEL during the labeling algorithm. When no column with negative reduced cost is found,

the value MAX LABEL can be increased. At the last iteration of the pricing problem, the parameter

MAX LABEL has to be set equal to +∞ to guarantee that no negative reduced cost columns exist.

2.2.7. Stabilization technique

In general, the set covering problem is highly degenerate, and the column generation procedure is usually

affected by convergence issues due to unstable dual variables that highly fluctuate over the iterations. To

limit such instability, stabilization methods are usually applied to the master problem. Du Merle et al.

(1999) have proposed the Box Stabilization method, which imposes a soft limit on the dual variables that

is updated during the resolution and a penalization on the objective if the limit is exceeded. Pigatti et al.

(2005) proposed a simplified version of the Box Stabilization of Du Merle et al. (1999).

We adjust the Box Stabilization technique of Pigatti et al. (2005) to obtain the MP defined by the

formulation (21)-(30). Let m−, m+, o and w be four sets of artificial variables. Such variables have a cost

π and are restricted to be lower or equal than a positive value α.

min z(π, α) =
∑
r∈R

dr xr +
∑
i∈M

πi(m+
i − m−i ) −

∑
i∈O

πioi +
∑
i∈C

πiwi (21)

s.t.
∑
r∈R

air xr − m−i + m+
i = 1 i ∈ M (22)

∑
r∈R

air xr − oi ≤ 1 i ∈ O (23)

∑
r∈R

bir xr + wi ≥ 1 i ∈ C (24)

∑
r∈R

xr ≤ |K| (25)

0 ≤ m−i ≤ α i ∈ M (26)

0 ≤ m+
i ≤ α i ∈ M (27)

0 ≤ oi ≤ α i ∈ O (28)

0 ≤ wi ≤ α i ∈ C (29)

xr ≥ 0 r ∈ R (30)

16



Let us notice that for all values of α ≥ 0 and π, z(π, α) ≤ z. Thus solving this formulation provides a

valid lower bound for formulation (1)-(6).

Let µ− ≥ 0, µ+ ≥ 0, θ ≥ 0 and ω ≥ 0 be the dual variables of constraints (26), (27),(28) and

(29), respectively. The dual of formulation (21)-(30) presents the following new constraints: πi − µ
−
i ≤

λi ≤ πi + µ+
i (i ∈ M), πi − θi ≤ γi ≤ 0 (i ∈ O) and 0 ≤ σi ≤ πi + ωi (i ∈ C). These constraints imply

that the deviation of the dual variable λi (i ∈ M) from the value πi (i ∈ M) penalized by α|πi − λi|. The

penalization process is the same for γ and σ.

The setting of the parameters π and α during column generation is made in the following way. The

coefficient π changes during the execution according to the dual variables value of constraints (22)-(24),

and α is set to a constant value. Let RMP’ be the formulation (21)-(30) with a restricted set of columns

and R̃′0 be the initial set of columns. First, π is set to 0 and α to 0.001. At the beginning of the kth iteration

of the column generation, the value of π is set to the value of the optimal dual solution of RMP’ with

the set R̃′k−1 of columns. When RMP’ is solved to optimality for α = 0.001 with a set R̃′n of columns,

the whole process is run again for α = 0 but the initial set of columns is R̃′n and π is the optimal dual

solution of RMP’ with the set R̃′n of columns.

2.3. Step 2: Computing an Upper Bound UB

At the end of the LB computation, a set R̃′ ⊆ R′ of ng-routes is available. A subset R̃′elem of feasible

elementary routes can be easily obtained by removing all non-elementary routes from R̃′. The upper

bound UB of formulation (1)-(6) is computed by solving it on the set R̃′elem of routes. In the case no

upper bound is found by this heuristic, we set UB to a big enough cost.

2.4. Step 3: Enumerating Columns in the Gap

For the third step, we use a mono-directional labeling algorithm. In this algorithm, a label L is a feasible

path that starts at the depot, visits the service points S L, covers the customers CL, and ends at the service

point vL with a cardinality qL, a traveling distance τL and a reduced cost cL. The extension rule from a

label L to a label L′ is defined by the rules (8)-(12) plus the update of the visited service points set (31).

S L′ = S L ∪ {vL′} (31)
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The dominance rule used to discard unpromising labels during the column enumeration is the fol-

lowing. A label L1 dominates a label L2 if the following conditions are satisfied:

vL1 = vL2 (32)

qL1 = qL2 (33)

τL1 ≤ τL2 (34)

S L1 = S L2 (35)

cL1 ≤ cL2 (36)

and at least one of conditions (32)-(36) is strictly satisfied. The rule (33) is implied by the rule (35),

and is used for computational efficiency. Furthermore, the last rule (36) ensures that the reduced cost

of L1 is lower than the one of L2. We can notice that no resources are included in the pricing algorithm

for the non-robust inequalities (4), and therefore they do not affect its performance. Indeed, the rule (35)

implies that it does not exist any client i ∈ CL1\CL2 . So, an extension of the label L2 could not have a

better reduced cost than the same extension of label L1.

The same completion bounds of the algorithm for the ng-SPPRC explained in Section 2.2.5 are used,

but the label is discarded by setting δ to the value of gap equal to UB − LB.

At the end of column enumeration, R contains all feasible routes with a reduced cost not greater than

the gap that have not been discarded by the dominance rule and the completion bounds.

2.5. Step 4: Computing Integer Optimal Solution

Once the column enumeration in the gap has been performed, we solve formulation (1)-(6) on the re-

stricted set of columns R with a general-purpose MILP solver.

