
HAL Id: hal-02465340
https://laas.hal.science/hal-02465340v1

Submitted on 3 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Safe Scheduling on Multicores: an approach leveraging
multi-criticality and end-to-end deadlines

Daniel Loche, Michaël Lauer, Matthieu Roy, Jean-Charles Fabre

To cite this version:
Daniel Loche, Michaël Lauer, Matthieu Roy, Jean-Charles Fabre. Safe Scheduling on Multicores: an
approach leveraging multi-criticality and end-to-end deadlines. 10th European Congress on Embedded
Real Time Software and Systems (ERTS 2020), Jan 2020, TOULOUSE, France. �hal-02465340�

https://laas.hal.science/hal-02465340v1
https://hal.archives-ouvertes.fr


Safe Scheduling on Multicores: an approach
leveraging multi-criticality and end-to-end deadlines

Daniel Loche†∗,
∗ Technocentre RENAULT

F-78280, Paris, France
Email: daniel.loche@renault.com

Michaël Lauer†, Matthieu Roy†, Jean-Charles Fabre†
† LAAS-CNRS

31400, Toulouse, France
Email: first.lastName@laas.fr

Abstract—Memory access duration on multicore architectures
are highly variable, since concurrent accesses to resources by
different cores induce time interferences. Consequently, critical
software tasks may be delayed by non-critical ones, leading to
deadline misses and possible catastrophic failures. We present an
approach to tackle the implementation of mixed criticality work-
loads on multicore chips, focusing on task chains, i.e., sequences
of tasks with end-to-end deadlines. Our main contribution is a
Monitoring & Control Agent able to stop non-critical software
execution in order to prevent memory interference and guarantee
that critical tasks deadlines are met. This paper describes our
approach, and the associated experimental framework to conduct
experiments to analyze attainable real-time guarantees on a
multicore platform.

Index Terms—multicore, real-time, deadline, task chains,
mixed-criticality

I. INTRODUCTION

The automotive industry evolution is more and more
software-oriented. Recent cars require resource demanding
software, at least for Advanced Driving Assistance Systems
(ADAS) implementation. Moreover, system requirements on
energy consumption, weight and space of embedded archi-
tectures are calling for a drastic reduction of computing units.
Combining both trends leads to consider multicore processors
as a platform to run mixed criticality workloads on a single
multicore Electronic Computing Unit (ECU) that integrates
features previously distributed on discrete monocore ECU.

Yet, multicore architectures impose that software has to cope
with execution interferences due to memory, cache overwrit-
ing, I/O & resource sharing and possible tasks synchronization.
Such interferences imply that execution times are hardly
predictable. In this context, safe and accurate Worst-Case
Execution Time (WCET) estimation is either intractable or
overly pessimistic. WCET estimation on multicore is still an
open question. Thus, it is not possible to use typical scheduling
analysis to prove that the embedded software can correctly
execute according to some deadline. Furthermore, integrating
several features on a shared ECU means creating interferences
between software tasks from different criticality level. In such
case, interferences from non-critical tasks may impair the
temporal behavior of critical ones.

Future automotive computer systems correspond to sets
of functions implemented as chains of tasks. Real-time con-
straints of functions are expressed as end-to-end deadline on
the chains of tasks. To handle real-time constraints, chains of

tasks need to comply with end-to-end deadlines. A function
has an input (request, sensor...) and generates an output (reply,
actuator...). For instance, manual braking corresponds to a
function where a driver braking input must activate the braking
system. To fulfill this function, a chain of software tasks is
executed (from the sensor to the actuator), passing through
computing and decision components. To execute safely, the
time elapsed between an input of a function and its corre-
sponding output, i.e. its response time, must always be lesser
or equal to its specified deadline. Our primary goal is to ensure
that these constraints are met for every critical task chains—
braking is a good example for this. We observe that on a
multicore, an isolated chain executed on one core could suffer
from execution interferences even from tasks executed on other
cores. That’s why current solutions give small place to non-
critical tasks.

Consequently, in a multi-criticality multicore the main prob-
lem is to respect such constraints with the least possible
compromises on non-critical software. This is essential to get
the most benefits from multicore processors.

Our approach takes advantage of mixed criticality software
to satisfy highly critical task chains timing constraints in a
multicore environment and at the same time give as much
computing resources as possible to non-critical tasks.

The novelty of our approach can be summed up as follows:
• we use a Monitoring and Control Agent to check at run-

time the execution of the critical task chains
• we anticipate potential response time problems with re-

spect to end-to-end deadlines
• in case of a potential deadline miss, we fall back to a

safe state by temporarily deactivating non-critical tasks
The efficiency of our approach relies on the efficiency of our
anticipation mechanism. In order to be as accurate as possible,
and so avoid unnecessary tasks deactivation, we explicitly
handle end-to-end deadlines. This is a part of our contribution.
Indeed, end-to-end deadlines are usually handled task by task,
meaning that the tasks own deadline are considered. While
simpler to deal with, such approach is pessimistic [1].

In this paper, we first present the concept of our em-
bedded Monitoring and Control Agent, from its definition
to its generic architecture. Then we propose an evaluation
framework and a tool to execute a task set on a real physical
multicore platform and collect measurements.



Ongoing experiments are run to analyze the behavior of our
system regarding tasks allocation, scheduling policies, task set
characteristics and deadline satisfaction.

II. STATE OF THE ART

Current Operating Systems are dedicated either to guaran-
tee real-time constraints with Real-Time Operating Systems
(RTOS) [2], [3], [4] or to maximize resource use for a wide
range of applications with General Purpose OS (GPOS) [5].
Few solutions try to mix both objectives with a more or less
satisfactory result [6],[7],[8].

