
HAL Id: hal-02460422
https://laas.hal.science/hal-02460422

Submitted on 30 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Full-pose Manipulation Control of a Cable-suspended
load with Multiple UAVs under Uncertainties

Dario Sanalitro, Heitor J Savino, Marco Tognon, Juan Cortés, Antonio
Franchi

To cite this version:
Dario Sanalitro, Heitor J Savino, Marco Tognon, Juan Cortés, Antonio Franchi. Full-pose Manipula-
tion Control of a Cable-suspended load with Multiple UAVs under Uncertainties. IEEE Robotics and
Automation Letters, 2020, 5 (2), pp.2185 - 2191. �10.1109/LRA.2020.2969930�. �hal-02460422�

https://laas.hal.science/hal-02460422
https://hal.archives-ouvertes.fr


Preprint version, final version at http://ieeexplore.ieee.org/ IEEE Robotics and Automation Letters 2019

Full-pose Manipulation Control of a Cable-suspended load with
Multiple UAVs under Uncertainties

D. Sanalitro1, H. J. Savino1, M. Tognon1, J. Cortés1, A. Franchi2,1

Abstract— In this work we propose an uncertainty-aware
controller for the Fly-Crane system, a statically rigid cable-
suspended aerial manipulator using the minimum number of
aerial robots and cables. The force closure property of the Fly-
Crane makes it ideal for applications where high precision is
required and external disturbances should be compensated. The
proposed control requires the knowledge of the nominal values
of a minimum number of uncertain kinematic parameters, thus
simplifying the identification process and the controller imple-
mentation. We propose an optimization-based tuning method
of the control gains that ensures stability despite parameter
uncertainty and maximizes the H∞ performance. The validity
of the proposed framework is shown through real experiments.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are nowadays used in
different domains, from search & rescue and inspection to
precise agriculture and transportation of loads [1]. In the lat-
ter case, the object is either rigidly attached to the vehicle [2]
or attached using a cable [3]. Multiple aerial vehicles rigidly
attached to the load [4] or attached to the load’s center of
mass (CoM) using cables [5] are typically used to overcome
limited payload of the single-vehicle solution.

In the last few years, motivated by manipulation tasks
such as assembly, construction, contact-based inspection,
etc., the focus moved toward the more complex problem
of controlling the load full pose, i.e., both position and
orientation. In most of the manipulation tasks, the full pose
control is a strong requirement, e.g., transporting objects that
cannot enter in limited spaces unless tilting them, or for peg-
in-hole operations where just controlling the position of the
load is not enough.

Among several solutions, the one based on cables is the
most suitable for the mentioned applications thanks to the
induced decoupling between the rotational dynamics of the
vehicles and the one of the load. Full pose control of the
load is possible when the robotic system can attain a six-
dimensional wrench on the load by controlling the orientation
of the cables and the force applied by them (called stress).
The minimum setup that possesses such ability is a system
with three vehicles connected to three non-collinear points
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on the load through three cables [6] (see Fig. 1 (a) for
a schematic example, and [7] for additional details). The
main drawback of this setup is that the compensation of a
time-varying external disturbing wrench (e.g., wind) must
be obtained by moving the three aerial vehicles to reorient
the three cables. This makes the overall system sluggish
and imprecise in real-world conditions. To overcome such
drawback one has to employ a statically rigid [8] (or force-
closure [6]) design. Such design allows compensating time-
varying external wrenches almost instantaneously by varying
only the stresses while keeping all the cables in the same
orientation. Six is the minimum number of cables in order
to gain such a property. A possible setup is the one using
six cable-robot pairs, as in Fig. 1 (b).

However, the use of six aerial vehicles considerably in-
creases the overall system complexity and costs compared
to the three aerial vehicle case. A simpler and more efficient
choice consists in using only three aerial vehicles connected
to a pair of cables each, see Fig. 1 (c). This statically rigid
system is called the Fly-Crane and was first presented in [9].

Several algorithms have been proposed to control the
pose of a cable-suspended load handled by multiple UAVs.
In [10], [11] and [12], position and yaw angle of a slung
payload are controlled in real scenarios. In all these works,
as in [13], regulation is achieved using a communication-
based formation control of the UAVs. A communication-
less approach, which relies on the sensing of contact forces,
is instead proposed in [14]. Differently, in [7] the UAVs
follow in open loop the nominal trajectories computed from
the desired load trajectory using differential flatness. In
order to cope with the high sensitivity to model errors
and external disturbances of open-loop approaches, other
works employ geometric control techniques [15] or feedback
control laws that require the inversion of the Full Dynamic
Model (FDM) [16]. Although the feedback on the load’s
pose makes the overall approach more robust to non-ideal
scenarios, these methods still require a good knowledge of all
the dynamic model parameters. However, it is known that if
feedback controlled systems do not take model uncertainties
into account, stability may be lost in real world conditions.
Few works started to address this problem, e.g., [10] showed
the robustness of the system to external disturbances, [15]
suppresses undesired behaviors when facing random un-
certainties, [12] and [17] consider the payload itself as a
disturbance to be controlled.

