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1 Introduction

With the tremendous growth of services and applications highly uploading
data as much as downloading it, such as video conferencing and Virtual Real-
ity (VR) streaming, the uplink throughput monitoring is required. However,
throughput is considered as a crucial QoS metric in cellular networks. In
fact, the chaotic radio phenomena characterizing the real environment lead
to a degradation for the different QoS metrics, especially the throughput.
Such phenomena include noise, multipath fading, and interference, etc. It is
increasingly hard to understand how the throughput changes rapidly depend-
ing on the environmental situations. Therefore, radio phenomena should be
considered when monitoring the uplink throughput in such environments. As
recent researchers endorse the use of 4G standard for the short and middle
term services/applications, the uplink throughput monitoring in such net-
works is then considered.

2 Technical Objectives

We propose in this work to turn our focus on enhancing uplink transmissions
through monitoring its QoS. Such objective might be realized either with a
reactive or proactive systems. The former indicates the system reaction after
receiving an event. For example, the network congestion control mechanisms
are triggered only after detecting a QoS degradation due to the congestion.
On the other hand, pro-active systems anticipate any positive or negative
variation in the system and activate the appropriate procedures to avoid any
QoS deterioration. It is clear that the QoS is maintained better in proactive
systems compared to the reactive ones. Therefore, the uplink QoS monitoring
in a proactive context is considered. For that, we propose to investigate the
predictability of uplink throughput in 4G networks.

In such networks, the lower layers are the ones responsible for error cor-
rectness and treating any signal deformation due to the wireless channel
conditions. They play a pivotal role in the throughput determination. There-
fore, we investigate the throughput estimation based on the eNB lower layer
metrics.
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3 State of Art

3.1 Throughput estimation

Over years, throughput estimation and prediction has been widely studied in
wired networks and WLAN. D. Koutsonikolas et al. [1] reveal the ineffective-
ness of using those techniques in cellular networks as they are characterized
by the large short-scale fluctuation of bandwidth. Nevertheless, [3], [4] and [2]
prove the predictability of throughput in cellular networks. Consequently,
only the proposed techniques in that environment are discussed. They can
be categorized into two categories, as shown below. The approaches estimat-
ing the data-rate based on higher layer metrics such as TCP metrics, and the
ones considering the lower layer metrics ( i.e. physical and MAC (Medium
Access Control) layers).

3.1.1 Estimation based higher layer metrics

The higher layer metrics, starting from the network layer up to the appli-
cation layer are used to estimate the throughput, mainly for one upcoming
time interval. For instance, Winstein et al. [6] propose the use of packet
inter-arrival time to infer link bandwidth and further determine the number
of packets that can be transmitted. Q. Xu et al. [5] estimate the throughput
based on the historical throughput and the instantaneous sending rate, using
regression trees. The developed protocol monitors the network traffic pas-
sively. Hence, it limits the possibility of predicting the achievable throughput
of the following time window at an arbitrary sending rate. It assumes also
that the sending rate of the upcoming time window is similar to the previous
one. Such presumption might be limited in network with high throughput
variability.

The proposed techniques in these studies focus only on the higher layer
metrics, neglecting the rich lower-layer information.

3.1.2 Estimation based on lower layer metrics

Considering the fact that data-rate performance is affected by radio phenom-
ena, and lower layer metrics reflect the channel conditions, several studies
have investigated the throughput estimation based on lower layer metrics for
different use cases. For instance, to improve the TCP cross-layer congestion
control mechanism in 3G networks, F.Lu et al. [2] propose a prediction of
downlink capacity based on CQI (Channel quality indicator) and DRX (Dis-
continuous Transmission). However, it uses a basic CQI-rate matching and
the presence or not of DRX during a given time interval to predict the link
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capacity for the upcoming time interval. On the other hand, Margolies et
al. [7] develop another version of the proportional fair scheduler, adapted for
mobile users. The developed scheduler takes the predicted feasible data-rate
as an input argument. Such prediction is based on the reproducibility of
signal quality over the same path and user trajectory tracking. Simulations
results are promising as the throughput has increased by 15%–55% compared
to the traditional schedulers, while improving fairness.

