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In this paper, we propose a robust hybrid control for a boost inverter. This control presents the particularity of considering the real nature of the dynamics, which means, the continuous-time dynamics, voltages and currents, and the discrete-time dynamics, the switching of the transistors. Likewise, due to implementation issues a minimum dwell time is introduced in the control loop scheme. Uniform global asymptotic stability is guaranteed, ensuring that the tracking error of the system output enters into a small neighbourhood of zero.

Moreover, robustness guarantee with respect to parameter variations, in terms of an error tracking output regulation, are also provided here. The effectiveness of the proposed hybrid control scheme is illustrated in simulation.

Introduction

In many electronic applications, it is necessary to convert a DC signal, into an AC one. Moreover, it also can be required to boost this signal, as can be found in AC microgrids, for instance. Often, it is made this transformation in two steps. Hence, in a first step, it is used an elevator DC-DC converter, and in a second one, a DC-AC converter [START_REF] Almada | A centralized and heuristic approach for energy management of an AC microgrid[END_REF][START_REF] Manandhar | Efficiency comparison of dc and ac microgrid[END_REF].

The boost inverter proposed by [START_REF] Caceres | A boost dc-ac converter: analysis, design, and experimentation[END_REF] is a particular power converter, that can generate a larger AC signal from a given DC one just in one step, with a simple architecture. Nevertheless, to design control laws for this converter is a challenge, because it is composed by two DC-DC boost converters, being a nonlinear non-minimum phase of fourth order [START_REF] Escobar | An experimental comparison of several nonlinear controllers for power converters[END_REF]. Furthermore, the control goal of this boost inverter is to track a sinusoidal signal. Some control strategies have been proposed by controlling separately each DC-DC boost converter [START_REF] Caceres | A boost dc-ac converter: analysis, design, and experimentation[END_REF][START_REF] Gurpide | A new control strategy for the boost DC-AC inverter[END_REF], in such a way to generate a sinusoidal output voltage and lager than the input one. The used control techniques are PI controllers [START_REF] Sanchis | Boost DC-AC inverter: a new control strategy[END_REF], sliding mode controllers [START_REF] Bajaj | Design and controlling of proposed efficient boost-inverter implemented using boost dc-dc converter[END_REF][START_REF] Vazquez | Some critical aspects in sliding mode control design for the boost inverter[END_REF]. However, stability properties of the system in a whole is not proven.

There have been several attempts to control this inverter, considering the complete system and with the advantage of using only one output voltage reference. Hence, the authors, in [START_REF] Cortes | Dynamical sliding-mode control of the boost inverter[END_REF], design a single sliding mode controller to generate the required sinusoidal voltage on the load. Moreover, they do not guarantee an error tracking output regulation in the sense of parameter variations. In [START_REF] Albea | Adaptive control design for a boost inverter[END_REF] a control law is proposed by using energy-shaping methodology.

Moreover, an adaptive controller is added to guarantee the tracking error with respect to parameter variations. However, this method is focussed on an approximated average model in continuous-time and the control law presents a relative computational cost. In [START_REF] Flores-Bahamonde | Using the sliding-mode control approach for analysis and design of the boost inverter[END_REF] a cascade control focussed on sliding-mode methodology is presented. The internal control loop is based on a switching surface, generated from the difference between the inductor currents, whereas the external control loop consists of a PI compensator in order to reduce the tracking error of the inverter output voltage. Nevertheless, the authors do not consider a minimum dwell time in the control updates, which is required in implementation issues.

In this paper, a novel control law based on the hybrid dynamical system paradigm given in [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF], is proposed for the considered inverter. The main advantage of this approach is to take into account the real nature of the dynamics, meaning the continuous-time dynamics, which are voltages and currents, and the discrete-time ones, which are switching signals. The control law is based on a Lyapunov matrix-based min-projection control, as used in [START_REF] Deaecto | Switched affine systems control design with application to DC-DC converters[END_REF][START_REF] Sanchez | Hybrid dynamic modeling and control of switched affine systems: application to DC-DC converters[END_REF][START_REF] Sanchez | Practical stabilisation of switched affine systems with dwell-time guarantees[END_REF]. One of the challenge here is to know the entire reference state corresponding to the tracking signal, which is not a simple task. To deal with this objective, we assume that the variation of the desired reference with respect to time is sufficiently slow, in order to obtain a small enough tracking error. Moreover, we consider a minimum dwell time in the hybrid control scheme, by introducing a time regulation [START_REF] Sanchez | On the practical stability of hybrid control algorithm with minimum dwell time for a DC-AC converter[END_REF]. Stability properties of the tracking error in a small neighbourhood of zero are guaranteed, applying the theory for hybrid system presented in [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF]. In a second time, we propose a robust hybrid control, whit respect to parameter variations, in such a way, the system output rejects any perturbation. Some validations are performed in simulation. This paper is organized as follows. Section 2 is devoted to the problem formulation. Some assumptions and properties are stated in Section 3. Section 4 presents the main result about the proposed hybrid control and an extension to a robust hybrid control is given in Section 5. Some simulations are performed in Section 6. Finally, the paper is closed with a conclusion section.