Departing from the current state of the art, the main
contribution of this work is to propose a novel algorithm
aiming at the full-pose control of the load for the Fly-
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(a) (b) (c)

Fig. 1: Cable-suspended load configurations: (a) Three robots and
three cables [7]; (b) Six robots and six cables [16]; (c) Three robots
and six cables (the Fly-Crane).

Crane cable-suspended aerial manipulator. The proposed
method does not rely on the dynamical model and formally
takes into account model parameter uncertainty and external
disturbances in its design phase. The advantage of reason-
ing at the kinematic level rather than at the dynamic one
is that we need to identify a smaller set of parameters.
Furthermore, the parameters are related only to geometric
quantities, which are easier to measure with high accuracy.
Furthermore, in our approach, the dynamics of the system
is not completely neglected, but all its effects are rather
considered as disturbances, and formally addressed in the
design phase of the controller. As a drawback, to limit
disturbances, and so tracking errors, the acceleration of
the desired platform motion should be kept low. On the
contrary, an FDM controller theoretically allows acrobatic
motions as well. Having quasi-static trajectories is the price
to pay to obtain a simpler and more precise identification
process of the system parameters. This is not a real problem
for the considered manipulation-related applications (e.g.,
construction and assembly), where accuracy is preferred over
agility.

Relying on an inner/outer loop approach, we designed the
proposed controller such that it is simple to implement in
real world. In the inner loop, the three UAVs aim at regulat-
ing their velocities using simple decentralized proportional
controllers. The outer loop provides velocity references to
the inner loop in order to regulate the system configuration,
including the full pose of the load. We demonstrate how the
control gain of the outer loop can be designed to: i) cope
with the parametric uncertainty of the system model and
ensure stability despite the non-perfect knowledge of its
kinematic parameters; ii) minimize the effect of external
disturbances by optimizing the H∞ performance index. The
proposed framework is tested by real indoor experiments
under different conditions.

The paper is organized as follows. Section II describes
the Fly-Crane system and its modeling. The proposed robust
controller is presented in Sec. III. The experimental results
are shown in Sec. IV and on the attached multimedia
material. Final discussions and future works are presented
in Sec. V.

II. THE FLY-CRANE SYSTEM

For the reasons mentioned above, we believe that the
Fly-Crane is one of the most suitable systems for aerial
manipulation. The Fly-Crane system is composed by three

aerial vehicles and a platform, which is in turn constituted
by a load and six cables arranged as in Fig. 2. In or-
der to define the Fly-Crane model upon which the robust
controller will be designed, let us define an inertial frame
FW = {OW ,xW ,yW , zW }, where OW is its origin and
{xW ,yW , zW } are its unit axes. Then we define another
frame FL = {OL,xL,yL, zL} rigidly attached to the load.
FL is placed such that OL is centered on the CoM of the
load. The configuration of the load is then given by the vector
WpL = [pLx

,pLy
,pLz

] ∈ R3, describing the position of
OL with respect to (w.r.t.) FW , and by the Euler angles
WηL = [φ, θ, ψ] ∈ R3 describing the orientation of FL w.r.t.
FW 1. We complete the description of the load state with its
linear velocity vL = dpL/dt ∈ R3 w.r.t. FW , and the Euler
angles velocities η̇L ∈ R3.

The i-th cable is attached at one end to the load at point
Bi and at the other end to an aerial vehicle at point ORi.
The position of Bi and ORi w.r.t. FW are described by the
vectors bi ∈ R3 and pRi ∈ R3, respectively. Since each pair
of cables (1, 2), (3, 4) and (5, 6) is attached to the same point
of the same aerial vehicle, we have that OR1 ≡ OR2, OR3 ≡
OR4 and OR5 ≡ OR6. Connections between cable-load and
cable-robot are done such that no rotational constraints are
present. We assume that all the points Bi lie on the plane
{xL,yL}. As normally done in the state of the art, we
assume in the model that the cables have negligible mass
and inertia w.r.t. the other bodies of the system. The model
also neglects phenomena like sagging and elongation and
assumes the cables always taut2. Thus the generic i-th cable,
with i = 1, . . . , 6, has a constant length li ∈ R>0 in the
model. These assumptions are also motivated by the fact that
for a Fly-Crane system, the cables are never very long with
respect to the dimensions of the system. In fact, differently
from cable-driven robots, the Fly-Crane possesses a large
positional workspace regardless of the length of the cables.
Furthermore, long cables are undesirable because they make
the two-cable vehicle-load connection similar to a single-
cable connection (see Fig. 1 (a)), at the detriment of the
sought static rigidity property.