A. Real-time OS

In industrial applications, uncertainty factors are avoided
as much as possible otherwise complexity is too high for
debugging, to detect problems and avoid unexpected behavior
that could lead to critical failures.

Generally, the management of real-time constraints relies on
static scheduling with time slot reservation for each software
partition (Time Division Multiple Access scheduling). Worst-
case execution time (WCET) analysis are recommended by
various safety standards like ARINC 653 in Avionics to ensure
real-time constraints.

Following only such logic, multicore-based solutions needs
much more compromises on tasks execution. For instance,
PikeOS hypervisor [2] obtained highest certification level for
rail industry on a dual-core platform using temporal partition-
ing. Execution time is divided into slice resources and ap-
plicative software is separated into multiple partition resources,
associated to external resources (I/O etc..). Associating time
resources with partition resources, PikeOS ensures time and
space isolation between critical and non-critical software, thus
preventing failure consequences from one partition to the
other. For instance, a critical resource partition can be affected
alone to a temporal partition in order to avoid interferences
with other resource partitions. This kind of method is effective
but by design over-reserves execution time resources. It can
answer well some needs as in avionics [4] or railways domains
where it is possible to afford computing resource over-fit.
Automotive industry uses AUTOSAR OS [3] where processors
are not used at their full potential, in the favor of real-time
constraints control. As they are trying to gather more and more
software of different nature to reduced amount of computing
units, such design is no longer appropriate without further
enhancements as it does not take into account the risks from
the coexistence of different software domains and possibly
multiple OS. Consequently, there is a huge need to exploit
more effectively the computing resources but still guaranteeing
critical constraints.

All-in-all, for multiple tasks, even independent with each
other, running concurrently on a multicore processor, a Worst-
Case scenario includes maximum contention over memory
access with full cache miss, but also maximum contention on
the core’s utilization and so on. This leads to an unrealistic
WCET estimation that could never occur for most of the ap-
plications. Also, analytical approaches or formal computation

of such values are complicated on a multicore as they are
over-pessimistic and time-consuming. This leads to underused
resources to have strict timing guarantees when such solutions
are used. However, it is admitted that WCET are much easier
to estimate on a monocore architecture. Real-time deadline
can be ensured in this case. Highly critical systems are mainly
based on monocore for this reason, when computing resource
and cost are part of the design limitations.

B. General purpose OS

On the other hand, General Purpose Operating Systems
bring the opposite pros and cons. Scheduling policies are
designed to run lots of different kind of tasks, from highly in-
teractive ones to background tasks. GPOS schedulers reached a
complexity level high enough to get inexplicable behavior [9].
These systems are highly versatile in the variety of applications
they can run at the expense of predictability. Linux is more
and more used for embedded applications and it is possible to
run both classic Linux processes and real-time ones. However,
no real-time requirements can be strongly guaranteed with a
vanilla kernel. Linux scheduler evolved a lot, even recently,
and offers multiple scheduling strata to use, from the Com-
pletely Fair Scheduling [5] (CFS) for common process, to
Round-Robin (RR) and Earliest Deadline First (EDF) for real-
time tasks as described in [10]. Vanilla Linux has latencies at
around hundred ms, but some patches reduce it down to micro-
seconds. Comparisons can be found in [11] and [12]. In fact,
Linux is even under studies to see to what extent it is possible
to use it as a real-time OS [13], under certain constraints. The
advantages of such perspective would be significant. This led
us to choose Linux to implement our first proof of concept.
This way we can take benefit from its versatility (software
compliance, monitoring and configuration capacities) and we
can add software tools following guidelines as those mentioned
in [13] complemented by our mechanism to guarantee real-
time constraints.

III. MONITORING & CONTROL AGENT

A. Concept Description

Our approach presents a software execution Monitoring
and Control Agent (MCA) to guarantee end-to-end deadline
constraints. We focus on the respect of end-to-end constraints
of tasks chains, not individual tasks constraints. The idea
behind this is to offer more “flexibility” on tasks scheduling for
guaranteeing mandatory task chains constraints if we control
only end-to-end constraints instead of every critical task timing
constraint. By doing so, we gain ”flexibility” as we allow
some parts of the chain to be behind time as they can be
compensated before the end of the chain without any external
action. The MCA monitors at run-time the execution time
of critical tasks and anticipate when the end-to-end deadlines
may be compromised to stop non-critical tasks when needed
in order to avoid such risk. The anticipation is based on the
estimation of remaining WCET. Finally, when the critical task
chain recovers from the potential risk, the non-critical tasks
can resume their execution to get back to a nominal state.

2



We define a degraded mode, opposed to the nominal mode
of execution. In nominal mode, critical and non-critical tasks
are executed normally. In Degraded mode, non-critical tasks
are not executed, to prevent further interferences on critical
tasks. The degraded mode implies simpler WCET estimations
because we eliminate the disturbances from non-critical tasks;
such WCET will be lower than in a nominal mode. It is
probably less pessimistic as we eliminate memory interfer-
ences, non-critical tasks scheduling and possible common
resources (drivers for instance) usage. The main disturbances
remaining will be only between the tasks from the chain.
Consequently, our anticipation mechanism will be based on
reduced estimation of WCET (compared to nominal mode),
to activate degraded mode only as a last resort.

To reach degraded mode, MCA role is to pause/stop non-
critical tasks execution. This control is triggered by an antici-
pation algorithm. To be efficient, this algorithm should trigger
the control at the latest possible time while guaranteeing real-
time end-to-end constraints.