2.6. Implementation Details

Let LB be the optimal solution of MP, and let UB1 be the upper bound obtained by the heuristic

of step 2. For computational efficiency, if UB1 is greater than 1.04 ∗ LB, then we use as upper bound

UB2 = 1.04 ∗ LB at the step 3. If no feasible solution is found with this new gap in Step 4, or if the

feasible solution UB3 has a cost greater than UB2 the algorithm is launched again with the minimum

between UB1 and UB3 as upper bound for the step 3.
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3. Exact Method for the BOMCTP

In this section, we present the exact method applied to solve the BOMCTP where the objectives are

the minimization of the total distance of the routes and the minimization of the maximum coverage

distance η. First, we introduce a set-partitioning formulation of the BOMCTP. Then, the ε-constraint

formulation is introduced, and the ε-constraint method is explained.

3.1. Mathematical Formulation

The following formulation of the BOMCTP is an extension of formulation (1)-(6) and has been presented

by Sarpong et al. (2013). Let us notice that constraints (3) and (5) are not in the formulation of Sarpong

et al. (2013). For an ng-route r ∈ R′, let κr be the maximum distance between each customer in Cr and

its nearest visited service point in S r.

min z =
∑
r∈R

dr xr (37)

min w = η (38)

s.t. (2) − (6) (39)

η ≥ κr xr r ∈ R (40)

The new objective function (38) minimizes the maximum coverage distance of all routes η. Con-

straints (40) impose η to exceed the maximum coverage distance κr of each route r. We suppose the

coverage distance to be integer.

The formulation (37)-(40) works on the set of feasible solutions X, e.g., combination of routes

of R that respect all the constraints. The image of X under the objective function mapping repre-

sents the objective space Y := (z(X),w(X)). The aim of the BOMCTP is to find all solutions x ∈ X

which are an interesting compromise between the objectives z and w. These solutions are the image

of points y ∈ Y, y := (z(x),w(x)), that are consistent with the following definition, and are called

non-dominated points.

Definition 1. A point y ∈ Y, image of solution a ∈ X, is said to be a non-dominated point if @ b ∈ X,

b , a such that z(b) < z(a) and w(b) < w(a).

The Pareto Front obtained by solving the formulation (37)-(40) is composed of all non-dominated

points. However, as the same point y ∈ Y can be associated with several different solutions in X, the
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number of efficient solutions can be larger than the number of non-dominated points. In this paper, we

only search for one solution associated to each non-dominated point.

3.2. ε-Constraint Method

The ε-constraint is an efficient method for solving bi-objective problems introduced by Haimes (1971).

The method consists of modifying the formulation of the BOMCTP into a formulation with one objective,

and solves a sequence of mono-objective problems.

First, the formulation (37)-(40) is modified into the following ε-constraint formulation. A constant ε

is introduced to constrain one of the costs to be lower than the constant. For a specific ε, only one non-

dominated point of formulation (37)-(40) is found. Therefore, to find the complete Pareto front, the ε

value has to vary.

min z =
∑
r∈R

dr xr (41)

s.t.
∑
r∈R

air xr = 1 i ∈ M (42)

∑
r∈R

air xr ≤ 1 i ∈ O (43)

∑
r∈R

bir xr ≥ 1 i ∈ C (44)

∑
r∈R

xr ≤ |K| (45)

ε ≥ κr xr r ∈ R (46)

xr ∈ {0, 1} r ∈ R (47)

As noticed in Sarpong et al. (2013), the structure of a bi-objective problem with a min-max objective

is specific, and the ε-constraint (46) can be discarded in the formulation and replaced by a requirement

on the definition of a feasible route. Therefore, we use the formulation (1)-(6) with a maximum coverage

distance η set to ε to solve the BOMCTP.

When a non-dominated point OPT is found, the value ε can be set to η(OPT) − 1, with η(OPT) the

maximum coverage distance of the solution associated to OPT, as η is an integer coefficient due to the

fact that the coverage distance are supposed integer. However, ε can be decreased by more than one

as explained in Jozefowiez et al. (2007) and in the following compute next covering algorithm. The
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ε-constraint method can be summed up as in Algorithm 1, and the global algorithm uses three other

ones:

• solution exists(ε) checks if a solution that respects all the constraints is possible for η = ε. For

this, it is sufficient to check if all customers in C are covered by at least one optional service point

of O.

• solve MP(ε) solves the mono-objective formulation (1)-(6) with a maximum coverage distance set

to ε and returns the optimal primal solution OPT .

• compute next covering returns the maximal value of η for which the current solution OPT is not

valid anymore; i.e., returns the maximal value κr (∀r| r selected by OPT ).

Result: P the set of non-dominated points of BOMCTP

ε = +∞;

while solution exists(ε) do

OPT = solve MP(ε);

P← P ∪ {OPT };

ε = compute next covering

end

Return P;
Algorithm 1: reduced ε constraint method(G)

4. Computational Results

In this section, we present the computational results of the exact methods presented in Sections 2 and 3

for the MCTP and the BOMCTP. The experiments have been conducted on a Xeon E5-2695 processor

with a 2.30GHz CPU on a single thread. The implementation is in C++, and the linear problem (21)-(30)

and the integer problem (1)-(6) are solved with Gurobi 7.1.

The following parameter setting has been used: ∆ = 8 (see Section 2.1.1), MAX SELECTED = 3

(see Section 2.1.5), and MAX LABEL=4, 30, and +∞ (see Section 2.1.6).