The configuration of the pair of cables (i, j) ∈
{(1, 2), (3, 4), (5, 6)} with respect to FL is represented by
the angle αij ∈ R between the plane {xL,yL} and the plane
formed by the cables (i, j). The platform configuration is
then entirely described by the variable q = [p>L η>L α>]> ∈
C ⊂ R9, where α = [α12 α34 α56]T ∈ R3.

The three positions of the robots, pRi ∈ R3, with i =
1, 2, 3, depend on q through the kinematic relation:

pRi(q) = pL +RL(ηL) PpRi(αij), (1)

where RL(ηL) ∈ SO(3) is the rotation matrix computed

1The left superscript indicates the reference frame. From now on, FW

is considered as reference frame when the superscript is omitted.
2All the non-idealities and parametric uncertainties in the model will be

dealt with in the robust control design, and validated in real experiments.
Furthermore, the tautness is ensured using a motion planner, like the one
in [9], that provides configurations of reference that always ensure taut
cables.
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Fig. 2: Schematic representation of the Fly-Crane and its main
variables.

from ηL, PpRi = P bi + liRP bij
(αij)RzL

(βi)
P bij

‖P bij‖
, P bij

is the position of the vector
−−−→
BiBj expressed in FL, and

βi ∈ R is the angle between
−−−→
BiBj and

−−−−→
BiORi. From (1) we

can compactly define the kinematic model of the system as:

pR = f(q), (2)

where pR = [p>R1 p
>
R3 p

>
R5]>. Differentiating (2), we obtain

the differential kinematic model:

vR := ṗR = ∂f(q)
∂q q̇ = J(q)q̇, (3)

where, vR = [v>R1 v>R3 v>R5]>, q̇ = [v>L η̇>L α̇>]> ∈
R9. Equation (3) relates velocities of the platform and cable
angles rates to the velocities of the robots. The Jacobian
matrix J(q) ∈ R9×9 is a square invertible matrix in C, except
for some singular configurations investigated in [18].

For configurations in which J(q) is non-singular, the coor-
dinate pR and its time-derivative vR represent an alternative
way to describe the platform configuration q and its velocity
q̇, respectively, via the inversion of (2) and (3).

In this work, we focus on quasi-static operations for which
high-order dynamic effects can be considered negligible.
Under this assumption, the kinematic model given by (2) and
(3) is enough to describe the system. Nevertheless, possible
errors due to this assumption shall be considered in the
control design and its stability proof.

III. ROBUST CONTROL OF THE FLY-CRANE

We assume that a motion planner, like the one presented
in [9], provides at each time t a desired configuration qd(t)
that is far from singularities and ensures taut cables.

The proposed control scheme of the Fly-Crane is shown
in Fig. 3. From left to right, the desired trajectory quanti-
ties qd, q̇d and the measured configuration q are used by
the outer configuration controller to generate the reference
aerial-vehicle velocities v?R. Using v?R and the measured
velocities vR, the velocity controllers of the aerial vehicles
compute the commanded accelerations for each vehicle u =
[u>1 u>3 u>5 ]>. Such commanded accelerations are provided
to the low level actuation units of the aerial vehicles, which
are in control of the orientation of the vehicles and of the

Fly-Crane

Config.
controller

of the
platform

Velocity
controllers

of the
3 aerial
vehicles

Aerial
vehicles

Platform

qd, q̇d v?R u vR

vR

q

q

Fig. 3: The control architecture of the Fly-Crane where the con-
figuration controller of the platform and the velocity controllers of
the three aerial vehicles are highlighted.

rotor speeds. In the following we detail the equations used
in each controller. To face possible errors of the low-level
actuation units, an uncertain model for the aerial vehicles is
considered.

We denote with Ĵ(q) ∈ R9×9 the nominal Jacobian of the
system, such that

Ĵ(q) = J(q) + ∆J(q), (4)

where ∆J(q) is the error between the nominal (identified)
and real (unkown) Jacobian matrices. Given the desired
configuration qd = [pdL

>
ηdL
>
αd
>

]>, the corresponding
generalized velocities q̇d = [vdL

>
η̇dL
>
α̇d
>

]>, and the
measured configuration q, the reference aerial-vehicle ve-
locities are computed:

v?R = Ĵ(q)
(
Kqeq + q̇d

)
, (5)

where3 Kq = kqI9 ∈ R9×9
>0 is a positive definite matrix and

eq = qd−q. The commanded accelerations for the vehicles
are computed simply as

u = KR (v?R − vR) , (6)

where KR = kRI9 ∈ R9×9
>0 is a positive definite matrix.