U
se

 C
as

es

Functional Architecture

Sy
st

em

UC 1.1

Feature 1 Feature n

UC 1.2

UC 1.3 UC 1.4

UC n.1 UC n.2

UC n.3

Functional Chain 3.3

System
Software

System
Software

System
Software

Functional Chain 1.4

System
Software

System
Software

System
Software

Fig. 1. Functional Architecture definition

1) Functional Specification: A critical task chain must
describe the implementation of a system functionality from
its triggering to its consequence. This would stick most of the
time with a computing chain going from a sensor measure to
an actuator command. First idea would be to stick with safety
criticality levels (ASIL D to ASIL A and QM, for automotive
applications), but we quickly notice that there is no direct
link between this classification and critical tasks chains. A
safety critical task is not necessarily defined from its timing
constraints. The only possible conclusion here is that a critical
task chain only includes non-QM tasks.

We propose here a definition based around high-level spec-
ifications as represented in figure 1. The global system is
defined as a set of features1. Every feature gathers a set of
functionalities that are translated into Use Cases2. A Use

1Features: all the services the system must provide. e.g: Lane Support
System (LSS) is a feature.

2e.g: Lane Departure Warning & Lane Keeping Assist are part of the use
cases of LSS feature.

Case defines a feature behavior for a given context and inputs
(and the consequent outputs). Finally, those are translated into
functional chains representing different functions and their
interactions needed for the realization of the Use Case.

If we combine this information with a severity classification
in case of failure of the use cases, it is possible to define critical
chains as functional chains with a high severity risk. This is
one possible criterion allowing an easy separation between a
critical functional chain and the others. It could be adapted
during the design phase, depending on the functional chains
allocated to the processor.

Such information allows to define the software components
involved in the critical task chain. All the software components
used to realize a critical functional chain form a critical task
chain at an OS point of view. At this point, it is possible
to define the task chain end-to-end deadline, following the
severity temporal risk in case of failure. Such deadline should
be at minimum the sum of individual tasks deadline, but could
probably be higher, depending on the global system and the
task chain function. Our objective is to guarantee such critical
task chain end-to-end execution time on the multicore.

2) Critical Task Chain specification: A task chain can be
written as a set of n critical tasks τi, i ∈ {1..n} , with τ1
being the entry task of the chain and τn the exit task. A task
chain response time is the duration between the call to the
starting task, to the end of execution of the chain ending task.
The task chain end-to-end deadline then defines naturally the
maximum allowed response time.

A critical task τi in a chain is defined by a set of precedence
constraints represented by a list of tasks in the chain that
should be executed before it. Only the starting task τ1 has
no precedence constraint, and this way will always be the first
valid element of the chain. Note that we do not make any
assumption about the task’s activation and interaction model.
It can be implemented by interrupts (triggers from precedent
tasks) or simply periodic. We only consider a task from the
chain as valid if its execution respects strictly its precedence
constraints. This assumption supposes that when a task starts
after the end of its precedent task in the chain, then the output
data from it are ready for use. A change in the task model
or in the way the precedence constraint is taken into account
would require adjustments only in how we monitor the task
chain state. Critical tasks have the following parameters:

• Priority level
• Core allocation - tasks are executed on specific cores, to

avoid migration
• activation policy (e.g. periodic)
• Deadline
3) Non-critical Tasks specification: For remaining tasks,

prerequisites are only a static Core allocation and an activation
model that can be either on the same core as the critical task
chain or another core. We need to be able to switch to a
degraded mode by disabling all non-critical tasks and let only
critical tasks running. The goal is to guarantee WCET for
the critical task chain when executed in degraded mode. Such

3



M
ul

tic
or

e

Core 1 Core 2 Core 3 Core 4

Task 
Chain

non-critical
tasks

Operating System

Monitoring
& Control

Agent

Fig. 2. Monitoring & Control Agent basic concept

analysis is to be done off-line and we describe a first method
in section IV-C1- Framework Setup.

B. Additional assumptions

As a first step, we study the case of a single task chain
coexisting with other (non-critical) software. Further study will
aim at managing more task chains on the same multicore. We
suppose that every task from the task chain is allocated to
the same core. From a safety point of view, gathering the
whole task chain on the same core is to some extend pertinent
as it isolates it from other less critical software. Also, as we
consider mostly chains without internal parallel computing, the
gain from spreading the critical tasks in different cores would
not give much benefits for the chain response time. Finally,
such grouping allows to consider a degraded sub-system with
only the critical tasks running on one core, that could be
considered as a single core for Worst-Case Execution Time
estimations as we will see later in the paper.

Finally, we need an isolated entity able to monitor and
control the system execution. It is important to ensure that
our algorithm can be executed with a bounded periodicity,
as the delay between two executions is taken into account in
the anticipation. This can be made by simply giving a high
priority to the monitoring and control task and ensuring it
has a bounded execution time. The whole context of our first
proposal is summed up in figure 2.

C. Monitoring & Control Agent Architecture

The Monitoring and Control Agent is made of two com-
ponents: a Core Control Component and a Task Wrapper
Component as shown in figure 3.

1) Task Wrapper Component (TWC): Tasks are wrapped
with two software blocks: a “Before” and an “After” block. It
has two roles:

• monitor the tasks timing state by sending timestamped
start and end of the tasks messages for the Core Control
Component.

• control correct switch to degraded mode by preventing
eventual non-critical tasks execution in such mode.