The time limit is 2 hours for the mono-objective method, 3 hours for the computation of the lower

bound set of the BOMCTP, and 6 hours for the exact bi-objective method. If a method does not converge

in the time limit, the corresponding line is noted with a dash (-). The best methods in terms of CPU times

and gap are noted in bold.
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4.1. Mono-Objective Version

The instances of the MCTP are the ones used in Jozefowiez (2014) and Ha et al. (2013). They are named

X-T -n-W-p where X is the name of the Krolak instance from which the instance is derived, T is the size

of the mandatory service point set plus the depot, n is the size of the service point set plus the depot, W

is the size of the customer set and p is the maximum number of visited service points allowed in a route.

In total 96 instances are tested.

The state-of-the-art exact method for the MCTP is presented in the paper of Ha et al. (2013), that is

why we compare our results with them in the following tables. As the CPU used by Hà et al. is different,

we use the passmark CPU score1 with a single thread to construct a fair coefficient. They use a 2.4-

GHz Intel Core2 Duo CPU and we use a 2.1-GHz Xeon E5-2695 v4 CPU. They do not specify exactly

the model of their microprocessor, and the CPU Single Thread Rating of the 2.4-GHz Intel Core2 Duo

CPU varies between 842 and 991. Thus, we compare with the less efficient Intel Core2 Duo processor

available. So, the CPU Single Thread Rating of the CPU of Hà et al. is 842 and ours is 1628. We report

in Tables 2, 3 and 4 their times divided by 1.94 in column Time c and their original times in column

Time o.

In these three tables, the following column headings are: the CPU time in seconds (Time), the optimal

solution of each instance (UB), the lower bound of the MCTP (LB), and the gap between the lower bound

LB and the optimal solution UB in percentage (Gap). If no optimal solution is found, the gap is computed

with a valid upper bound. The gap is computed as follows:

Gap = 100 − z(LB)∗100
z(UB) (%);

The computational results show that our method is strictly more efficient than the state-of-the-art

method on 82 instances out of 96. Our method is strictly less efficient on 7 instances. Among these 7

instances, the difference of time is higher than 5 seconds only on D1-1-50-50-8. It could be explained

as column generation is less efficient on vehicle routing problems with long routes. For instances with

|V | = 200, our method outperforms the one of Hà et al. We close 7 open instances. On the 6 instances

that remain unsolved, the lower bound we find is clearly better than the one of the method of Hà et al.

We can notice that the difficulty of the instance increases with the maximum cardinality of the route.

The number of service points also plays an important part in the difficulty as well as the number of

1Data available in the website https://www.cpubenchmark.net/cpu_list.php (28/10/2019)
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Table 2: Computational results of our method and method of Ha et al. (2013) on instances with |V | = 100 and |M| = 0

Ha et al. (2013) Our method

Instance UB LB Gap Time o Time c LB Gap Time

A1-1-25-75-4 8479.0 8218.0 3.1 1.1 0.6 8479.0 0.0 0.1
A1-1-25-75-5 8479.0 7521.1 11.3 3.3 1.7 8479.0 0.0 0.2
A1-1-25-75-6 8479.0 7411.3 12.6 3.3 1.7 8402.3 0.9 0.6
A1-1-25-75-8 7985.0 6340.3 20.6 20.1 10.4 7985.0 0.0 0.6
A1-1-50-50-4 10271.0 9346.0 9.0 9.9 5.1 10271.0 0.0 0.6
A1-1-50-50-5 9220.0 7925.4 14.0 12.4 6.4 9220.0 0.0 0.6
A1-1-50-50-6 9130.0 7186.3 21.3 24.8 12.8 9130.0 0.0 3.1
A1-1-50-50-8 9130.0 6325.9 30.7 203.9 105.1 9031.0 1.1 24.8

B1-1-25-75-4 7146.0 6563.8 8.1 1.8 0.9 7146.0 0.0 0.2
B1-1-25-75-5 6901.0 5821.7 15.6 3.2 1.6 6782.0 1.7 0.3
B1-1-25-75-6 6450.0 5009.6 22.3 4.3 2.2 6450.0 0.0 0.5
B1-1-25-75-8 6450.0 4464.5 30.8 10.9 5.6 6450.0 0.0 2.4
B1-1-50-50-4 10107.0 8706.1 13.9 16.6 8.6 10107.0 0.0 0.6
B1-1-50-50-5 9723.0 7750.3 20.3 84.1 43.4 9723.0 0.0 1.0
B1-1-50-50-6 9382.0 7193.3 23.3 162.2 83.6 9273.0 1.2 3.4
B1-1-50-50-8 8348.0 5744.5 31.2 76.1 39.2 8348.0 0.0 10.1

C1-1-25-75-4 6161.0 5265.9 14.5 2.8 1.4 6161.0 0.0 0.2
C1-1-25-75-5 6161.0 4946.5 19.7 5.8 3.0 6161.0 0.0 0.3
C1-1-25-75-6 6161.0 4678.2 24.1 7.7 4.0 6161.0 0.0 0.5
C1-1-25-75-8 6161.0 4279.7 30.5 9.4 4.8 6161.0 0.0 1.6
C1-1-50-50-4 11372.0 10462.3 8.0 8.1 4.2 11042.0 2.9 0.9
C1-1-50-50-5 9900.0 8897.0 10.1 13.3 6.9 9900.0 0.0 0.7
C1-1-50-50-6 9895.0 8210.6 17.0 56.9 29.3 9719.0 1.8 3.1
C1-1-50-50-8 8699.0 7479.8 14.0 8.5 4.4 8684.0 0.2 21.7