Notation: Through out the paper N denotes the set of the natural numbers and R the set of real numbers, R n the n-dimensional euclidean space and R n×m the set of all real n×m matrices. The set of non-negative real numbers is denoted by R ≥0 . M 0 (resp. M ≺ 0) represents that M is a symmetric positive (resp. negative) definite matrix. 0 n×m is a zero matrix of n × m-dimension. λ m (M ) and λ M (M ) represent the minimum and maximum eigenvalues of M .

• represents the norm euclidean.
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Boost inverter

The boost inverter depicted in Fig 1, is a device that can generate, in a single stage, a sinusoidal voltage with a larger amplitude than its input DC voltage,

V in . This converter is composed by a load R 0 differentially connected to two DC-DC converters.

The inductance currents flowing through the inductors L 1 , L 2 are i 1 and i 2 .

L 2 i 2 L 1 i 1 R 1 R 2 C 1 C 2 R 0 V in + - v 1 v 2 S 1 S 3 S 4 S 2 Figure 1: Boost inverter circuit.
Likewise, the capacitor voltages applied to the capacitors C 1 , C 2 are v 1 and v 2 .

The switches are S i ∈ {0, 1}, with i = {1, 2, 3, 4}, and they take the value 1, if they are switched ON, and the value 0, if they are switched OFF, respectively.

Finally, R 1 and R 2 are parasitic resistances.

A Nonlinear model

The boost inverter can be represented by the following nonlinear model:

                     ż =         -R1 L1 -u L1 0 0 u C1 -1 R0C1 0 1 R0C1 0 0 -R2 L2 -1-u L2 0 1 R0C2 1-u C2 -1 R0C2         z +         Vin L1 0 Vin L2 0         w = [0 1 0 -1]z, ( 1 
)
where z = [i 1 v 1 i 2 v 2 ] ∈ R 4 is the state vector, w = v 1 -v 2 is
the controlled output and u ∈ {0, 1} is the control input. z, is composed of continuous-time variables, whereas, u is a switching signal, thus, a discrete-time variable.

Assumption 1. Let us consider

• R=R 1 =R 2 , • C 0 =C 1 =C 2 • L=L 1 =L 2 and
• the state values of the switches given in Table 1. From Assumption 1 and the following variable changes v := 2u -1 and x=

1 1 0 1 0 0 0 1 0 1
[x 1 x 2 x 3 x 4 ] = [i 1 +i 2 v 1 +v 2 i 1 -i 2 v 2 -v 1 ]
, the model (1) can be rewritten as:

                             ẋ = Av         -R L -1 2L 0 v 2L 1 2C0 0 -v 2C0 0 0 v 2L -R L -1 2L -v 2C0 0 1 2C0 -2 R0C0         x + B         2 L 0 0 0         V in y = C [0 0 0 1] x, (2) 
where v ∈ {-1, 1} is the control variable.

The objective of this inverter is to guarantee that the output signal y(t), corresponding to v 2 (t) -v 1 (t), follows a sinusoidal reference defined by

V r (t) = V max sin(ωt), (3) 
where V max and ω are the amplitude and the angular frequency of the desired sinusoidal signal. Moreover, it is defined w = 2π Te with T e ∈ R ≥0 the time period of the desired signal. In order to impose a such behaviour to system (2), let us to introduce its averaged model, which is