On the other hand, with the emergence of the machine learning techniques
and its good performance in different application domains, recent studies
estimate the throughput with an underlying machine learning algorithm. It
includes mainly Support vector machine (SVM) and Random forest (RF).
For instance, in order to minimize the energy consumption by cellular UEs,
A.Chakraborty et al. [8] propose a protocol based on a specific LoadSense
technique to increase the UE coordination efficiency for transmissions. The
LoadSence approach is based on support vector machine classifier. It uses
features such as the link quality, power ratio and its variation to estimate
the availability of low or high throughput for the UE. The throughput was
measured by downloading data from a server located in the same geographic
area as the UE. In this study, it is considered that any throughput variation
is mainly due to the wireless channel contention and not the operator wired
part. In fact, this might be a misleading hypothesis as the authors had no
control of the operators side.

Then, with the objective to help content provider choose the most appro-
priate representation (e.g. picture resolution, video resolution and rate) be-
fore the connection establishment, A. Samba et al. [15] consider the through-
put estimation before establishing the connection. For that, they conduct
a measurement campaign involving 60 users connected to a production net-
work in France. They have proven that using either radio measurements on
the UE side or the RAN measurements (e.g. average cell throughput, aver-
age number of connected users, BLER (Block Error Rate) of the cell) lead
to good estimations. The application of random forest on UE radio mea-
surements, RAN metrics and their combination result respectively in 50%,
59% and 65% of the relative prediction error within ±20%. The relative pre-
diction error of an estimation is computed by dividing the estimated value
minus the actual value, by the actual value. Further, C Yue et al. [20] de-
veloped a machine learning based framework to estimate the UE average
throughput, named bandwidth. A server sends an UDP traffic to the UEs
in different scenarios, i.e. stationary and mobility scenarios. An extensive
measurements campaign is then conducted in two commercial LTE networks
in the US. As a result, five lower-layer measurements are identified as the
most correlated with the downlink bandwidth. The measures include RSRP
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(Reference signal Receive Power), RSRQ (Reference Signal Receive Qual-
ity), CQI (Channel Quality Indicator), BLER, and the number of handover
attempts. Based on the collected metrics and historical bandwidth, accu-
rate predictions were obtained. For instance, for the walking scenario, 69%
of the relative prediction errors are within ±10%. Overall, when using the
machine learning techniques, mainly the average throughput is considered,
as the instantaneous throughput in [15] is estimated before the connection
establishment.

Although, both client and network throughput are important in cellular
networks, link bandwidth estimation related work considered only downlink
transmissions. Our work differs in that we are interested in UL that takes
advantage of a different transmitter and receiver composition. On the other
hand, in order to estimate the uplink throughput an access to the eNB mea-
surement in different radio scenarios is inevitable.

3.2 Test platforms

The aim is to monitor the UL QoS efficiently through investigating the up-
link (UL) performance and its throughput estimation. It concerns mainly
the observed QoS at the network side instead of UE side. For that, a need to
access the network measurements, especially the eNB metrics is inevitable.
However, the open access datasets such as [17] and [18] collect the mea-
sures/metrics mainly from the UE-side in real or simulated environments.
The cellular networks are private and proper to the MNO (Mobile Network
Operator). Hence, the eNB metrics and measurements are confidential. Tak-
ing such fact into consideration, researchers have developed simulators and
SDR based platforms to test the cellular networks and integrate evolutionary
services. In this part, the existing 4G simulators and SDR (Software Defined
Radio) implementations are presented.