D1-1-25-75-4 7671.0 7471.4 2.6 1.0 0.5 7671.0 0.0 0.2
D1-1-25-75-5 7465.0 6630.6 11.2 5.4 2.8 7363.3 1.4 0.6
D1-1-25-75-6 6651.0 5764.1 13.3 3.8 2.0 6651.0 0.0 0.3
D1-1-25-75-8 6651.0 5187.7 22.0 12.9 6.6 6651.0 0.0 1.3
D1-1-50-50-4 11606.0 10704.4 7.8 9.3 4.8 11606.0 0.0 0.7
D1-1-50-50-5 10770.0 9139.6 15.1 29.3 15.1 10770.0 0.0 0.9
D1-1-50-50-6 10525.0 8264.9 21.5 281.3 145.0 10197.0 3.1 4.0
D1-1-50-50-8 9361.0 6954.8 25.7 110.6 57.0 9341.4 0.2 121.2

Mean 17.0 37.6 19.4 0.5 6.5
Closed instance 32/32 32/32

mandatory service points. The number of customers does not seem as important as the other parameters.

To evaluate the efficiency of the new completion bound g introduced in Section 2.2.5, we launch

our method with the state-of-the-art completion bound f and with the new completion bound g. The

results are presented in Tables 5 and 6. In these tables, the following column headings are: the CPU

time in seconds (Time), and the number of labels accepted by the completion bounds during the column

generation over the last iterations to compute the lower bound of the MCTP (Allowed path). The last

iterations corresponds to the subproblem solved with MAX LABEL= +∞ (section 2.2.6). The smaller

the number of allowed paths, the stronger the completion bound is.
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Table 3: Computational results of our method and method of Ha et al. (2013) on instances with |V | = 100 and |M| > 0

Ha et al. (2013) Our method

Instance UB LB Gap Time o Time c LB Gap Time

A1-5-25-75-4 10827.0 9466.4 12.6 9.5 4.9 9894.8 8.6 0.3
A1-5-25-75-5 8659.0 8659.0 0.0 0.1 0.1 8659.0 0.0 0.2
A1-5-25-75-6 8659.0 8576.6 1.0 6.9 3.6 8659.0 0.0 0.3
A1-5-25-75-8 8265.0 7398.2 10.5 4.2 2.2 8265.0 0.0 0.5
A1-10-50-50-4 17953.0 16223.0 9.6 4828.6 2489.0 16981.0 5.4 11.1
A1-10-50-50-5 15440.0 14317.2 7.3 173.6 89.5 15051.9 2.5 2.0
A1-10-50-50-6 14064.0 12769.9 9.2 1586.2 817.6 13831.5 1.7 12.3
A1-10-50-50-8 - 11280.3 17.7 - - 12050.0 12.1 -

B1-5-25-75-4 9465.0 9465.0 0.0 0.2 0.1 9465.0 0.0 0.2
B1-5-25-75-5 9460.0 8713.2 7.9 5.7 2.9 9293.3 1.8 0.3
B1-5-25-75-6 9148.0 8291.1 9.4 18.1 9.3 9011.0 1.5 0.5
B1-5-25-75-8 8306.0 7193.7 13.4 8.9 4.6 8306.0 0.0 1.1
B1-10-50-50-4 15209.0 14106.9 7.2 127.6 65.8 14878.3 2.2 0.6
B1-10-50-50-5 13535.0 12125.2 10.4 149.2 76.9 13089.5 3.3 2.3
B1-10-50-50-6 12067.0 10815.9 10.4 104.7 54.0 11791.0 2.3 1.7
B1-10-50-50-8 10344.0 9343.0 9.7 32.3 16.6 10344.0 0.0 1.9

C1-5-25-75-4 9898.0 9795.5 1.0 0.4 0.2 9898.0 0.0 0.2
C1-5-25-75-5 9707.0 9205.3 5.2 3.0 1.5 9314.4 4.0 0.4
C1-5-25-75-6 9321.0 8688.0 6.8 4.2 2.2 8534.7 8.4 6.1
C1-5-25-75-8 7474.0 7474.0 0.0 9.4 4.8 7474.0 0.0 0.9
C1-10-50-50-4 18212.0 17217.0 5.5 164.4 84.7 17898.0 1.7 0.9
C1-10-50-50-5 16362.0 15583.4 4.8 126.8 65.4 15697.8 4.1 17.2
C1-10-50-50-6 14749.0 13932.4 5.5 240.4 123.9 14224.2 3.6 11.2
C1-10-50-50-8 12394.0 12000.6 3.2 5.6 2.9 12394.0 0.0 2.7

D1-5-25-75-4 11820.0 11241.8 4.9 1.7 0.9 11783.0 0.3 0.4
D1-5-25-75-5 10982.0 9870.1 10.1 16.7 8.6 10465.3 4.7 13.1
D1-5-25-75-6 9669.0 8976.1 7.2 3.4 1.8 9517.8 1.6 0.6
D1-5-25-75-8 8200.0 7516.4 8.3 1.3 0.7 8200.0 0.0 1.2
D1-10-50-50-4 20982.0 20346.9 3.0 10.9 5.6 20982.0 0.0 0.8
D1-10-50-50-5 18576.0 9139.6 50.8 393.5 202.8 17984.2 3.2 58.2
D1-10-50-50-6 16330.0 15073.8 7.7 116.1 59.8 16156.0 1.1 3.2
D1-10-50-50-8 14204.0 12613.5 11.2 248.4 128.0 13909.0 2.1 6.9

Mean 8.5 271.0 139.7 2.4 5.5
Closed instance 31/32 31/32

The computational results show that the bound g is strictly more efficient in terms of computing time

on 43 instances out of 96. The bound f is strictly more efficient on 31 instances out of 96. The mean

time for all instances is 139.7 and 153.8 for the bound g and f , respectively.