Each aerial vehicle is equipped with a low-level actuation
unit that acts on the orientation and intensity of the total
force produced by its propellers in order to let v̇Ri match
the given acceleration input ui, for i = 1, 2, 3. However,
the non perfect knowledge of the platform dynamics and
the presence of external disturbances make such matching
inexact. The closed-loop dynamics of the vehicle including
the actuation unit is then equivalent to an uncertain double
integrator, i.e.,

vRi = ṗRi, v̇Ri = ui + di, (7)

where the uncontrollable signal di accounts for all the
aforementioned dynamic uncertainties and external distur-
bances. Such signal di can be large, small or even close
to zero, depending on the type of platform (e.g., under- or
fully-actuated), type of controller (e.g., full dynamic model
inversion, vehicle model inversion plus disturbance rejection,
etc.) and the desired trajectory. Defining the vector d =

3In ∈ Rn×n is the identity matrix of dimension n.
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[d>1 d>3 d>5 ]> we can write the dynamics of the three aerial
vehicles as

vR = ṗR, v̇R = u+ d. (8)

Summarizing, the closed loop system dynamics is given
by the equations (8), where u is computed using (32) and (5).
In such model, the terms ∆J(q) and d account for all the
non-idealities arising from modeling errors at the dynamic
and kinematic level and the neglected external disturbances.
To analyze the system stability under non-ideal conditions,
let us write the closed-loop dynamics of the error. Replacing
(5) and (32) into (8) and applying the differential kinematics
(3) yield

J(q)q̈ + J̇(q, q̇)q̇ = kRĴ(q)kqeq + kRĴ(q)q̇d

−kRJ(q)q̇ + d.
(9)

Considering the previous equation with nominal Jacobian as
in (4), we can write the error dynamics as

ëq =−
(
kRkq + kRkqJ

−1(q)∆J(q)
)
eq

−
(
kR + J−1(q)J̇(q, q̇)

)
ėq +w,

(10)

where w contains the terms that do not depend on the error
and that are considered as disturbances:

w = q̈d + J−1(q)
((
J̇(q, q̇)− kR∆J(q)

)
q̇d − d

)
.

(11)

Normally, the control gain KR is tuned independently to
(5) to achieve the best tracking of the velocity reference
v?R. In this case, we show how to design the configuration
control gain Kq = kqI9, such that to guarantee stability of
the closed-loop system with desired H∞ performance, under
some sufficient conditions on the uncertainty and disturbance
magnitudes.

In the following, for an arbitrary matrix M , λmin[M ] and
λmax[M ] are its minimal and maximal eigenvalues, ‖M‖ =√
λmax[M>M ] is its induced norm, and M > 0 (M < 0)

stands for a positive (negative) definite matrix. 0n ∈ Rn×n is
the zero matrix of dimension n×n. Finally, with the symbol
∗ we refer to the symmetric term in a matrix.

Theorem 1. Let us consider the control laws (32) and (5)
applied to the Fly-Crane under disturbance d and uncertain
Jacobian matrix Ĵ(q). kR is given while kq has to be
designed. Assume that the following bounds hold true for
given positive constants δ, ι, ρ ∈ R>0 :

‖∆J(q)>∆J(q)‖ ≤ δ2, (12)

λmin[J(q)>J(q)] ≥ ι2, (13)

‖J̇(q)>J̇(q)‖ ≤ ρ2. (14)

The designed control gain kq stabilizes the system with
H∞ performance defined by

‖eq‖ ≤ γ‖w‖, (15)

with a given constant γ > 0, if there exist scalars q and qk
and matrices P = P>, F1 = F>1 , F2 = F>2 , G1 = G>1 ,

and G2 = G>2 of dimension 9 × 9 that satisfy the LMI
conditions [

P qI9
∗ qI9

]
> 0 (16)

and
Ξ E2q E2kRqk E1q E1kRqk
∗ −2F1 09 09 09

∗ ∗ −2G1 09 09

∗ ∗ ∗ −2F2 09

∗ ∗ ∗ ∗ −2G2

 < 0, (17)

with
E1 = [I9 09 09]>, E2 = [09 I9 09]>, (18)

and Ξ given asΞ1,1
1
2P −

1
2kRqkI9 −

1
2kRqI9 qI9

∗ ρ2

2ι2 (F1 + F2)− kRqI9 + qI9 qI9
∗ ∗ −γ2I9

 (19)

with Ξ1,1 = I9 + δ2

2ι2 (G1 +G2)− kRqI9. In particular, the
designed controller gain kq is then given by kq = qk/q.

Proof. Provided in the Appendix.

From a design perspective, given the bounds δ, ι, ρ and
the velocity controller gain kR, we would like to find the
Kq that provides the best H∞ performance. We can then
rewrite Theorem 1 as a constrained minimization problem
of γ:

minimize
β

γ

subject to (16), (17),
(20)

where β = (P ,F1,F2,G1,G2, q, qk, δ, ι, ρ, kR, γ). From
the solution of (20), and in particular from qk and q, the
optimal gain kq is computed as kq = qk/q.

The main advantage on this method is to find a feasible
controller, with the best H∞ gain on view of Theorem 1,
that formally guarantees stability within bounds of uncer-
tainties in the Jacobian matrix (δ), the proximity to singular
configurations (ι), and its speed (ρ).