Wrapped TaskWrapped TaskWrapped TaskWrapped Task

write

Task Wrapper
Component

Task-AfterTask-Before Task i binary

Tasks
Parameters

Core Control
Component

launch chain state
exec. time

Fig. 3. Monitoring & Control Agent Architecture

The “Before” bloc is wrapped to every task. Before non-
critical tasks execution, it prevents their execution if the
Core Control Component switched to degraded mode due to
the detection of a potential overloaded state. The switch to
degraded mode can be made with different strategies:

• Pause non-critical tasks: the scheduler set them to paused
state until task chain completion. Their context is saved
and when risk is avoided (usually when the current
chain reached its ending task), they are put back in the
scheduling queue. Such solution is adapted if degraded
mode duration is not too long and data freshness is not
too much critical.

• Stop non-critical tasks: tasks are killed, and their context
is not saved. During recovery, the tasks are started again.

For critical tasks, “Before” bloc is used for task chain moni-
toring, mainly to check the task chain beginning. It could be
possible to use such data from the “Before” bloc to enhance
the anticipation mechanism by taking into account what is
the current task being executed (but not finished) in the
remaining worst-case execution time estimation. The “After”
bloc communicates execution time of every critical task to
the Core Component for task chain monitoring too. Those
monitoring messages are queued to be processed by the Core
Control Component. There is no need of an “After” block for
non-critical tasks.

2) Core Control Component (CCC): For each task chain,
the Core Control Component stores a Task Chain Timing State
(TCTS) with the current chain execution time and the list of
executed/unexecuted tasks in the chain. A task is considered
as executed only if it has a valid execution, as explained
previously.

The Core Control Component updates the task chain timing
state periodically to check if the deadline can still be guaran-
teed. The TCTS update frequency is fixed and not directly
triggered by a monitoring message (i.e. at one TCTS update
we could have multiple pending tasks ending to consider or
no new tasks ending). Consequently, such period must be
chosen regarding the tasks’ execution times to avoid having
too much monitoring messages to take into account. We trigger

4



the TCTS update periodically and not asynchronously (at each
monitoring message) to avoid being dependent on when the
“Before” and “After” blocs are executed. This way if a task
takes too much time to end, we can still decide to switch
to degraded mode only because we are getting closer to the
deadline with no new monitoring message. We explain more
in detail how to define this period with Wmax choice bellow.

From a TCTS update, it is then possible to compute a Re-
maining Worst-Case Execution Time (RWCET) in degraded
mode from the unexecuted critical tasks of the chain. If a
potential end-to-end deadline miss is anticipated, non-critical
tasks are stopped or paused (according to the chosen strategy)
to switch to degraded mode and guarantee the task chain
deadline.

In degraded mode, only the critical tasks are executed, on
a single core. This makes Remaining Worst-Case Execution
Time estimation easier, as we avoid interferences from external
tasks and the possible execution variability is reduced. Such
WCET analysis can be made following methods presented
in [14] for instance, as only one core is activated in degraded
mode. However, we want to see how experimental estimations
of WCET could be used.

To sum up, CCC has at disposal at any TCTS update:
• task chain end-to-end deadline Dc

• individual tasks timestamped execution times
• RWCET in degraded mode

From this data, it is possible to compute the task chains current
run-time WCET. We know a) the current task chain execution
time, i.e. how much time has elapsed since the activation of
the first task of the chain b) in the worst case, how long they
could take to be executed in degraded mode. We compare this
current run-time task chain WCET to the end-to-end deadline.
This is made with the following formula adapted from [15],
at a given time t:

ET (t) +RWCET (t) +Wmax + tSW ≤ Dc (1)

Where ET (t) stands for the current execution time,
RWCET (t) the task chain Remaining WCET when executed
in isolation, Wmax is the CCC updating period (seen as a
worst “observation delay”) and tSW the latency to switch to
the monocore degraded mode (seen as a “reaction time”).
When equation (1) becomes false, the CCC switches to
degraded mode with only the critical task chain executed to
guarantee its deadline. The mode switch is made first by
sending a signal to every non-critical task from the CCC.
Upon reception, they pause themselves. In addition, the “Be-
fore” wrapper blocks eventual non-critical tasks trying to be
executed.
Wmax is the maximum duration between two CCC check-

points. It is directly dependent to the Core Control Component
periodicity Tccc as we are anticipating a risk of being in
a state where even in isolation the task chain could not
reach its deadline. We add Wmax as it represents directly
the fact that we anticipate a failure that could happen at
the next CCC checkpoint. This way, when inequality (1)

becomes false, it means that at next checkpoint, we could
potentially be in a state where an unavoidable failure will
occur. Consequently, we have Wmax = Tccc as we have a strict
(guaranteed) periodic CCC. With a periodic task activation
model, it is simple to set this value, around the smallest
task execution time. This way we have the guarantee of not
overflowing the monitoring message queue used by the Task
Wrapper Component. A greater value could be possible, but
we must take care to process the TCTS updates faster than
the arrival of monitoring messages, this should probably be
made experimentally if we have no data on the maximal task’s
frequency. For other tasks activation models, we must identify
identically the highest task monitoring messages upcoming
rate to ensure being able to compute them all.

It is also important to set Wmax correctly –and thus, the
Core Control Component period– as it will directly influence
the sensitivity of our anticipation mechanism. With a higher
CCC update frequency –and consequently a lower Wmax– we
switch to degraded mode later, but we are also more dependent
on the quality of the RWCET estimation. Also, it will naturally
use more computing resources. On the contrary, a higher value
gets more secure anticipations that triggers sooner, but we
also increase the number of switches to degraded mode that
were not needed (false positives). Future work could aim at
measuring more precisely Wmax influence.