We can also notice that the number of accepted paths in the sub-problem after the completion bounds

is always higher for the bound f as the g ones prune more labels in theory. For example, the instance

A1-1-50-50-8 shows that the number of accepted paths is nearly four times superior with the bound f

and the impact in the CPU time is proportional. However, on the instance C1-10-50-50-5, few paths are

allowed with both bounds and therefore, the time to compute the bound has a negative impact on the

CPU time for g one as it is more expensive to compute.
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Table 4: Computational results of our method and method of Ha et al. (2013) on instances with |V | = 200

Ha et al. (2013) Our method

Instance UB LB Gap Time o Time c LB Gap Time

A2-1-50-150-4 11550.0 10437.8 9.6 82.2 42.4 11508.2 0.4 1.8
A2-1-50-150-5 10407.0 9168.5 11.9 340.6 175.6 10407.0 0.0 2.8
A2-1-50-150-6 10068.0 8527.6 15.3 1075.8 554.5 10068.0 0.0 3.6
A2-1-50-150-8 8896.0 7169.3 19.4 153.4 79.1 8896.0 0.0 23.9
A2-1-100-100-4 11885.0 9675.9 18.6 4593.9 2368.0 11512.2 3.1 20.8
A2-1-100-100-5 10234.0 8212.1 19.8 1440.1 742.3 10234.0 0.0 13.9
A2-1-100-100-6 10020.0 7162.9 28.5 - - 10020.0 0.0 29.5
A2-1-100-100-8 9093.0 5883.0 35.3 - - 9093.0 0.0 826.8
A2-10-50-150-4 17083.0 16049.6 6.0 1257.0 647.9 16761.0 1.9 1.8
A2-10-50-150-5 14977.0 13905.0 7.2 494.7 255.0 14803.5 1.2 4.5
A2-10-50-150-6 13894.0 12959.8 6.7 978.9 504.6 13453.5 3.2 40.8
A2-10-50-150-8 11942.0 11207.4 6.2 280.2 144.4 11942.0 0.0 9.8
A2-20-100-100-4 26594.0 25042.6 5.8 - - 26174.0 1.6 10.2
A2-20-100-100-5 23419.0 21331.4 8.9 - - 22715.5 3.0 4559.9
A2-20-100-100-6 - 18775.1 11.4 - - 20372.0 3.8 -
A2-20-100-100-8 - 15552.1 17.0 - - 17511.1 6.6 -

B2-1-50-150-4 11175.0 9573.0 14.3 166.0 85.6 11175.0 0.0 1.5
B2-1-50-150-5 10502.0 8245.4 21.5 1114.7 574.6 10339.0 1.6 2.8
B2-1-50-150-6 9799.0 7604.1 22.4 1274.0 656.7 9799.0 0.0 3.5
B2-1-50-150-8 8846.0 6213.4 29.8 166.0 85.6 8846.0 0.0 8.7
B2-1-100-100-4 18370.0 16748.9 8.8 6615.0 3409.8 17864.2 2.8 314.4
B2-1-100-100-5 15876.0 14214.5 10.5 1472.0 758.8 15838.5 0.2 11.7
B2-1-100-100-6 14867.0 12394.7 16.6 - - 14531.2 2.3 107.7
B2-1-100-100-8 - 10366.0 25.7 - - 12831.0 8.1 -
B2-10-50-150-4 16667.0 15125.6 9.2 5972.5 3078.6 15675.3 6.0 9.7
B2-10-50-150-5 14188.0 13574.2 4.3 124.2 64.0 13967.5 1.6 4.5
B2-10-50-150-6 12954.0 11947.6 7.8 773.6 398.8 12561.5 3.0 4.4
B2-10-50-150-8 11495.0 10078.3 12.3 732.7 377.7 11277.2 1.9 13.2
B2-20-100-100-4 34062.0 32913.3 3.4 - - 33790.0 0.8 9.2
B2-20-100-100-5 29405.0 27494.1 6.5 - - 28769.8 2.2 4961.8
B2-20-100-100-6 - 23954.7 8.2 - - 25262.7 2.7 -
B2-20-100-100-8 - 19488.6 14.8 - - 21441.0 6.3 -

Mean 13.9 1455.4 750.2 2.0 393.1
Closed instance 20/32 27/32

4.2. Bi-Objective Version

As far as we know, there is no exact method for the BOMCTP. The instances used are the MCTP instances

without a fixed covering distance η. The results are reported in Table 7. This table presents a column |Y|

for the number of non-dominated points, and a column Time for the CPU time in seconds to obtain the

complete Pareto front.