                         ẋa (t) = A λ(t)         -R L -1 2L 0 2λ(t)-1 2L 1 2C0 0 -2λ(t)-1 2C0 0 0 2λ(t)-1 2L -R L -1 2L -2λ(t)-1 2C0 0 1 2C0 -2 R0C         x a (t)+ B         2 L 0 0 0         V in , y a (t) = [0 0 0 1]x a (t), (4) 
where x a (t) represents the averaged signal of x and parameter λ(t) ∈ [0, 1] is the duty cycle of v. This averaged model allows to define the desired complete reference of state x associated with V r (t), i.e., the ideal reference associated with infinity switching. One can see, the time-varying reference of ( 2) is given considering the desired output reference (3) for y a (t) of system (4) and its associated variable 0 ≤ λ e (t) ≤ 1, such that,

x ae (t) = -(λ e (t)A 1 + (1 -λ e (t))A -1 ) -1 B
(5)

y ae (t) = V r (t) (6) 
is the equilibrium of (4). This desired reference obtained satisfying ( 5)-( 6) is perceived as relaxed solutions in the generalized sense of Filippov. Nevertheless, to obtain an explicit expression of x ae (t) is not a trivial task.

From the introduced boost inverter model (2) and its reference ( 5)-( 6), we are in condition of stating the problem.

Problem 1. The first goal in this work is to find a tracking reference of (2),

x e (t), such that, x e (t) -x ae (t) is bounded and y e (x e (t)) -V r (t) is small enough. A second goal deals with designing a hybrid control law for system (2), such that, for any initial condition x(0) ∈ R 4 , the following holds:

• x(t) -x ae (t) is bounded,

• lim t→∞ y(t) -V r (t) presents an error small enough,

• the output is robust with respect to parameter variations and modelled errors.

Preliminaries

The following property is a standard property found in the literature [START_REF] Deaecto | Switched affine systems control design with application to DC-DC converters[END_REF][START_REF] Feron | Quadratic stabilizability of switched systems via state and output feedback[END_REF][START_REF] Sanchez | Practical stabilisation of switched affine systems with dwell-time guarantees[END_REF], that characterizes the equilibrium in switched affine systems.

Property 1. Given matrices A 1 and A -1 in model (2), a matrix Q 0 ∈ R 4 , there exists λ ∈ Λ and a matrix P 0 ∈ R 4 satisfying

A i P + P A i + 2Q ≺ 0, for i = {-1, 1}. (7) 
Note that Property 1 is direct if A -1 and A 1 are Hurwitz.

This property allows introducing the next definition. The averaged model of ( 2) is given by 105

Operation point definition

Let us consider the particular case, corresponding to a constant V r , i.e., ω = 0. Then, the desired state reference generated by ( 5) is

ẋae (t) = 0 4×1 , y ae = V r . (8) 
In this particular case, we can formulate the following assumption for the desired operating point of (2).

Assumption 2. Consider the desired output reference (8) and a parameter 0 ≤ λ e ≤ 1, such that,

x e = -(λ e A 1 + (1 -λ e )A -1 ) -1 B
is the equilibrium point of (4).

This equilibrium is also the equilibrium of system (2) related to arbitrarily fast switching. It is worth noting, if Assumption 2 is satisfied and from Property 1, it is easy to see that (1

-λ e )(A -1 x e + B) + λ e (A 1 x e + B) = 0. Proposition 1. Consider that R is negligible (i.e. R R 0 ), Assumption 1
and Assumption 2 are satisfied, then i) the equilibrium point can be expressed as

x e (λ e ) =         (2λe-1) 2 λ 2 e R0(λe-1) 2 -1 λe(λe-1) (2λe-1) λ 2 e R0(λe-1) 2 -(2λe-1) λe(λe-1)         V in , 0 < λ e < 1. (9) 
ii) The reference of the constant output voltage, V r , provides (given also in

[3]) V r V in = - 2λ e -1 λ e (λ e -1) . V r λ 2 e + (2V in -V r )λ e -V in = 0,
and their roots are

λ e (V r ) =          1 2 -Vin Vr + 1 4 + V 2 in V 2 r if V r ≥ 0 1 2 if V r = 0 1 2 -Vin Vr -1 4 + V 2 in V 2 r if V r ≤ 0. ( 10 
)
Therefore, for a given value of V r , it is possible, from the previous formulation, to determine the corresponding value of λ e (V r ), inducing the equilibrium point x e of (2).

Property of the sinusoidal reference signal

Now, we consider the sinusoidal reference (3) that generates the reference dynamic described in ( 5)-( 6), with ω different to zero.