Remark. In order to solve (20) a first estimation of the
bounds δ, ι, and ρ is needed. This can be first computed along
the desired trajectory knowing the maximum uncertainty on
the Jacobian. The latter comes from the imprecision in the
design and manufacturing of the platform. Therefore:

δ2 > max
t∈R≥0

‖∆J(qd(t))>∆J(qd(t))‖,

ι2 < min
t∈R≥0

λmin[J(qd(t))>J(qd(t))],

ρ2 > max
t∈R≥0

‖J̇(qd(t))>J̇(qd(t))‖.

(21)

Since the bounds strongly depends on the particular trajec-
tory, a motion planner such as the one in [9], could be
employed in order to compute the desired trajectory that
minimizes the bounds. Notice that also the magnitude of
w in (11) depends on the particular motion and especially
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on the system velocity and acceleration. In fact, ‖w‖ can be
bounded as

‖w‖ ≤ ‖q̈d‖+ ι
(
(ρ+ kRδ) ‖q̇d‖+ ‖d‖

)
. (22)

Therefore, the minimization of ‖w‖ can also be considered
at the planning level. Equation (22) shows that performance
is related to desired velocities and accelerations. Since we
are more focused on the accuracy rather than on the agility
of the maneuvers, we consider that in the domain of interest
the motion of the system is done in a quasi-static condition.

Remark. We remark that our controller does not forbid
the use a FDM-based method as a low-level controller for
the vehicles. This would reduce the velocity tracking error
di, improving the overall performance. On the other hand,
this would require a precise estimation of the dynamic
parameters, which is hard to get as mentioned before.

IV. EXPERIMENTAL RESULTS

To validate and show the performances of the proposed
controller with respect to uncertainties and external distur-
bances, we designed, implemented and experimentally tested
the Fly-Crane in an indoor environment across different
conditions.

The Fly-Crane consists of three Quadrotor UAVs con-
nected by six cables to a platform made of carbon fiber
bars. The Fly-Crane realization is shown in Fig. 4. Each
vehicle weights 1.03 [Kg], the platform weights 0.338 [Kg],
and the length of each cable is 1.2 [m]. The aerial vehicles
are equipped with a standard flight-controller, four brushless
motor controllers regulating the propeller speed in closed-
loop [19], and an on-board PC that runs the state estimator
and the velocity controller4. The proposed kinematic con-
troller, implemented in Matlab-Simulink, runs on a desktop
PC sending the commanded velocities to the quadrotors
through a wifi connection at 100 [Hz]. The control loop is
then closed based on the estimated state of the vehicles and
of the platform. These estimations are computed onboard
at 1 [kHz] by an UKF that fuses the Motion Capture (Mo-
Cap) System measurements (at 120 [Hz]) with the IMU
measurements (at 1 [kHz]).

In the very first phase of each experiment, the platform
is lifted from ground, and the system is brought to a
non-singular initial configuration. In this phase, the aerial
vehicles are independently controlled by a standard position
controller. The proposed controller is activated right after.

The trajectory is designed to take the system from its initial
configuration, qd(0), to the final desired configuration qd(T )
where pdL = [0.28 − 0.06 0.7]>[m], ηdL = [8 13 53]>[deg],
αd = [32 20 62]>[deg], and T = 20 [s]. The gain of the
velocity controller is set to kR = 15 (this value provides the
smallest velocity error considering our low-level controller).

Given the desired trajectory and a maximum model un-
certainty of 10% for each parameter, (21) allows computing

4The full software framework is based on TeleKyb which is
open-source and available at https://git.openrobots.org/
projects/telekyb3

Fig. 4: Experimental screenshot of the Fly-Crane flying while
controlling the platform in full pose (position plus orientation).

the bounds needed for the design of kq . In particular, the
following bounds were considered, δ2 = 0.055, ι2 = 0.078,
and ρ2 = 0.01. The gain kq can be then designed using
Theorem 1. The solution to the minimization problem (20)
provides kq = 0.38 and H∞ gain γ = 1.

Considering this set-up, we performed three experiments
under different conditions:

1) Optimal conditions: the model parameters are the one
measured with no additional errors (measurement errors
and noise are still present). External disturbances were
not applied neither. Due to limited space, we show the
relative plots in the attached multimedia material only.

2) Model error: an additional model error in the length of
the cables equal to the 10% of their nominal value is
added. The corresponding results are shown in Fig. 5,
Fig. 6 and Fig. 7.

3) External disturbance: an artificial force equal to
[1.7 1.7 1.7]> [N] is added to the low level controller of
the aerial vehicles. This simulates the effects of external
disturbances acting on the vehicles, like wind. The main
corresponding results are shown in Fig. 8.

Additional plots are also available in the attached multimedia
material together with a video of the conducted experiments.