3.2.1 Simulations based solution

Even though the high demand for cellular network evaluation environments,
a few open-source contributions have been proposed over the last decade.
We differentiate mainly between the physical layer and high system level
simulators. For instance, Mehlfuhrer et al. [10] have developed a mtalab
based simulator for DL physical layer, proposing different capabilities such
as one UE-one eNB, multi-users connected in one single cell and multi-user
in a multi-cell environments. On the other hand, mainly four strong contri-
butions could be considered for the high system level simulations, modeling
almost the entire protocol stack of the 4G components. J.Ikunu et al. [11]
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developed a matlab based simulator taking only downlink transmissions into
account. LTE-sim proposed by Piro et al. [12] implements the main resources
scheduling techniques for LTE network in multi-user/multi-cell environment.
The later doesn’t offer any support for the simulation workflow automation,
e.g. definition and measures collection with a lack of one of the main eNB
mechanisms, HARQ (Hybrid ARQ). Because of the physical layer complexity
requiring a high computational effort, the aforementioned simulators imple-
ment an analytical model of the PHY layer, with no time notion, instead of
a complete one.

Other scientists have developed the 4G protocol stack within the ns-3
framework [14] and simuLTE [13] based on omnet++. Although simuLTE
[13] integrates many PHY layer mechanisms, it still remains incomplete as
the physical channels are not modeled down to the OFDM symbols level.
In other words, the later developed simulators are packet oriented based on
discrete-event simulations. They either model the protocols layer or abstract
them partially/ altogether.

3.2.2 SDR based solution

All of the above mentioned simulators are either implementing the LTE from
a system level, abstracting some of the protocol layers, or only the physical
layer. Thus, it turns the 4G network incomplete. Therefore, in order to
compensate mainly the lack of the implementation of the physical layer in
simulators, recently the Software Defined Radio (SDR) platforms are taking
place. The SDR based platforms offer a high level of realism and flexibility
due to the introduced softwarization. In fact, SDR [32] refers to the radio
transceiver/receiver system implementing, in software, the traditional hard-
ware component, i.e. amplifiers, filters, etc. To support the SDR capabilities,
different boards are now developed by several companies such as USRP (Uni-
versal Software Radio Peripheral) by National Instrument [22] and limeSDR
by MyriadRf [23].

Further, several SDR based platform implementing LTE have emerged
recently. The platforms include LTE 100 which provides the use of eNB and
EPC full network functionalities over a standard linux-based PC interfaced
with USRP SDR platform. Unfortunately, it is not open source and com-
mercialized by Amarisoft [24]. Also, other closed-source LTE based SDR
implementation are available such as PicoSDR10 by Nutaq [25].

On the other hand, most of the open-source LTE plateforms are not
complete. There is LibLTE [26] offering a pre-alpha development of SDR
UEs and eNBs. OpenLTE [9] implementing the 3GPP LTE specifications
involved in the downlink transmissions and reception. And, gr-LTE [27]
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developing only the receiver part.
The only complete open-source SDR based system is Openairinterface

[19]. It is a full software implementation of 4G network and highly realistic
compared to the aforementioned simulators. However, for its unicity it is
chosen for our testbed deployment.

4 Uncertainty, Scientific and Technical Locks

to overcome

4.1 Testbed deployment

The testbed objective is to generate 4G real time traffic in different radio
scenarios. The wireless system is then LTE-A. R2lab [28] is used as an
underlying testbed, which offers a wireless network with multiple Software
defined radio (SDR) nodes inside an anechoic room. The RF propagation
inside the room is controlled thanks to the microwave absorbers materiel on
the walls, scattering any wireless signal that comes across. The SDR based
nodes allow a full access to realistic physical metrics/measurements. With
remote access to the indoor nodes, the deployment of LTE-A network is
accomplished. Fig. 1 schematizes the testbed. Openairinterface (OAI) soft-
ware based platform [19] is implemented, which spans the full LTE 3GPP
protocol stack (including features from LTE-Advanced and LTE-Advanced-
Pro) for both radio access network (E-UTRAN) and core network (EPC).
The openairinterface softmodem is connected with a hardware platform for
SDR: USRP B210 (Universal Software Radio Peripheral) attached to two
antennas, receiver and transmitter antennas. The USRP B210 is connected
to a host computer to perform processing, and then connected to a PC run-
ning EPC network, and accessing the internet toward a distant server. The
testbed works on frequency band 7 with 5 MHz bandwidth and uses FDD
mode, which corresponds to the traditional and stable version of openair-
interface platform with USRPB210. Further, as our objective is to observe
the impact of radio phenomena on the bandwidth variation, the server and
the intermediate PCs are well provisioned for not behaving as a bottleneck
during communication.