The next Lemma will be devoted to prove that λ e (V r (t)) given in ( 10) is a periodic function, with the same time period than the reference signal V r (t).

Lemma 1. We have the following properties:

i) The function t → λ e (V r (t)) is a continuous and differentiable function from R to ]0, 1[. ii) If the function V r (t) is a periodic function of period T e , then the function t → λ e (V r (t)
) is a periodic function of period T e , with a mean value equal to 1/2.

Proof. From the function given in [START_REF] Albea | Adaptive control design for a boost inverter[END_REF], we have

lim Vr→∞ λ e (V r ) = 1 and lim Vr→-∞ λ e (V r ) = 0.
The continuity and differentiability is obvious for all V r ∈ R. We have from ( 10)

lim Vr→0 λ e (V r ) = lim Vr→0 1 2 - V in V r ± V in V r .
Then, we can deduce

lim Vr→0 + λ e (V r ) = lim Vr→0 -λ e (V r ) = 1 2
and, therefore λ e (V r ) is continuous at V r = 0. A simple calculation leads also to

dλ e dV r =          Vin V 2 r - V 2 in V 3 r 1 4 + V 2 in V 2 r if V r > 0 Vin V 2 r + V 2 in V 3 r 1 4 + V 2 in V 2 r if V r < 0. Moreover, lim Vr→0 dλ e dV r = lim Vr→0 V in V 2 r ± |V r | V in V 3 r , then, lim Vr→0 + dλ e dV r = lim Vr→0 - dλ e dV r = 0.
Thus, λ e (V r ) is differentiable at V r = 0. Simple calculations show that λ e (V r )

presents an inflection point at V r = 0, noting

dλ e dV r > 0 if V r > 0 and dλ e dV r > 0 if V r < 0.
The proof of i) is complete. Then, the periodicity of λ e (V r (t)) follows by continuity arguments and the fact that

dλ e (V r (t)) dt =                  Vin V 2 r - V 2 in V 3 r 1 4 + V 2 in V 2 r   dVr dt if V r > 0   Vin V 2 r + V 2 in V 3 r 1 4 + V 2 in V 2 r   dVr dt if V r < 0. (11) 
Furthermore, note that the mean of V r (t) is 0, hence the mean of λ e (V r (t)) = 1 2 , concluding the proof of item ii). 130 Remark 1. It is worth noting Lemma 1 allows to obtain an approximative expression of the periodic equilibrium of x ae (t), such that, x e (λ e (V r (t))) →

x ae (t), as dxae(t) d t → 0.

An hybrid control Scheme

The inverter model presented in (2) covers two different types of dynamics.

In one hand, the continuous-time variables which are the differences and the sums of the inductor currents and the capacitor voltages. In other hand, the control input, v, is a discrete-time variable. Consequently, the framework given in [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF] about hybrid dynamical system is well suited.

The main idea of dealing with Problem 1 is to use Proposition 1 to generate a time-periodic reference for x(t), from V r (t) given in (3), as noted in Remark 1.

Moreover, if the variation of x e (λ e ) with respect to time is sufficiently slow, we can expect that the output y(t) = x 4 (t) will be closed to the desired reference

V r (t) given in (3).
This basic idea is illustrated by the bloc scheme represented in Fig. 2. It is easy to see that the generated output of this control process, y(t), will present an error in steady state from the desired reference, V r (t). Indeed, for one side, there is an error between the output generated from the averaged model y ae = V r (t) and the one generated from the computed reference y e := [0 0 0 1]x e (λ e ), given in Proposition 1. For another side, due to implementation issues, it must have a minimum dwell time in the control updates, inducing an error in steady state between x(t) and the provided reference x e (λ e ).

CONTROL SYSTEM λ e (V r ) V r x e (λ e (V r )) v x(t)

Hybrid scheme

As proposed in [START_REF] Sanchez | Practical stabilisation of switched affine systems with dwell-time guarantees[END_REF], a new state variable τ is added to ensure a minimum positive dwell time, T . Then, the closed loop system is proposed in the hybrid formulation H given below.