We can notice that 62 instances out of 96 are solved to optimality in 6 hours. The number of non-

dominated points is quite high: between 12 and 90, with an average of 40. This means that this variant

of the BOMCTP offers a compromise between the two objectives. For example, the instance D1-1-25-

75-6 contains 29 non-dominated points, and the two extreme points have a cost of 730 and 11047 and a
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Table 5: Comparison of the completion bounds f and g on instances with |V | = 100 and |M| ≥ 0

State-of-the-art New State-of-the-art New
completion bound f completion bound g completion bound f completion bound g

Instance Allowed path Time Allowed path Time Instance Allowed path Time Allowed path Time

A1-1-25-75-4 498 0.1 88 0.1 A1-5-25-75-4 166 0.3 80 0.3
A1-1-25-75-5 2198 0.2 1522 0.2 A1-5-25-75-5 274 0.2 50 0.2
A1-1-25-75-6 11060 1.0 5088 0.6 A1-5-25-75-6 2126 0.3 483 0.3
A1-1-25-75-8 65634 1.9 13872 0.6 A1-5-25-75-8 18655 0.7 4430 0.5
A1-1-50-50-4 270 0.4 130 0.6 A1-10-50-50-4 346 10.9 158 11.1
A1-1-50-50-5 8446 0.8 1130 0.6 A1-10-50-50-5 702 1.5 368 2.0
A1-1-50-50-6 74643 2.7 56142 3.1 A1-10-50-50-6 4218 12.7 1644 12.3
A1-1-50-50-8 228512 130.1 69878 24.8 A1-10-50-50-8 - - - -

B1-1-25-75-4 608 0.1 250 0.2 B1-5-25-75-4 66 0.1 66 0.2
B1-1-25-75-5 4584 0.4 1262 0.3 B1-5-25-75-5 3632 0.3 857 0.3
B1-1-25-75-6 14200 0.6 3600 0.5 B1-5-25-75-6 13778 0.9 3800 0.5
B1-1-25-75-8 384250 11.3 52298 2.4 B1-5-25-75-8 33277 1.1 19655 1.1
B1-1-50-50-4 934 0.6 374 0.6 B1-10-50-50-4 340 0.7 290 0.6
B1-1-50-50-5 5405 0.8 4379 1.0 B1-10-50-50-5 710 2.1 604 2.3
B1-1-50-50-6 32358 7.6 13144 3.4 B1-10-50-50-6 866 2.0 686 1.7
B1-1-50-50-8 410434 10.9 183948 10.1 B1-10-50-50-8 8770 2.3 7926 1.9

C1-1-25-75-4 358 0.2 222 0.2 C1-5-25-75-4 214 0.2 96 0.2
C1-1-25-75-5 15273 0.5 1365 0.3 C1-5-25-75-5 580 0.4 492 0.4
C1-1-25-75-6 47721 1.6 8404 0.5 C1-5-25-75-6 308 5.2 162 6.1
C1-1-25-75-8 483856 13.3 48235 1.6 C1-5-25-75-8 2342 0.8 860 0.9
C1-1-50-50-4 1522 0.8 1294 0.9 C1-10-50-50-4 242 0.8 236 0.9
C1-1-50-50-5 6074 1.0 410 0.7 C1-10-50-50-5 1635 15.5 1552 17.2
C1-1-50-50-6 84814 14.5 17333 3.1 C1-10-50-50-6 4668 10.2 3392 11.2
C1-1-50-50-8 257838 32.9 142493 21.7 C1-10-50-50-8 7528 2.7 3684 2.7

D1-1-25-75-4 674 0.2 214 0.2 D1-5-25-75-4 182 0.4 104 0.4
D1-1-25-75-5 3620 0.5 2502 0.6 D1-5-25-75-5 410 11.3 204 13.1
D1-1-25-75-6 9244 0.6 1058 0.3 D1-5-25-75-6 1678 0.5 788 0.6
D1-1-25-75-8 447168 7.6 38186 1.3 D1-5-25-75-8 21128 1.3 18012 1.2
D1-1-50-50-4 604 0.6 418 0.7 D1-10-50-50-4 428 0.7 224 0.8
D1-1-50-50-5 14524 1.0 2726 0.9 D1-10-50-50-5 414 41.8 278 58.2
D1-1-50-50-6 9672 4.0 6132 4.0 D1-10-50-50-6 1646 3.0 1026 3.2
D1-1-50-50-8 596132 409.6 203502 121.2 D1-10-50-50-8 18281 10.8 7140 6.9

Mean 100723 20.6 27550 6.5 Mean 4826 4.6 2560 5.1

maximum coverage distance of 2934 and 658 respectively. The optimal solution of the MCTP found for

the instance D1-1-25-75-6 corresponds to a non-dominated point of cost 6651 and of maximum coverage

distance 931 situated in the middle of the Pareto front.

We can notice that the value of the maximum cardinality of a route n does not influence the number

of non-dominated points. On the contrary, the higher the number of mandatory service points, the lower

the number of non-dominated points as shown by B1-1-25-75-8 and B1-5-25-75-8 which have 36 and 19

non-dominated points, respectively. The higher the number of optional service points, the higher the

number of non-dominated points as shown by A1-1-25-75-4 and A1-1-50-50-4 which have 30 and 50

non-dominated points, respectively.
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Table 6: Comparison of the completion bounds f and g on instances with |V | = 200

State-of-the-art New State-of-the-art New
completion bound f completion bound g completion bound f completion bound g

Instance Allowed path Time Allowed path Time Instance Allowed path Time Allowed path Time