For experiment 2), in Fig. 5 one can notice that conditions
(12), (13) and (14) are always verified. These conditions are
fulfilled for experiments 1) and 3) as well. In Fig. 6 and Fig. 8
the norm and the components of the tracking error are shown
for experiments 2) and 3), respectively. We can observe that
the tracking error does not go exactly to zero, as expected,
due to parameter uncertainties, noisy measurements and ex-
ternal disturbances. These non-idealities affects the exactness
of the nominal model and the velocity tracking of the aerial
vehicles. However, considering the first row of Fig. 6 and
Fig. 8 where ‖eq‖ and γ‖w‖ are compared, it is clear that
condition (15) is verified and the maximum H∞ performance
is guaranteed. We can conclude that, under the fulfillment of
conditions (12), (13), and (14) in Theorem 1, the proposed
controller and tuning method guarantee the maximum H∞
performance. For experiment 2) only, Fig. 7 shows the
desired trajectory with respect to the one performed by the
platform. Similar plots corresponding to experiments 1) and
3) are reported in the attached multimedia material.

Although out of the scope of this work, we tested our
system for far from quasi-static trajectories. In this ‘exper-

Preprint version, final version at http://ieeexplore.ieee.org/ 5 IEEE Robotics and Automation Letters 2020

https://git.openrobots.org/projects/telekyb3
https://git.openrobots.org/projects/telekyb3


0.045

0.05

0.055

0.078

0.351

30 35 40 45 50 55

0

0.005

0.01

Fig. 5: Verification of conditions (12)-(14) for experiment 2).
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iment 4)’, we asked the system to accelerate the platform
up to 3.2 [m/s2] reaching a velocity up to 1.6 [m/s]. As
expected, the tracking error increases but the bounds and the
H∞ gain of Theorem 1 are still verified. The corresponding
plots are reported in the attached multimedia material.

V. CONCLUSIONS

A controller capable of dealing with uncertainties in the
parameters of the Fly-Crane system has been provided given
bounds that can be assessed using the planned trajectory.
These bounds can be guaranteed in a real scenario when the
Fly-Crane is asked to perform specific trajectories translating
and rotating the platform in different directions. The structure
of the controller gain Kq was limited to a diagonal matrix
with equal values to allow design conditions. In the future,
we intend to relax this structure and to extend the controller
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Fig. 7: Tracking of the desired trajectory during system’s evolution
for experiment 2).

to a second order kinematic approach. The inclusion of a
robust dynamic controller is left as future works.
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D. Thakur, G. Loianno, and V. Kumar, “Cooperative autonomous
search, grasping, and delivering in a treasure hunt scenario by a team
of unmanned aerial vehicles,” Journal of Field Robotics, vol. 36, no. 1,
pp. 125–148, 2019.

[3] F. A. Goodarzi, D. Lee, and T. Lee, “Geometric control of a quadrotor
uav transporting a payload connected via flexible cable,” International
Journal of Control, Automation and Systems, vol. 13, no. 6, pp. 1486–
1498, Dec 2015.

[4] R. Ritz and R. D’Andrea, “Carrying a flexible payload with multiple
flying vehicles,” in 2013 IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems. IEEE, 2013, pp. 3465–3471.

[5] M. Bernard, K. Kondak, I. Maza, and A. Ollero, “Autonomous
transportation and deployment with aerial robots for search and rescue
missions,” Journal of Field Robotics, vol. 28, no. 6, pp. 914–931, 2011.

[6] D. Prattichizzo and J. C. Trinkle, “Grasping,” in Springer Handbook
of Robotics, B. Siciliano and O. Khatib, Eds. Springer, 2008, pp.
671–700.

[7] K. Sreenath and V. Kumar, “Dynamics, control and planning for coop-
erative manipulation of payloads suspended by cables from multiple
quadrotor robots,” in Robotics: Science and Systems, Berlin, Germany,
June 2013.

[8] R. Connelly and S. Guest, “Frameworks, tensegrities and symmetry:
Understanding stable structures,” 2016.

[9] M. Manubens, D. Devaurs, L. Ros, and J. Cortés, “Motion planning for
6-D manipulation with aerial towed-cable systems,” in 2013 Robotics:
Science and Systems, Berlin, Germany, May 2013.

[10] J. Geng and J. W. Langelaan, “Implementation and demonstration of
coordinated transport of a slung load by a team of rotorcraft,” in AIAA
Scitech 2019 Forum, 2019, p. 0913.

[11] Y. H. Tan, S. Lai, K. Wang, and B. Chen, “Cooperative control of
multiple unmanned aerial systems for heavy duty carrying,” Annual
Reviews in Control, vol. 46, pp. 44–57, 2018.

[12] K. K. Dhiman, A. Abhishek, and M. Kothari, “Cooperative load
control and transportation,” in 2018 AIAA Information Systems-AIAA
Infotech@ Aerospace, 2018, p. 0895.