Hybrid model

H :                                                                                      ẋ v τ ẋae λe ẋe               =               A v x + B v 0 1 -dz( τ T ) A λe x ae + B f 1 (V r ) f 2 (λ e )               , ζ ∈ C               x+ v + τ + x + ae λ + e x + e               ∈                x argmin i∈{-1,1} x P (A i x + B v ) 0 x ae λ e x e                , ζ ∈ D, ỹ = C(x + x e -x ae ) (12) 
where x := x -x e , ζ := [x v τ x ae λ e x e ] ∈ H, such that,

H := {x ∈ R 4 , v ∈ {-1, 1}, τ ∈ [0, T ], x ae ∈ R 4 , λ e ∈ [ν, 1 -ν], x e ∈ R 4 },
with a parameter ν > 0 small enough. Likewise,

B v := A v x e + B, f 1 (V r ) := dλe(Vr(t)) dt
given in [START_REF] Flores-Bahamonde | Using the sliding-mode control approach for analysis and design of the boost inverter[END_REF] and f 2 (λ e ) is the derivative of ( 9) with respect to time.

160 dz defines a dead-zone function, for all s ≥ 0, dz(s) := max{0, s -1}.

Inspired by [START_REF] Sanchez | Practical stabilisation of switched affine systems with dwell-time guarantees[END_REF], we select the so-called flow and jump sets

C := {ζ : x P (A v x + B) ≤ -x Qx, τ ∈ [0, T ]} (13) 
D := {ζ : x P (A v x + B) ≥ -x Qx, τ = T }, (14) 
ensuring that all maximal solutions are complete. Note that, τ introduces a minimum dwell time, T , i.e., the solutions are forced to flow at least T ordinary time after each jump. Then, the following condition must hold:

T T e . ( 15 
)
Proposition 2. The hybrid dynamical system (12)-( 14) satisfies the basic hybrid conditions [12, Assumption 6.5], then it is well-posed.

Proof. The hybrid dynamical system ( 12)-( 14) satisfies the basic hybrid conditions because

• sets C and D are closed.

• f is a continuous function, thus it is outer semicontinuous and convex.

Moreover, it is locally bounded.

• G is closed, then it also is outer semicontinuous [12, Lemma 5.1] and, it is locally bounded.

Finally, following [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF]Theorem 6.30], we conclude that the hybrid dynamical system is well posed.

In order to achieve the objectives stated in Problem 7, we will provide a hybrid control scheme establishing stability properties for x = x e , considering

x e constant and a minimum dwell time in the implementation. Then, we will assume the time varying of x e (t), finding a bound of y e (t) -y ae (t) . Finally, stability properties of y(t) = y ae (t), will be ensured.

Stability properties for V r constant

The objective here is to regulate the state vector, x, to a neighbourhood of a constant point x e (λ e (V r )), providing suited stability properties by using the paradigm presented in [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF]. Then, for any parameter X > 0 and a given T > 0 the goal is to ensure UGAS of the compact attractor

A := {ζ ∈ H : x -x e ≤ X, τ ∈ [0, T ]}.
To this end, we invoke the next lemma.

Lemma 2. [START_REF] Sanchez | On the practical stability of hybrid control algorithm with minimum dwell time for a DC-AC converter[END_REF] Consider that Property 1 is satisfied, then the eigenvalues of matrix P -1 Q are positive and e Avt ≤

λ 1/2 M λ 1/2 m e -αt , whit α = λ m (P -1 Q).
Moreover, we need to provide a practical minimum dwell-time property for H due to implementation issues. Then, next property is established.

Property 2. There exists a positive scalar T * , such that, for any chosen T ∈ [0, T * ], the solutions to hybrid system H flow for, at least, T ordinary time after 185 the jump, before reaching set D.

Proof. From the proof given in [START_REF] Sanchez | On the practical stability of hybrid control algorithm with minimum dwell time for a DC-AC converter[END_REF] and without loss of generality, we consider that the first jump occurs in t = t 0 , defining t := t -t 0 . Then, the trajectories of the error dynamics of (2), given by x = x -x e flowing in C, as follows,

x( t) = e Av t(x 0 + A -1 v B v ) -A -1 v B v .
From Lemma 2, we have

x( t) -A -1 v B ≤ λ 1/2 M (P ) λ 1/2 m (P ) e α t x0 + A -1 v B v .
Then, for all 0 ≤ t ≤ T , we get

0 ≤ t ≤ 1 α Ln λ 1/2 M (P ) x0 + A -1 v B λ 1/2 m (P ) x( t) -A -1 v B .
It is worth noting that in the instant time t = T the solution to H jumps, i.e., the solution is in D. Thus, it is possible to define a dwell-time upper bound, T * ≥ T ≥ 0, as follows,

T * = max i∈{-1,1} 1 α Ln λ 1/2 M (P ) x0 + A -1 i B i λ 1/2 m (P ) x(T * ) -A -1 i B i .
Note that for a maximum possible chattering given by x0 and x(T * ), we get the upper bound T * .