To emulate 4G connected nodes, two commercial UEs are used and placed
inside the anechoic room. The hardware metallic enclosure boxes scattered
inside the room are considered as fixed multipath sources, which we take
advantage of in investigating the impact of multipath phenomenon on band-
width variation.
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Figure 1: LTE-A Testbed deployment.

In real environments, multiple radio phenomena are scrambling the com-
munications. Example phenomena include multipath fading leading to In-
terSymbol Interference (ISI) noise, pathloss and random processes such as
AWGN (Additive White Gaussian Noise). These phenomena tend to atten-
uate aggressively the transmitted signal, which causes a significant amount
of signal strength reduction and hence QoS degradation. The upcoming sce-
narios tend to investigate the impact of each phenomenon on the bandwidth
prediction. For each test scenario, a radio phenomenon is added in the system
to complexify the tests.

Scenario 1: Multipath fading For the first scenario, we investigate the
impact of multipath fading and pathloss on bandwidth prediction/estimation.
In other words, the two UEs used in the experimentation are on different
distance from the eNB, i.e. each UE has a different pathloss. Over the
room, multiple metallic boxes surround the eNB (fig. 1). They introduce
multipath fading leading to ISI. The two pylons, covered with absorbers are
considered as shadowers for the transmissions, especially for UE2. Therefore,
only pathloss, shadowing and multipath fading are present in the system as
scramblers for the transmission, i.e the anechoic room is isolated from any
other radio phenomena. In order to avoid any degradation/losses due to the
insufficiency of radio resources the total transmitted bandwidth by the two
users is inferior to the maximum network capacity. In fact, after several tests
the maximum uplink data-rate achieved in the testbed, by 1 connected UE,
is around 8Mbps. Hence UE 1 transmits during the whole test duration a
fixed amount of data of 2Mbps and UE 2 transmits 3Mbps. A benchmark of
lower layers metrics is performed to construct datasets for ML algorithms as
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explained further.

Scenario 2: Noise & Multipath fading In this scenario, another radio
phenomenon is added in the anechoic room to investigate its presence on the
bandwidth prediction, i.e, noise. For that we generate in a controlled manner
a specific noise profile to scramble the communication.

Noise profile: In time varying scenarios, the received signal amplitude
undergoes rapid fluctuation that is often modeled as a random variable with a
particular distribution. For that we consider a Gaussian distribution, AWGN,
which is characterized by its amplitude that affects the signal strength. More-
over, noise (AWGN) is introduced as it causes transmission errors and may
disrupt the communication with ISI production for high power noise [33].
Contrarily to work in literature where AWGN is often taken with constant
attenuation, we introduce randomness in the attenuation in order to have
attenuation fluctuations of the signal over time. For that we define noise
level as noise with a given gain and amplitude. We used mainly GNUradio
on USRP B210. Given a list of gain levels and an interval of maximum and
minimum amplitude levels, each 10 seconds a random value of amplitude
and gain are chosen. In fact, the amplitude value affects the statistical char-
acteristics of the noise source, i.e, the standard deviation of the Gaussian
noise. The gain affects the transmitted signal power. The programmed step
for noise level change (10 s) is chosen as to have sufficient samples for each
noise level. Therefore, low noise level values keep the channel flat, while
high noise level disrupt totally the communication, with the probability of
introducing ISI, not only with noise but also with metallic boxes scattered
in the room. Furthermore, the abrupt changes in noise levels during the
transmission tend to reflect the real complex radio environments, where the
user’s mobility across different shadowers leads to aggressive/alleviated sig-
nal attenuation. The bandwidth is fixed to 5Mhz to scramble the full UL
bandwidth. Both users transmit at same data-rate as in the scenario 1, and
same benchmark of lower layer metrics is performed.