A2-1-50-150-4 1462 2.6 1000 1.8 B2-1-50-150-4 692 2.1 668 1.5
A2-1-50-150-5 27693 5.4 10452 2.8 B2-1-50-150-5 3016 3.6 1500 2.8
A2-1-50-150-6 104062 7.4 18681 3.6 B2-1-50-150-6 13672 3.5 6538 3.5
A2-1-50-150-8 849383 43.2 278680 23.9 B2-1-50-150-8 84521 8.5 36993 8.7
A2-1-100-100-4 4182 19.1 2984 20.8 B2-1-100-100-4 1450 269.3 1198 314.4
A2-1-100-100-5 88582 12.0 71965 13.9 B2-1-100-100-5 4710 8.4 4582 11.7
A2-1-100-100-6 704792 80.2 188834 29.5 B2-1-100-100-6 32613 149.6 31614 107.7
A2-1-100-100-8 10610182 624.2 7795891 826.8 B2-1-100-100-8 - - - -
A2-10-50-150-4 216 2.4 186 1.8 B2-10-50-150-4 120 12.4 76 9.7
A2-10-50-150-5 680 2.8 666 4.5 B2-10-50-150-5 1433 5.9 1223 4.5
A2-10-50-150-6 3677 36.0 2848 40.8 B2-10-50-150-6 2074 3.3 1860 4.4
A2-10-50-150-8 74259 15.5 45510 9.8 B2-10-50-150-8 16382 9.1 12242 13.2
A2-20-100-100-4 520 9.2 410 10.2 B2-20-100-100-4 700 12.5 666 9.2
A2-20-100-100-5 2315 5472.0 1771 4559.9 B2-20-100-100-5 1970 4954.3 1702 4961.8
A2-20-100-100-6 - - - - B2-20-100-100-6 - - - -
A2-20-100-100-8 - - - - B2-20-100-100-8 - - - -

Mean 467976 436.1 315583 407.5

The lower bound sets of the BOMCTP have been studied in Artigues et al. (2018). Table 8 compares

the tightness and the efficiency of the lower bound sets obtained by our method and the method from the

literature, called SOGA, presented in Artigues et al. (2018). Both algorithms are run on the same CPU,

but the method SOGA solves the integer and linear problems with CPLEX 12.9.

The efficiency is evaluated in terms of CPU time used to compute the lower bound sets in column

Time. The tightness is determined with two values: Pt represents the number of points in the lower

bound set, and Hv represents the hypervolume metric. The hypervolume is the percentage of area in the

objective space covered by the lower bound sets compared to an ideal point. The figure 2 illustrates this

measure.

In this example, the point N represents a nadir point that is dominated by every non-dominated

feasible points of the BOMCTP. This means that the exact Pareto front is contained in the rectangle

formed by the points I and N. The points A, B, C and D and the lines between them represent the lower

bound set. The hypervolume measure of the lower bound set is equal to the gray area divided by the

area of the rectangle formed by the points I and N. It is straightforward that the smaller the measure, the

better the lower bound set. For the hypervolume measure of the two methods, the same point N is used

for similar instances.
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Table 7: Computational results of our bi-objective method
Instance |Y| Time Instance |Y| Time Instance |Y| Time Instance |Y| Time

A1-1-25-75-4 30 5.4 A1-10-50-50-5 47 20779.2 C1-1-25-75-8 36 1776.2 D1-10-50-50-4 45 5600.2
A1-1-25-75-5 32 5.3 B1-5-25-75-4 21 5.2 C1-1-50-50-4 61 61.0 A2-1-50-150-4 58 275.5
A1-1-25-75-6 32 11.6 B1-5-25-75-5 20 5.4 C1-1-50-50-5 62 431.1 A2-1-50-150-5 52 215.5
A1-1-25-75-8 31 26.3 B1-5-25-75-6 22 20.8 D1-1-25-75-4 29 3.7 A2-1-50-150-6 53 1835.6
A1-1-50-50-4 50 30.4 B1-5-25-75-8 19 1019.2 D1-1-25-75-5 29 6.1 A2-1-50-150-8 55 15240.3
A1-1-50-50-5 49 1007.3 B1-10-50-50-4 33 23.5 D1-1-25-75-6 29 9.4 A2-1-100-100-4 90 13895.3
A1-1-50-50-6 49 1191.4 B1-10-50-50-5 35 357.8 D1-1-25-75-8 29 39.6 A2-1-100-100-5 81 2247.4
A1-1-50-50-8 51 617.2 B1-10-50-50-6 29 6335.4 D1-1-50-50-4 62 47.5 A2-10-50-150-4 47 668.5
B1-1-25-75-4 34 5.3 C1-5-25-75-4 14 2.7 D1-1-50-50-5 65 62.3 A2-10-50-150-5 38 6412.3
B1-1-25-75-5 37 7.1 C1-5-25-75-5 15 4.5 D1-1-50-50-6 63 922.0 B2-1-50-150-4 57 1458.0
B1-1-25-75-6 37 11.7 C1-5-25-75-6 14 16.5 A1-5-25-75-4 24 6.4 B2-1-50-150-5 53 2818.7
B1-1-25-75-8 36 38.9 C1-5-25-75-8 12 6.1 A1-5-25-75-5 21 8.9 B2-1-50-150-6 51 309.8
B1-1-50-50-4 58 1021.0 C1-10-50-50-4 58 1264.2 A1-5-25-75-6 18 20.5 B2-1-50-150-8 56 4741.1
C1-1-25-75-4 39 8.8 C1-10-50-50-5 47 9625.0 A1-5-25-75-8 19 11.4 B2-10-50-150-4 37 211.8
C1-1-25-75-5 38 8.8 D1-5-25-75-4 27 16.7 A1-10-50-50-4 39 1566.8 B2-10-50-150-6 43 1530.0
C1-1-25-75-6 38 35.2 D1-5-25-75-5 25 1294.9
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Figure 2: Example of a lower bound set for a bi-objective problem

The results show that our method computes tighter lower bound sets for all instances. The lower

bound sets computed with our method generates more lower bound points, and it could explain both a

part of the preciseness of our lower bound sets and the difference of time between the two methods. For

instance, in A2-1-100-100-5, our method computes 113 points in 2022.5 seconds for an hypervolume

of 84.5%, and the SOGA method computes 63 points in 1037.2 seconds for an hypervolume of 85.1%.