The next Lemma is a fundamental step to prove stability results. Then, we evoke [14, Lemma 1], which is necessary to provide stability properties of ( 12)-( 14). x P

(A i x + B) ≤ -x Qx, (16) 
with x = x -x e .
Now, we are able to introduce the asymptotic stability result for the regulation problem, i.e., for a constant reference x e .

Theorem 1. Consider an operating point x e ∈ R 4×1 that satisfies Assumption 2. Moreover, consider that matrices P ∈ R 4 0 and Q ∈ R 4 0 satisfy Property 1. Then, for any X > 0 and a given scalar T ∈ [0, T * ] the following holds:

1. set A is compact, 2. set A is UGAS for hybrid system (12)-( 14), 3. the system output is bounded by y -V r < X, 4. set A 0 := {ζ : x = 0, u ∈ {0, 1}, τ ∈ [0, T ]} is globally practically asymptotically stable for system (12)-( 14). As long as, T is small enough, set

A can be arbitrarly close to A 0 .

Proof. First, we will prove the compactness of attractor A.

Proof of item 1) Hybrid system ( 12)-( 14) satisfies Property 2, then we can define an upper bound of x in C

x(t) ≤ max i∈{-1,1} λ 1/2 M (P ) λ 1/2 m (P ) e α t x(t 0 ) + A -1 i B i + A -1 i B i := X,
such that, t 0 is any time instant where occurs a jump in the steady state. Then, we ensure that A is compact. Now, from Proposition 2, it is possible apply useful well-posed hybrid results.

Proof of item 2) Let us consider the following Lyapunov function,

V 1 (x) := 1 2 x P x, (17) 
with x = x -x e . Then, from Lemma 3, it is easy to see that during flows, the solutions are in C, i.e., in [START_REF] Deaecto | Switched affine systems control design with application to DC-DC converters[END_REF], therefore, the following holds

∇V 1 (x), f (ζ) = x P (A v x + B v ) ≤ -x Qx. V 1 (x + ) -V 1 (x) = 0, ( 18 
)
since x+ = [x + -x e ] = x.
Then, UGAS of A is shown from the proof given in [14, 15, Theorem 1].

Proof of item 3) The proof is direct from item 2).

Proof of item 4) From Property 2 is easy to see that as T goes to zero, the minimum dwell time, T goes also to zero. Then, from a sufficiently small T , set A shrinks to A 0 .

Stability properties for

V r (t) = V max sin(ωt)
For λ e (V r ) fixed, the proposed hybrid control allows to globally stabilize the sampled equilibrium ( 9), as seen above. Now, we assume a time-varying nonsampled reference, V r (t), in particular take λ e = λ e (V max sin(ωt)). From the property of this function given in Proposition 1 and by continuity of ( 9) with respect to λ e , we can deduce that x e (λ e ) is also a periodic continuous function of time. Intuitively, if the variation of x e with respect to time is sufficiently slow, we can expect that the output y e (x e ) be close to y ae = V max sin(ωt).

Stability properties of the tracking problem of system 2 are established in next lemma.

Lemma 4. Consider the averaged model (4) and x e = x e (V max sin(ωt)), being

x e (λ e ) given by [START_REF] Cortes | Dynamical sliding-mode control of the boost inverter[END_REF], such that, we have

A λe(Vmax sin(ωt)) x e (t) + B = 0. ( 19 
)
Assume that there exist parameters ρ > 0 and > 0, such that, Q = C C + I and a positive definite symmetric matrix P R 4 satisfying min

P,ρ ρ s.t. ρ > 0 P > 0   A v P + P A v + 2Q -P -P -ρI   ≤ 0, v = -1, 1 (20) 
then, for each solution to

   dxae dt = A λe(t) x ae + B y ae = Cx ae , (21) 
with x ae (0) = x e (0) and λ e (t) = λ e (V max sin (wt)). When t → ∞, it holds, for

γ 2 = ρ, that t+Te t |y e ( t) -V max sin(ω t)| 2 d t ≤ γ 2 t+Te t dx ae ( t) d t 2 d t,
where y e (t) := Cx e (λ e ).