Scenario 3: Radio congestion & Noise & Multipath fading During
the previous scenarios, the total transmitted bandwidth by the two UEs is
much lower than the maximum available bandwidth. In this part, another
radio phenomenon leading to bandwidth degradation is introduced in the
testbed, i.e. radio congestion. The later occurs when the total bandwidth
required by the connected UEs outpaces the maximum eNB bandwidth. Mo-
bile application based speedtest is tested in scenario 1 for UE 1. It reaches
the maximum throughput of 8 Mbps. Therefore, in order to realize radio
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congestion, UE1 transmits its data at a fixed amount of 4 Mbps and UE2
at 5 Mbps. Noise is introduced as described in scenario 2 to complexify the
test.

For all the above scenarios, IPERF3 generates traffic at the UE side and
IPERF3-server monitors throughput reception in the server. In order to have
a fixed transmission amount of data during the whole test duration, UDP
(User Datagram Protocol) is used as a transport protocol. In fact, TCP
(Transport Control Protocol) changes the transmission window based on the
perceived packet losses in the window. Given this, any observed bandwidth
degradation is essentially due to radio environment variation.

5 Field of exploration

Given the LTE-A testbed in the anechoic room, we are able to generate 4G
traffic in different scenarios as described in the previous part. In this section,
we present the methodology aiming at building our datasets.

5.1 Data collection

The eNB performs different measurements in order to decode the received
data and adapt to channel variation. With SDR at the eNB side, we are
able to collect all the performed eNB measurements and metrics, especially
from the lower layers (physical and mac layer). As the connected UEs com-
municates their control signaling information using PUCCH, and transmit
their data on PUSCH channels, we perform a deep benchmark of the main
metrics/measurements linked with the two channels. The OAI eNB met-
rics/measurements are performed as depicted by the 3GPP standard. The
collected metrics are mainly extracted during the lower layers data process-
ing.

On one hand, radio measurements are collected as they are crucial for
higher layer mechanisms and reflect the channel quality. The main measures
are:

• Timing Advance (TA): As the propagation delay of different UEs is
different based on their positions, TA is introduced to ensure synchro-
nization between uplink and downlink at the eNB side. TA is a nega-
tive offset at the UE. Based on the UE transmitted PRACH, the eNB
estimates the initial TA. Once the UE is connected, the eNB keep es-
timating TA and adjusting it by transmitting to the UE the required
value, TA update.
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• SNR: SNR: Signal to Noise Ratio compares the level of the desired
received signal to the level of noise. Taking Psignal and Pnoise as the
average power of the received signal and noise respectively, SNR is
defined (in decibels) as follows: SNRdB = 10.log10(Psignal/Pnoise). It is
measured for each received PUSCH holding UE’s data.

• received UL CQI: Uplink Channel Quality Indicator. It is computed
at the eNB based on the observed SNR.

• PUCCH received power and noise power: the two measures are esti-
mated principally for each PUCCH handling a scheduling request.

• PUCCH threshold: It is the threshold to detect the pucch format1.

On the other hand, during decoding/demodulating the received channels,
multiple metrics are extracted. In fact, when the UE is transmitting data via
PUSCH, its data is transmitted using a Modulation Coding Scheme (MCS).
The MCS is related to the modulation order Qm, e.g, QPSK (Quadrature
Phase Shift Keying), 16 QAM (Quadrature Amplitude Modulation) and 64
QAM. The modulation scheme has a direct impact on the data-rate. How-
ever, when using a higher-order QAM scheme such as 64 QAM, each symbol
represents a group of bits to be transmitted, i.e. each symbol has a 6-bit
signature. The MCS is chosen based on the measurements exchange, reflect-
ing the channel quality and the network capacity, between the eNB and the
UE. Further, the transport block size (TBS) could be determined based on
MCS value and the number of used resource blocks. TBS refers to data in
the physical layer [32].