One should note that what makes such approach possible is
the evolution of the RWCET at run-time and as the TCTS
evolves. It would not be possible to apply such approach
when it comes to monitor & control individual tasks to
guarantee their individual deadlines. For individual deadlines,
our method would fit only if we are able to monitor tasks
timing state “inside” the tasks execution, i.e. instrumenting the
tasks source code to add internal checkpoints. Such approach
on individual tasks would discard by definition the use of
black box software assumption for instance, and otherwise
would need much higher refresh rate frequencies in order to
follow individual tasks execution timing state. Such solution
is presented for individual tasks in [16].

IV. IMPLEMENTATION FRAMEWORK

A. Objectives

We describe in this section how we decided to implement
the Monitoring & Control Agent principle on a first proof-
of-concept platform according to III- Monitoring & Control
Agent guidelines. Such software & hardware platform aims
several objectives:

• Validate qualitatively our approach for a) end-to-end
timing guarantees, b) available computing resources for
non-critical tasks, c) scalability to task set size,

• Compare our approach in term of average CPU usage and
check solution weight on overall execution

• Perform a sensitivity analysis to identify how the sys-
tem behaves according to, for instance, the ratio of
critical/non-critical tasks, the time period of tasks and
their execution time. Such analysis can open the way

5



Experimental
Platform

Hypothesis
Static Core Allocations
Task Chains with deadline
Critical & Best-effort tasks

Inputs
MiBench Tasks
Task Chains isol. WCET

Tasks Parameters

Results
Deadline misses
Execution time profiles
Task chain execution time
CCC mode switch countSupport

SoftwareHardware

Fig. 4. Experimental Platform

to conclusions on task allocation policy and extend the
system to more tasks chains or cores.

As presented in figure 4, the experimental platform has
three input domains of which two are configurable. First input
domain gathers the basic hypothesis. The two others are the
tasks inputs (task set, tasks parameters and task chains WCET
method) and the execution support (hardware and software
presented above) for which choices can be made. We present
here the choices made in our case.

B. Support - Operating system and Run-time environment
1) Linux OS: We decided to use Linux (latest Linux Mint

xfce distribution) to take benefit of its possibility to run both
classic Linux processes and Real-time processes with different
scheduling policies (see II-B). Its versatility grants easier
compatibility with benchmarking suites and as presented at
State of the Art, we can use some mechanisms to get closer
to a real-time embedded system.

Notably, POSIX enables to force tasks execution to dedi-
cated cores and change both priority and scheduling policy.
As we are in a controlled context that suppose no malicious
behavior, we do not implement mechanisms like memory
protection or strong space isolation policies. As stated before,
vanilla Linux Kernel is not made for hard real-time appli-
cation. That is mainly because kernel is not preemptive on
most parts of it, this can cause high latency for real-time
interrupts, from kernel code execution that could be linked
to non-critical applications. Therefore, we add a Xenomai co-
kernel to improve latency down to micro-seconds and run
our MCA to respect desired real-time constraints. Please note
that from Linux point of view, “threads” and “processes” are
equivalent and correspond to “tasks” for us.

2) Xenomai co-kernel patch: Xenomai is a real-time ker-
nel that can be installed as a co-kernel to a classic Linux
distribution as presented in deep by [17]. Our framework and
experiments are implemented on the real-time APIs proposed
by Xenomai 3.0.5. In such configuration, it adds an inter-
ruption pipeline (ADEOS) directly between the hardware and
OS low-level software (i.e. Hardware Abstraction Layer, OS
Kernel and drivers). This enables to catch all the interrupts
and distribute them in priority to Xenomai real-time kernel.

Such operating system allows us to specify the tasks alloca-
tion to cores with a core affinity parameter. It is also possible

to set a priority level for every task. Linux scheduler selects
tasks first by priority level, (from 1 to 99 for real-time tasks).
Then for a given priority level, multiple scheduling policies
are possible: Global Earliest Deadline First, FIFO, Round-
Robin, and other best-effort policies. To test a system using
classic Round-Robin for instance, we need to launch every task
with same Linux priority level, and with Round-Robin policy.
We can recreate a Rate-Monotonic policy the same way, by
using tasks priorities depending on their period, and just FIFO
scheduling policy at equal priority levels (keep in mind that
scheduler considers priority before policy). More about Linux
scheduling policies can be found in [18].

3) Hardware: The platform used for the experimentation is
a bare-bone computer equipped with an Intel Core i5-8250U.
This processor embeds 4 cores, with possible multi-threading
(8 threads, disabled for our tests), from 1.60 GHz to 3.40 GHz.
It has 3 caches level, L1, L2 and L3 (shared), with respectively
32 KiB/core, 256 KiB/core and 8 Mib.

C. Software Setup

On this Platform Support, we need to implement the frame-
work for the Monitoring and Control Agent and the task set
configuration.

1) Framework Setup: The Core Control Component needs
to be implemented in a safe way from the rest of the sys-
tem. The constraint is to ensure the CCC execution without
exceeding its execution period, in order to get a reliable
Wmax value equal to the execution period. We execute it with
highest priority, on an isolated core, with dedicated memory
reserved. This way we ensure no cache replacement by other
tasks, and it is executed prior to any other task. Those are
drastic solutions, that could be soften, but they are simple to
implement in our platform support. Moreover, we are going
to stress the system with various workloads, such solutions
avoid verifying the timing guarantee on the CCC again for
every experiment.

Both the Core Control and the Task Wrapper Components
have a configuration file grouping several input parameters.
We consider a system with periodic tasks, defined also by a
deadline, a core allocation, a priority level and a group ID
to identify the belonging to a task chain, which leads to 2
additional parameters: the tasks precedence constraint list and
their off-line defined WCET in degraded mode. We choose a
periodic task activation model because our tasks will be from
a benchmark that includes no specific communication or data-
sharing between tasks.