However, for some instances, our method is still faster with more points computed. For instance, in

D1-1-50-50-8, the SOGA method computes 55 points in 2104.0 seconds, and ours computes 80 points

in 1546.9 seconds.
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Table 8: Computational results of our bi-objective method and comparison with the method SOGA of Artigues et al. (2018)
SOGA Our method SOGA Our method

Instance |ND| Hv Time |ND| Hv Time Instance |ND| Hv Time |ND| Hv Time

A1-1-25-75-4 34 83.0 5.4 48 82.8 5.7 B1-1-25-75-4 40 84.6 10.6 60 84.5 9.0
A1-1-25-75-5 38 83.2 7.0 41 83.2 8.4 B1-1-25-75-5 39 84.9 16.6 42 84.9 9.0
A1-1-25-75-6 33 83.3 10.6 46 83.3 15.4 B1-1-25-75-6 33 85.2 14.9 44 85.1 16.2
A1-1-25-75-8 31 83.6 7.6 34 83.5 36.6 B1-1-25-75-8 33 85.5 15.6 41 85.4 52.8
A1-1-50-50-4 48 87.7 72.2 74 87.5 34.9 B1-1-50-50-4 57 86.6 174.0 75 86.5 31.7
A1-1-50-50-5 50 88.2 148.5 67 88.2 45.5 B1-1-50-50-5 58 87.0 238.4 72 87.0 56.6
A1-1-50-50-6 45 88.6 421.0 58 88.5 82.1 B1-1-50-50-6 53 87.3 946.2 68 87.3 97.0
A1-1-50-50-8 48 88.9 569.9 58 88.8 351.1 B1-1-50-50-8 47 87.7 858.6 60 87.6 1749.7
A2-1-50-150-4 71 84.0 260.7 137 83.9 181.5 B2-1-50-150-4 48 85.6 147.5 127 84.9 134.2
A2-1-50-150-5 63 84.8 338.1 77 84.7 199.6 B2-1-50-150-5 51 85.7 1103.4 91 85.5 191.9
A2-1-50-150-6 55 85.2 603.2 96 85.1 504.2 B2-1-50-150-6 55 85.9 1793.5 84 85.8 370.6
A2-1-50-150-8 54 85.5 835.6 72 85.5 1655.1 B2-1-50-150-8 60 86.2 4642.5 80 86.2 7600.1
A2-1-100-100-4 71 84.1 1812.8 131 83.8 971.0 B2-1-100-100-4 84 86.2 10522.5 169 85.8 901.8
A2-1-100-100-5 63 85.1 1037.2 113 84.5 2022.5 B2-1-100-100-5 - - - 162 86.5 1768.9
A2-1-100-100-6 56 85.3 831.5 91 84.7 5322.5 B2-1-100-100-6 - - - 149 87.0 2785.0
A2-1-100-100-8 69 85.2 6089.4 - - - B2-1-100-100-8 - - - - - -

Mean 52 85.4 815.7 76 85.2 762.4 Mean 51 86.0 1575.7 88 86.0 1051.6

C1-1-25-75-4 48 75.1 14.9 69 74.9 11.7 D1-1-25-75-4 23 84.2 4.7 59 82.5 8.3
C1-1-25-75-5 43 76.3 20.2 75 76.1 20.1 D1-1-25-75-5 28 83.7 9.3 47 83.3 8.3
C1-1-25-75-6 38 77.0 27.8 66 76.8 26.4 D1-1-25-75-6 31 83.8 17.0 43 83.8 15.5
C1-1-25-75-8 32 78.3 20.4 43 78.0 39.3 D1-1-25-75-8 30 84.5 14.9 33 84.4 46.9
C1-1-50-50-4 54 84.3 72.4 81 84.0 38.5 D1-1-50-50-4 57 83.9 166.5 94 83.6 40.4
C1-1-50-50-5 49 85.2 155.7 81 84.9 65.7 D1-1-50-50-5 53 84.6 425.6 93 84.4 81.7
C1-1-50-50-6 57 85.6 363.0 88 85.4 144.6 D1-1-50-50-6 59 85.2 862.6 85 85.0 191.8
C1-1-50-50-8 58 86.1 1883.5 63 86.1 649.5 D1-1-50-50-8 55 85.8 2104.0 80 85.6 1546.9

Mean 47 81 319.7 71 80.8 124.5 Mean 42 84.5 450.6 67 84.1 242.5

5. Conclusion

In this paper, we proposed an exact method to solve the Multi-vehicle Covering Tour Problem. It is based

on a set partitioning formulation that uses the ng-route relaxation for the pricing problem, and includes a

stabilization procedure for dealing with degeneracy. We describe the specificities of column generation

for the MCTP during the extension of a label, the dominance rule and especially the computation of tight

completion bounds. The efficiency of our method is proven against the state-of-the-art method for the

MCTP. Some instances have now been closed thanks to our algorithm. Moreover, the single-objective

method has been embedded in a well-known bi-objective technique, the ε-constraint method, to solve

the Bi-Objective Multi-vehicle Covering Tour Problem which aims to minimize both the total distance

travelled and the maximum coverage distance allowed for the vehicles. The size of the final Pareto

front for each instance shows that the bi-objective problem presents a compromise between the maximal

covering tour coefficient and the final cost of the routes.

On the one hand, the next step of this work will be to improve the mono-objective method by adding

some cuts to be able to close all instances and to deal with larger instances. On the other hand, the

29



bi-objective method could be improved by sharing information about optimal routes between the sub-

problems solved for different ε values.
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