During the UE data transmission toward the network, eNB checks for data
correctness using CRC (Cyclic Redundancy Check) and sends ACK/NACK
to the UE. If the channel is good, errors are detected and corrected. On
the other hand, when the channel quality is bad, the CRC might be in-
sufficient. Further, LTE implements synchronous HARQ (contrarily to the
asynchronous HARQ in DL) which combines ARQ error-control and a high-
rate forward error-correcting coding (FEC). This way, the eNB requests a
retransmission in case of error correctness inability. Such mechanism is char-
acterized by multiple parameters, such as the round and redundancy version
(rv). Is it possible to send ACK/NACK by the UE during the transmission,
hence the length of ACK information in bits is considered. Moreover, the
length of each received SDU/PDU (Service Data Unit/Protocol Data Unit)
on the MAC layer is extracted with the buffer size when data is handled.

All of the aforementioned parameters are collected while decoding/demodulating
the received PUSCH/PUCCH channels. In addition to other metrics usefull
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for PUSCH and UL-SCH (UpLink Shared Channel) related functions, such as
decoding time, decoding iteration, beta offset, number of CRC bits and the
cyclic shift. A total of 43 metric is collected during the whole test duration,
i.e. 400 seconds.

One of our objectives is to compare the bandwidth predictions over dif-
ferent small time granularity. The bandwidth measurements are performed
in a discrete time manner, each δt. As the minimum time report interval in
IPERF3 is 100 ms, we fix δt = 100ms. The predictions are then made every
δt. The eNB metrics are collected per subframe scale (1 ms). In order to
have a representative measure per δt, we compute the maximum, minimum,
mean, median and the standard deviation of each metric per δt to construct
the datasets. Therefore, each metric γ is represented in the dataset as fol-
lows: {γmin, γmax, γmean, γmedian, γstd}. For each UE u, u ∈ {1, 2} and each
scenario s, s ∈ {1, 2, 3}, a dataset is constructed, noted dataset s u. Each
dataset s u contains all the lower layers metrics collected for the given UE
u during the scenario s, including historical received bandwidth.

5.2 Methodology

In this work, Python scikit-learn library is used for all the tests. Grid-
searchCV [29] is applied to choose the optimal hyper-parameters for each
estimator. It combines both gridsearch and cross-validation methods. Grid-
search consists of an exhaustive search over subset values of parameters for
a given estimator and cross-validation (CV) technique [34] estimates the
prediction error of a model. CV is categorized into exhaustive and non-
exhaustive categories, the former is more computational for high dimensional
datasets. For that, the non-exhaustive cross-validation is chosen, mainly the
recommended K-fold method, with K=10 to have a good compromise be-
tween variance and bias of the model [30]. Varma and Simon [31] report that
the estimated prediction error from the cross-validation used to tune hyper-
parameters is biased, and recommend the use of nested cross-validation in-
stead, where an inner CV is used to select the optimized model (executed
with GridsearchCV) and an outer CV to estimate the prediction error. Let
denote K1-fold and K2-fold the inner and the outer CV respectively. Given
an input dataset, a random split is performed to construct training and test
sets. In fact, the dataset is split into K2-folds, one fold is used for testing and
the others K2-1 folds constitute the training set. For each hyper-parameter
combination from the gridsearch, K1-fold is applied. It divides the training
set into K1 equal folds; K1-1 folds are used for training and the remain-
ing fold for evaluation. It computes the prediction error and iterates until
all the folds are used for both training and validation, then the prediction
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Algorithm 1 Bandwidth prediction from dataset s u
Input: Historical metrics/measures with lag size w, historical received bandwidth, M:

optimized prediction model.