Preprint version, final version at http://ieeexplore.ieee.org/ 6 IEEE Robotics and Automation Letters 2020



0

5

10

15

20

0

0.1

0.2

0.3

0.4

-0.1

0

0.1

0.2

0.3

0.4

-2

0

2

4

44 46 48 50 52 54 56 58 60 62 64

-5

0

5

10

15

20

Fig. 8: Tracking error for experiment 3). At time 52 [s] we in-
troduced the virtual disturbance. This cause the increasing of the
tracking error in position.

[13] H. G. d. Marina and E. Smeur, “Flexible collaborative transportation
by a team of rotorcraft,” in 2019 International Conference on Robotics
and Automation (ICRA), May 2019, pp. 1074–1080.

[14] M. Tognon, C. Gabellieri, L. Pallottino, and A. Franchi, “Aerial co-
manipulation with cables: The role of internal force for equilibria,
stability, and passivity,” IEEE Robotics and Automation Letters, Spe-
cial Issue on Aerial Manipulation, vol. 3, no. 3, pp. 2577 – 2583,
2018.

[15] T. Lee, “Geometric control of quadrotor uavs transporting a cable-
suspended rigid body,” IEEE Trans. on Control Systems Technology,
vol. 26, no. 1, pp. 255–264, 2017.

[16] C. Masone, H. H. Bülthoff, and P. Stegagno, “Cooperative transporta-
tion of a payload using quadrotors: A reconfigurable cable-driven
parallel robot,” in 2016 IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, Oct 2016, pp. 1623–1630.

[17] S. Ariyibi and O. Tekinalp, “Control of a quadrotor formation carrying
a slung load using flexible bars,” in AIAA Aviation 2019 Forum, 2019,
p. 3270.

[18] D. Six, S. Briot, A. Chriette, and P. Martinet, “The kinematics,
dynamics and control of a flying parallel robot with three quadrotors,”
IEEE Robotics and Automation Letters, vol. 3, no. 1, pp. 559–566,
Jan 2018.

[19] A. Franchi and A. Mallet, “Adaptive closed-loop speed control of
BLDC motors with applications to multi-rotor aerial vehicles,” in 2017
IEEE Int. Conf. on Robotics and Automation, Singapore, May 2017,
pp. 5203–5208.

APPENDIX

A. Proof of Theorem 1

Consider the Lyapunov candidate function V (eq, ėq) =
V1 + V2 + V3, with:

V1 =
1

2
e>q Peq, V2 =

1

2
ė>q qėq, V3 = e>q qėq. (23)

To have V as a Lyapunov function we need V > 0, ∀ eq 6=
0, ėq 6= 0. Re-writing V , this is verified if

V =
1

2

[
eq
ėq

]> [
P qI9
∗ qI9

] [
eq
ėq

]
> 0, (24)

which is satisfied only if LMI (16) holds. Next, we consider
the time-derivative of V . For V1, V̇1 = e>q P ėq . Concerning
V2, after replacing (10) we obtain

V̇Q ≤− ė>q qkRkqJ−1(q)∆J(q)eq − ė>q qkRkqeq
− ė>q qkRėq − ė>q qJ−1(q)J̇(q)ėq + ė>q qw.

(25)

Given the relation −2a>b ≤ a>X−1a + b>Xb, X > 0,
choosing X as F1 > 0, we can use (13) and (14) to bound:

− ė>q qJ−1(q)J̇(q)ėq ≤
1

2
ė>q qF

−1
1 qėq

+
1

2
ė>q (J−1(q)J̇(q))>F1J

−1(q)J̇(q)ėq

≤ 1

2
ė>q qF

−1
1 qėq +

ρ2

2ι2
ė>q F1ėq.

(26)

In the same way, choose X as G1, with (12), to bound:

−ė>q qkRkqJ−1(q)∆J(q)eq

≤ 1

2
ė>q (qkRkq)G−11 (qkRkq)>ėq +

δ2

2ι2
e>qG1eq.

Finally, we have that the derivative of V2 is bounded by

V̇Q ≤
1

2
ė>q (qkRkq)G−11 (qkRkq)>ėq +

δ2

2ι2
e>qG1eq

− ė>q qkRkqeq − ė>q qkRėq

+
1

2
ė>q qF

−1
1 qėq +

ρ2

2ι2
ė>q F1ėq + ė>q qw.

(27)

Taking the time-derivative of term V3 and proceeding anal-
ogously, for some F2 > 0 and G2 > 0, we can obtain

V̇R ≤
1

2
e>q (qkRkq)G−12 (qkRkq)>eq +

δ2

2ι2
e>qG2eq

− e>q qkRkqeq − e>q qkRėq + ė>q qėq

+
1

2
e>q qF

−1
2 qeq +

ρ2

2ι2
ė>q F2ėq + e>q qw.