The TWC encapsulates all the tasks and launch them into
the real-time environment. Encapsulation only adds a few lines
of code, to get real-time clock timestamps and queue them to
the Core Control Component.

All the tasks are launched according to their core allocation
and scheduling policy. Consequently, the scheduling is done
by core with no migrations (partitioned scheduling). Further
experiments plan on using semi-partitioned scheduling, or
more complex mixed-critical scheduling on multicore such as

6



TABLE I
MIBENCH SELECTED TASKS

Automotive basicmath, bitcount, qsort, susan (smooth, edges, corners)

Network dijkstra, patricia

Consumer jpeg (code & decode), typeset

Office stringsearch

Security blowfish, rijndael, sha

Telecom adpcm (coding & decoding), CRC32, FFT, gsm

MC2 [19] for instance. Such policy, combined with our mech-
anism, could bring good performance with strong guaranties
on such system. With such inputs the CCC knows task chain
constraints and process the monitoring messages at run-time.
To finish configuration, we need to define the work load task
set and its off-line characterization in order to be used by the
CCC and reduce computing needs at run-time.

2) Task Set definition: As we do not have yet real industrial
application for testing, for now the MiBench Benchmark
suite [20] has been used for our experiments. The objective is
to use applications similar as much as possible to computation
profiles that could be found in real applications, in order to
reproduce memory containment and resource usage close to
real cases.

MiBench consists of a large panel of tasks with different
memory needs and execution profiles to mimic existing ap-
plications. We have at disposal applications from 5 different
domains, as presented in the table I. It is used here to validate
the framework and put into practice our experiments.

We selected a set of 16 applications from MiBench for
our experiments. Most of them exists in “small” and “large”
version that allows to change proportionally their execution
time and resource needs. Also, some of these tasks may have
several variants according to setup parameters. For instance,
Sunsan has 6 different variants: edge detection, corner detec-
tion and smoothing, all 3 existing in both “small” and “large”
version which works with a bigger image for processing. This
way, those 16 applications leads to 45 different possible tasks
for our experiments. It enables to test different combination
following the “size” and number of tasks but also the kind of
tasks we use. Tasks profile classification were already made by
Guthaus & al. in [20] and detailed work about their memory
consumption can be found in [21].

From these tasks, we define several task chains with differ-
ent profiles. We define a base task chain composed of both
“small” (S) and “large” (L) tasks, from Automotive, Network
and Security domains as represented in figure 5. The chain
starts with bitcount “small” task and ends with FFT “small”.
Arrows represent the imposed precedence constraint. Here,
FFT inv and CRC32 can be executed in any order, but only
after bitcount execution for instance. This way we define 5
different task chains, with a number of tasks going from 3
(large tasks) to 15 (small tasks) per chain. Every experiment
is made with only one task chain from the 5 defined, with
other tasks from the bench only used as non-critical workload.

Changing the task chain will be made to check its impact on
the Monitoring and Control Agent efficiency.

bitcount (S)

CRC32 (S)

basicMath
(S) dijkstra (L) sha (L) FFT (S)

FFT_inv (S)

Fig. 5. ”Compute Trajectory” task chain example, with MiBench tasks

We define the end-to-end deadline of these chains simply
as the sum of the deadlines from each task they are made of.
In a real system it would (probably) be a higher value, but it
could not be less and thus it gives a good baseline for testing.
Question is, what are individual tasks deadlines? Here comes
first step of off-line characterization.

D. Off-line characterization

1) Individual Tasks: The first step is to characterize the
task set on our platform to assign task deadlines and task
chains end-to-end deadlines, as MiBench does not include
such information. We execute every task individually, wrapped
in our framework, to estimate their nominal execution time
profile. Such value gives us a reference to set individual
deadlines, proportional to such values. It is also possible to
determine tasks period, equal to deadline. End-to-end dead-
lines are consequently defined.

2) Task chains: We need 3 elements to get a fully functional
Core Control Component: a) Degraded mode WCET, b) tSW

time to switch to degraded mode, c) Wmax CCC execution
period, .

Degraded mode analysis is made by executing only the
selected task chain in isolation on one core several times and
monitor execution time. Then, we extract for each task τi of the
chain their maximum observed WCET (τi) in such condition.
This way, we define that at time t, if it remains N tasks in
the chain to execute, we have:

RWCET (t) =

N∑
i=1

WCET (τi) (2)

Such WCET estimation for the task chain presents some
limits. On one hand we have no strong guarantee that we
measured the real WCET for each task. However, such ap-
proximation may even be over-estimated because we sum
every tasks WCET. In fact, we know that such configuration
should not occur as not every task takes its WCET value
at the same time. This method advantages are its quite easy
implementation and run-time computing is straightforward and
lightweight. We have to measure such estimation quality and
its impact over the anticipation mechanism. To do this, we will
compare the remaining time between its real termination and
its current deadline, every time the CCC switched to degraded
mode. The closer to zero this value the better, but without
exceeding the deadline of course.