Output: ˆBW=[(BW 1
(1δt,w)

, .., BW 1
(i,w)

), .., (BWm
(1δt,w)

, .., BWm
(i,w)

)] : the predicted bandwidth.

for each(w,i) do
for t in range (1, m) do

(BW t
(1δt,w)

, BW t
(2δt,w)

, .., BW t
(i,w)

))=M(Xt
test, X

t−1
test, .., X

t−w
test )

Xt
test is the value of a feature in time t.

end for
end for
return ˆBW

error is averaged over all the K1 cases of CV. The hyper-parameter combina-
tion achieving a minimized prediction error is selected as the best optimized
model. In order to generalize the selected model, the outer loop CV is used
where the model is tested K2 times on unseen data, i.e. the test set. Then,
the generalized prediction error is the average of the estimated prediction
error over the tested sets.

Algorithm 1 represents the prediction model for bandwidth. Given the
dataset, we apply the algorithm summarized in the following. Let N be the
size of the considered dataset. K2-fold CV is chosen for having 25% of the
dataset for testing which we denote Xtest={X1

test, .., X
m
test} with size m, and

75% for the training set denoted Xtrain={X1
train, .., X

n
train} with size n, where

Xp
train and Xp

test are the pth samples in their corresponding datasets. Grid-
searshCV is applied on the Xtrain to select the optimized model, referred by
M . Let w be the rolling window, it represents the past w time units, and i
denotes the forecast window, where i ∈ {1δt...10δt}, with δt=100 ms. The
maximum forecast window is then 1 second. For each lag w and forecast win-
dow i, M uses the historical metrics (X t

test, X
t−1
test , .., X

t−w
test ) to predict for each

sample X t
test from Xtest the corresponding bandwidth BW t

(i,w), i ∈ {1..10}.
For example, with i=1 and w=2, M uses the current and two past time units
of X t

test: [X t
test, X

t−1
test , X

t−2
test ] to predict the upcoming bandwidth in 100ms.

Therefore, for predictions evaluation, we compare the predicted band-
width BW t

(i,w) with the received BW t
(i,w) bandwidth, based on RMSE (Root

Mean Squared Error) metric. RMSE is attractive from a statistical and sci-
entific perspective. It represents the average error prediction in the model,
expressed in the units of the variable of interest. It is computed as follows:
RMSE =

√
(1/n ∗

∑n
i (yi − ŷi)

2) where y1...yn are the actual values and
ŷ1...ŷn the predicted ones. By squaring the error, a high weight is given to
the large errors. RMSE score is negatively oriented, hence lower values are
better. This part presents and discusses the results obtained on bandwidth
prediction using machine learning techniques, i.e. LR and RF. Six datasets
are tested with two ML techniques RF and LR, i.e. one dataset for each
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UE per given scenario. The evaluation is based on RMSE as a performance
metric.

5.3 Estimation accuracy

In order to compare the prediction performance of the two ML techniques,
fig 2 exhibits error prediction based RMSE for each UE over all the scenarios.
With the two MLs, the prediction error doesn’t exceed 13 Kbytes. In general
RF outperforms LR, except for dataset 1 1. For instance, for dataset 2 1
(scenario 2, UE1), the observed RMSE using RF is 6.44 Kbytes and 12.04
Kbytes using LR. It is to be noted that the maximum received bandwidth
in scenario 2 is 82.3 Kbytes and 64 Kbytes for UE 1 and UE 2 respectively.
Hence, RF leads to accurate predictions, around 7.8% of errors in an en-
vironment where only multipath and noise are present. For more complex
scenarios such as scenario 3, the maximum received bandwidth is 92 Kbytes
and 105 Kbytes for UE 1 and UE 2 respectively. The prediction error in such
scenario reaches 13 %, but remain acceptable. Therefore, this results prove
the possibility of predicting accurately uplink bandwidth using lower layer
metrics/measurements in different radio scenarios.

Figure 2: Error prediction for forecast window i=1δt.
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Figure 3: Sensitivity window forecast and lag size for UE 2.