(28)

To show that stability with the H∞ performance is satisfied
we use the following condition:

e>q eq − γ2w>w + V̇ < 0, (29)

given the Lyapunov candidate function V and a scalar
γ > 0. Integrating both sides in any time-interval [0, T ] and
assuming zero initial conditions eq(0) = 0 and ėq(0) = 0,
we have∫ T

0

(
e>q eq − γ2w>w

)
dt+ V (eq(T ), ėq(T )) < 0, (30)

such that, if condition (29) is satisfied then (15) holds and
the system is stable with H∞ performance.

To verify condition (29), since V̇ = V̇1 + V̇2 + V̇3, we use
the upper bounds in (27) and (28) into (29) to write

ξ>Aξ < 0 (31)
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with ξ> = [e>q ė
>
q w

>],

A =
[
Ξ +E2q

1

2
F−11 (E2q)

> +E2qkRkq
1

2
G−11 (E2qkRkq)>

+E1q
1

2
F−12 (E1q)

> +E1qkRkq
1

2
G−12 (E1qkRkq)>

]
,

Ξ given in (19), and E1 and E2 in (18). Thus, for the
condition (31) to hold,A has to be imposed negative definite.
Applying the Schur’s Complement on this term, and writing
qk = qkq to allow for control design, yields the LMI
condition in (17). If the LMI conditions are satisfied, kq
can be obtained by taking kq = qk/q. This completes the
proof.

B. Additional experimental results

In Sec. IV we mentioned some experimental results con-
cerning the demonstration of the robustness of our controller
in different possible scenarios and tracking different trajec-
tories. Here we provide additional results and details of the
presented experimental. Considering the experimental set-up
described in Sec. IV, in the following we provide additional
results for the four experiments:

1) Optimal conditions: the model parameters are the one
measured with no additional errors (non-zero mea-
surement errors and noise are still present). External
disturbances were not applied neither.

2) Model error: an additional model error in the length of
the cables equal to the 10% of their nominal value is
added.

3) External disturbance: an artificial force equal to
[1.7 1.7 1.7]> [N] is added to the low level controller of
the aerial vehicles. This simulates the effects of external
disturbances acting on the vehicles, like wind.

4) Track of a far from quasi-static trajectory: we asked
the system to accelerate the platform up to 3.2 [m/s2]
reaching a velocity up to 1.6 [m/s].

Our intent is to provide, for each experiment, the following
results related to:

1) comparison between qd and q;
2) tracking errors;
3) desired and actual vehicle velocities, v?R and vR, re-

spectively.
1) Optimal Conditions: The model parameters are the one

measured with no additional errors (measurement errors and
noise are still present). External disturbances were not ap-
plied neither. From Fig. 9 one can observe that the controller
is able to steer the system to the desired configuration with
a error less than 0.02[m] in position, 2◦ in the attitude and
2◦ in the cables angle, α.

2) Model error: From Fig. 2 we can observe that the
tracking error does not go perfectly to zero due to parameter
uncertainties, noisy measurements and external disturbances.
These non-idealities affects the exactness of the nominal
model and the velocity tracking of the aerial vehicles.
However, looking at ‖eq‖ and γ‖w‖, it is clear that condition
of Theorem 1 is verified and the maximum H∞ performance
is guaranteed.

3) Simulated Constant Disturbance: We tested our system
when an an artificial force equal to fext = [1.7 1.7 1.7]> [N]
is added to the low level controller of the aerial vehicles:

ui = kR (v?Ri − vRi) +
fext
mRi

(32)

where mRi is the mass of the i-th vehicle.
As a consequence of this external disturbance, one can

observe from Fig. 11 that the position error of the platform
increases. Nevertheless, the bounds are largely respected and
||eq|| remains bounded by γ||w||.

4) Fast Trajectory Experiment: With this experiment, we
tested the robustness of the proposed method when the
assumption of quasi-static trajectory is largely violated, i.e.,
when the system is asked to follow a dynamic trajectories. In
doing so, we aim at understanding the limits of our method.
Nevertheless, we remark that our focus is on accurate tasks
where slow trajectories are preferred with respect to fast
ones. The trajectory is designed to take the system from
the starting configuration to a successive configurations of
interest, qd(T1) = [0 − 0 0.4 − 1.5◦ 6◦ 0.5◦ 45◦ 51◦ 70◦],
and qd(T2) = [0.28 − 0.06 0.7 8◦ 13◦ 53◦ 32◦ 20◦ 62◦]
where T1 = 42 and T2 = 48. As the reader can see in Fig. 12
the developed controller is able to quickly follow, once again,
the given reference trajectory trying to minimize the error.
Even though the ||eq|| increases as expected during the
dynamic part of the trajectory, it still remains bounded by
γ||w|| and goes back to smaller values when the trajectory
is static.
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(a) Tracking of the desired trajectory.
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(c) Velocity tracking for the aerial vehicles.

Fig. 9: Plots for experiment 1)
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Fig. 10: Plots for experiment 2)
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(c) Velocity tracking for the aerial vehicles.

Fig. 11: Plots for experiment 3)
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