7



TABLE II
MONITORING & CONTROL AGENT OVERHEADS SAMPLE

Monitoring & Control ON Monitoring & Control OFF
Task Median (ms) Max (ms) Median (ms) Max (ms)

FFT (S) 33.80 35.63 32.72 34.01
Sha (L) 31.86 98.69 32.88 129.46

CRC32 (S) 34.70 36.56 28.63 29.80
rev FFT (S) 36.89 98.50 33.55 37.20
Bitcount (S) 13.61 31.41 12.02 13.00
dijktra (L) 51.12 63.38 38.13 67.55

Basicmath (S) 27.63 98.50 10.75 11.20

Wmax, is related to the execution frequency of the Core
Control Component, to check TCTS updates and verify equa-
tion (1). We set such frequency from the lowest critical task
period value, in order to get at most one evolution on the
task chain state per period (either a task start or a task
ending). There is no need to go faster as we will get no
state evolution. We could check if a slower execution rate
could contribute in letting the system balance itself during
the execution. However, with a higher Wmax we notice from
equation (1) that the mechanism will anticipate sooner and thus
possibly switch to degraded more often. For our experiments
and considering our task set, the minimal task period is 10ms.
We set Wmax = 5ms lower than the minimal period.

tSW , is the time duration to switch to degraded mode. As
it is dependent on the framework implementation, we just
run a few tests with arbitrary switches to degraded mode and
measure its maximum duration. On our platform and without
framework, we estimated tSW = 2ms.

V. FIRST EXPERIMENTS

A. Monitoring and Control Agent Overhead

First objective is to quantify the overhead from our frame-
work on the task’s execution time and CPU usage. We exe-
cuted the same task set during a fixed duration (5 minutes)
with Round-Robin scheduling. The experiment is made twice:
one time with the Monitoring & Control Agent enabled and a
second time without it. We then look at the execution profile of
every task on the set and compare them on both configurations.
Experiments of 5 minutes represents from 2200 execution
measures for the task with the highest execution period to
12500 executions for tasks with highest frequency. We made
such experiments multiple time to check consistency.

It revealed some outliers execution times: for instance
dikstra (large version) taking 16 seconds instead of usual
'50 ms. Such values represents less than 0.001% of the tasks
executions. Such aberrant values may be due to some side
effects within the platform or the benchmark and are removed
from our analysis.

We found out that the Monitoring & Control Agent repre-
sents less than 1% of CPU usage. We were not able to find any
difference regarding CPU percentage use with and without our
mechanism, either with a big task sets (small tasks only, CPU
usage around 80% displayed) and with smaller task sets (e.g.

only the task chain described above). Also, CPU temperature
showed no significant change during execution.

However, regarding the tasks’ execution time, we got mit-
igated values. For most of the tasks, execution time had no
significant changes (less than a millisecond). But in some
cases, our mechanism appeared to bring some variability, and
consequently tasks median execution time is not changed, but
the task execution profile spreads more, showing a higher
maximum value. This is the case with reverse FFT and
Basicmath for instance. Also, in fewer cases, the task pre-
sented more than a 50% increase in median execution time,
such as Dijktra algorithm. This shows that some tasks from
MiBench do not seems adapted as real-time tasks due a lack of
determinism in their execution with our framework. Without
any correction, it implies using high WCET values for such
tasks if they are used in a critical task chain, and consequently
the RWCET(t) may be overly pessimistic.

B. Future Work

1) Sensitivity Analysis: Our experimental platform is sum-
marized in figure 4. Such setup allows sensitivity analysis
based around various parameters from the hardware (any
running Linux with Xenomai) to task chain and the non-critical
task set choice, through different scheduling policies and CPU
load changes.

We described how to generate a task set to work with, made
of 1 task chain (with associated off-line analysis) and a certain
number of non-critical tasks selected from MiBench suite. The
amount and the profile of those tasks is the first parameter we
will be able to change in order to see its influence on our
experiments (see Input domain in figure 4: MiBench tasks).
We can select tasks following their memory use profile, change
the number of “small” and “large” tasks... Tasks parameters
allows to set processor charge, by changing their execution
period.

First in-deep experiments will try to see the influence of
the scheduling policy on our approach. The idea is to see
for different policies (typically round-robin, rate-monotonic or
more complex policies like MC2) its consequence on the task
chain execution time profiles: average and maximum chain
response time. We can also see if the Core Control Component
triggers degraded mode more or less often and consequently
gives different execution time for non-critical tasks.

Second experiments lead to the influence of RWCET (t)
and Wmax estimation, in order to see to what extent they
change the performance of our anticipation mechanism. The
RWCET (t) computation method could possibly be changed
for possible enhancements.

2) Prospectives: We see many optimizations and enhance-
ments of our framework. We started with a simplified but
realistic context to guarantee one critical chain end-to-end
deadline on a multicore. The long-term objective is trying to
extend such mechanism to multiple task chains on the same
multicore.

8



Also, we plan on enhancing the degraded mode switch in
order to avoid a brutal “all to nothing” switch of non-critical
tasks. The hypothesis (see Hypothesis domain in figure 4)
can evolve to enhance our first version of the Framework,
adding criticality layers to avoid stopping every non-critical
tasks at once, or changing the tasks core allocation. We
could try to disable only a sub-part of non-critical tasks, but
possibly sooner, to avoid disabling them all and still having
guarantees on end-to-end deadlines. This would be translated
into different levels of degraded mode.

Finally, a good possible enhancement would be to imple-
ment the Core Control Component on a separated processor
or even a dedicated FPGA, to keep use of all the multicore
computing resource for the application. Some ongoing work is
already studying such perspective with [22] for example. The
use of an external dedicated hardware for monitoring raises
new questions. An analysis is needed to measure and take into
account the possible communication delays in the equation.
On one hand it would probably affect the switch time tSW .
On the other hand, the whole multicore become available for
our task set and consequently we do not have to check for
potential interferences from the task set to the Core Control
Component performances. It is a clear perspective for future
work.

C. Comparison with other approaches

This task chain-based approach compares with other in-
dividual task timing constraint-based approaches. The first
comparison point concerns computing resource use for non-
critical tasks: the higher the better. This point can be quantified
in our approach by comparing the number of non-critical
tasks execution during a fixed amount of time, either with
our Monitoring & Control Agent and with other approaches
like a bare G-EDF or simply by disabling our Agent.