5.3.1 Window forecast and lag size sensitivity

In order to exhibit the influence of window forecast size on predictions, we
evaluate each dataset over iδt, with i ∈ {1, 3, 5, 7, 10} and w = 1. That is,
we predict bandwidth based on the instantaneous and the past lower layers
measures/metrics, including the past received bandwidth. In addition, the
importance of having numerous past radio measurements for good predictions
is analyzed. The main lag sizes w tested are 3, 7 or 10, i.e. using the past
three, seven and ten δt measurements. Fig. 3 plots in 3D the variation
of the perceived RMSE over iδt with i ∈ {1, 3, 5, 7, 10} and per lag size w,
w ∈ {1, 3, 7, 10} for UE 2 prediction on dataset 2 2 and dataset 3 2 using
RF as an underlying ML for predictions. Based on dataset dataset 2 2,
the RMSE doesn’t exceed 6.47 Kbytes for all the forecasted windows. The
prediction at a granularity of δt = 3 leads to a smooth amelioration, i.e. the
RMSE decreases by 1.49 Kbytes. Generally, when increasing the forecast
window, a negligible increase of RMSE is observed based on both datasets.
Thus exhibiting the insensitivity of the models to the forecast windows.

The introduction of lag size for predictions at granularity of 1δt doesn’t
improve necessarily the performance, i.e. using dataset 3 2, the RMSE in-
creases from 6.46 Kbytes to 6.78 Kbytes when using w = 10. Such result
points out the insensitivity to lag size when predicting at a granularity of 1δt.
On the other hand, a remarkable improvement is observed when predicting
larger forecast windows and using lag sizes of w = 3 or w = 7. This indicates
the sensitivity to lag size for predictions of higher forecast windows.
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Figure 4: Sensitivity to training dataset length.

5.3.2 Sensitivity to training data length

Machine learning techniques leverage training sets to give accurate predic-
tions. The size and variance of a given training set should then impact the
prediction performance. In this part, we investigate the sensitivity of our
model to the training dataset size. For that, we train RF model with differ-
ent datasets lengths. In order to have a significant variance in each training
dataset, we shuffle the main dataset, for instance dataset 2 2 with bandwidth
dataset; 25 % is leaved out for test. At the beginning of the evaluation pro-
cess, the dataset consists of 500 samples, i.e. training set length contains
375 samples. The size is then increased gradually for each test. Based on
data 2 2, Fig. 4 depicts the prediction errors in terms of RMSE for all the
tested sizes with w = 1 and i = δt. The main RMSE for all the tests is infe-
rior to 6.84 Kbytes. The performance improves when increasing the dataset
size from 500 to 1500 samples. Then, the prediction error remains between
6.46 Kbytes and 6.49 Kbytes for Larger training dataset sizes. This shows
that the model becomes insensitive to training data length when it contains
more than 1500 samples.
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6 Retained solutions and acquired knowledge

In this work, we have investigated the instantaneous uplink throughput es-
timation in 4G network. For that a testbed based SDR is deployed in an
anechoic room. Then radio phenomena are introduced to disturb the trans-
mission channel. Machine learning techniques are used for the estimations.
Accurate estimations are obtained.

In this work, we investigate the uplink bandwidth (throughput) estima-
tion in cellular network and the radio phenomena impact on high-level QoS
metrics, i.e. bandwidth. For that, a testbed is deployed in an anechoic room
where the radio phenomena are controlled. This allows a clear analysis of en-
countered behaviors in bandwidth variation. Exhaustive benchmark of lower
layers measurements/metrics is performed to constitute dataset reflecting
the network response to radio environment variation. In order to predict the
received bandwidth at a granularity of 100 ms, machine-learning techniques
are used, mainly random forest and linear regression. Nested cross-validation
is used for each case study to generalize the obtained error predictions. Dif-
ferent radio scenarios are tested, where the testbed complexity is increased
gradually. For each scenario, the sensitivity of the models to forecast win-
dow, lag size and training data length are investigated. The model shows
insensitivity when predicting. The two machine learning techniques lead to
accurate estimations, especially random forest model. And, a strong correla-
tion between throughput and radio environment variation is observed. The
obtained results confirm the ability of the developed method to provide accu-
rate uplink predictions. However, its application on real eNB measurements
is prominent for its extension in real environments.
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