The second comparison point is to see on the opposite point
of view the capacity of our mechanism to respect end-to-end
deadlines, compared to other policies that are not dedicated to
such goal. We want to see for different task sets if our system
still manages to guarantee end-to-end deadlines without going
to degraded mode 100% of the time, compared to end-to-end
response time measured with other solutions.

We expect from on-going experiments to see how the Moni-
toring & Control Agent allows a gain in maximum computing
resource used (average CPU %), still being able to respect
end-to-end deadlines. We will finally check its influence on the
tasks’ execution time profiles (average, median and maximum
execution times for individual tasks and the task chain) and
the influence of said parameters at run-time.

VI. CONCLUSION

We defined a complete process to instrument mixed-critical
tasks on a multicore real-time Linux platform with a Moni-
toring and Control Agent to guarantee end-to-end constraints
for critical task chains. Our ongoing work aims to a) val-
idate the approach compared to other strategies handling

mixed criticality application through on-going experiments and
b) analyze the effect of different factors on the execution of
critical software. Finally, we will apply our approach to a real
automotive applications case studies with Renault.

REFERENCES

[1] J. C. Palencia and M. G. Harbour, “Schedulability analysis for tasks with
static and dynamic offsets,” in Real-Time Systems Symposium, 1998.
Proceedings. The 19th IEEE. IEEE, 1998, pp. 26–37.

[2] S. Fisher and S. AG, “Certifying Applications in a Multi-Core Environ-
ment: The World’s First Multi-Core Certification to SIL 4.” 2013.

[3] AUTOSAR, “Timing Analysis,” Standard Release 4.3.0, p. 118, 2016.
[4] P. J. Prisaznuk, “ARINC 653 role in Integrated Modular Avionics

(IMA),” in 2008 IEEE/AIAA 27th Digital Avionics Systems Conference,
Oct. 2008, pp. 1.E.5–1–1.E.5–10.

[5] C. S. Wong, I. Tan et al., “Towards Achieving Fairness in the Linux
Scheduler,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 34–43, 2008.

[6] G. Giannopoulou, N. Stoimenov et al., “Scheduling of mixed-criticality
applications on resource-sharing multicore systems,” in ACM Interna-
tional Conference on Embedded Software, 2013, p. 17.

[7] B. C. Ward, J. L. Herman et al., “Making Shared Caches More
Predictable on Multicore Platforms.” IEEE, Jul. 2013, pp. 157–167.

[8] A. Blin, C. Courtaud et al., “Maximizing Parallelism without Exploding
Deadlines in a Mixed Criticality Embedded System,” in 2016 28th
Euromicro Conference on Real-Time Systems (ECRTS). Toulouse:
IEEE, Jul. 2016, pp. 109–119.

[9] J.-P. Lozi, F. Gaud et al., “The Linux Scheduler: a Decade of Wasted
Cores,” p. 16, 2016.

[10] J. Lelli, G. Lipari et al., “An efficient and scalable implementation of
global EDF in Linux,” 7th International Workshop on Operating Systems
Platforms for Embedded Real-Time Applications (OSPERT’11), 2011.

[11] F. Cerqueira and B. B. Brandenburg, “A Comparison of Scheduling
Latency in Linux, PREEMPT RT, and LITMUSRT.” SYSGO AG,
2013, pp. 19–29.

[12] D. J. H. Brown and B. Martin, “How fast is fast enough? Choosing
between Xenomai and Linux for real-time applications,” Tech. Rep.,
2010.

[13] I. Allende, I. T. R. Centre et al., “Towards Linux for the Development
of Mixed-Criticality Embedded Systems Based on Multi-Core Devices.”
IEEE, 2019, p. 8.

[14] R. Wilhelm, T. Mitra et al., “The worst-case execution-time prob-
lem—overview of methods and survey of tools,” ACM Transactions on
Embedded Computing Systems, vol. 7, no. 3, pp. 1–53, Apr. 2008.

[15] A. Kritikakou, C. Pagetti et al., “Run-Time Control to Increase Task
Parallelism In Mixed-Critical Systems.” IEEE, Jul. 2014, pp. 119–128.

[16] A. Kritikakou, T. Marty, and M. Roy, “DYNASCORE: DYNAmic
Software COntroller to Increase REsource Utilization in Mixed-Critical
Systems,” ACM Transactions on Design Automation of Electronic Sys-
tems, vol. 23, no. 2, pp. 1–26, 2017.

[17] P. Gerum, “Xenomai - Implementing a RTOS emulation framework on
GNU/Linux,” Xenomai, Tech. Rep., 2004.

[18] N. Ishkov, “A complete guide to Linux process scheduling,” 2015.
[19] J. L. Herman, C. J. Kenna et al., “RTOS Support for Multicore Mixed-

Criticality Systems.” IEEE, Apr. 2012, pp. 197–208.
[20] M. R. Guthaus, J. S. Ringenberg et al., “MiBench: A free, commercially

representative embedded benchmark suite.” Austin, TX, USA: IEEE,
Dec. 2001, p. 12.

[21] A. Blin, C. Courtaud et al., “Understanding the Memory Consumption
of the MiBench Embedded Benchmark.” Marakech, Morocco: Netys,
2016, p. 16.

[22] D. Solet, S. Pillement et al., “HW-based Architecture for Runtime Ver-
ification of Embedded Software on SoPC systems,” in 2018 NASA/ESA
Conference on Adaptive Hardware and Systems (AHS). Edinburgh:
IEEE, Aug. 2018, pp. 249–256.

9