Proof. The proof is inspired by the proof of [ Consider now the Lyapunov function V 2 (x e , x ae ) = 1 2 (x e -x ae ) P (x e -x ae ), then the derivative of V 2 along the trajectories of ( 4) is given as: 

dV 2 dt = (x e -x
To complete the proof, it suffices now to remark that y ae (t) = V max sin(ωt).

From this lemma, we can provide our main result about controlling the boost inverter working as DC-AC converter.

Theorem 2. For a given output reference V r = V max sin(ωt), consider x e (λ e (V r (t))), defined in Proposition 1 and some given parameters T e and T , such that condition (15) is satisfied. Moreover, consider there exist matrices P ∈ R 4 0,

Q ∈ R 4
0 and parameters γ 2 = ρ > 0 and > 0, such that, all Lemma 4 assumptions are satisfied. Then, for any parameters X t > 0, X > 0 and for

ε 0 (t) := γ 2 2 t+Te t dx ae ( t) d t 2 d t.
and any scalar T ∈ [0, T * ] the following holds:

1. set

A t := {ζ ∈ H : x -x e ≤ X + X t , τ ∈ [0, T ]}.
is compact, 2. set A t is UGAS for hybrid system (12)-( 14), 3. the system output is bounded by

t+Te t |y(t) -V r ( t)| 2 d t < T e X 2 + ε 0 , (12)- (14) 
, 4. set A t,0 := {ζ : x -x e ≤ X t , u ∈ {0, 1}, τ ∈ [0, T ]} is globally practically asymptotically stable for system (12)-( 14). As long as, T is small enough, set A can be arbitrarily close to A 0 .

Proof. The proof mainly follows the proof of Theorem 1.

Proof of item 1) From the proof of Theorem 1, here, the proof is completed from Lemma 4, which provides a bound of y e -V r (t) , which implies the bound

x e -x ae ≤ ψ(ε 0 (t)) ≤ X t . Then, x -x e ≤ x -x e + x e -x ae ≤ X + X t .
Proof of item 2) In this item, we will consider the following Lyapunov candidate

V (x, x e , x ae ) := V 1 (x, x e ) + V 2 (x e , x ae ) (24) 
defined in [START_REF] Feron | Quadratic stabilizability of switched systems via state and output feedback[END_REF] and Lemma 4 proof. It is easy to see the solution to the optimisation problem given in Lemma 4, satisfy the assumptions of Theorem 1. Then, the solution to hybrid system ( 12)-( 14) goes to the interior of A t , guaranteeing that this set is UGAS.

Proof of item 3) The output error is |y - 

y ae | 2 = |y -V max sin(ωt)|
|y e ( t) -V r ( t)| 2 d t < T e X 2 + ε 0 .
Proof of item 4) Direct from the proof of Theorem 1.

Remark 2. If x ae (t) is constant, the right term in the inequality ( 23) is equal to zero and y e (t) → V r (t). As expected, the error depends on the variations of

x ae (t) and γ 2 can be interpreted as the rejection gain when dxae(t) dt is considered as a perturbation signal.

Remark 3. The approach proposed above is based on the assumption R R 0 .

If this assumption is not satisfied, it is not possible to obtain an analytical expression for λ e (V r ). In such case, the value of λ e (V r ) is characterized by:

V r = -λ e R 0 V in (2λ e -1)(λ e -1) λ 2 e R 0 (λ e -1) 2 + R(2λ 2 e -2λ e + 1)
.

Recall that only the admissible values of λ e are real, meaning 0 < λ e < 1. The previous equation can also be written as

1 + V r R 0 V in λ 2
e R 0 (λ e -1) 2 + R(2λ 2 e -2λ e + 1) λ e (2λ e -1)(λ e -1) = 0.

Invoking the simple root locus building rules, we can easily see that depending of the sign of V r , only one root is of interest and varies with V r around 1/2.

Then it is possible to compute the value of λ e for a given value of V r . All the values of λ e for a given function V r (t) can be determined off-line. The approach developed above can then be applied.

It is worth noting that Theorem 2 provides a solution for almost all items stated in Problem 1. However, the last item related with robustness is not still 265 considered.

Robustness

In many occasions, these electronic systems suffer variations in the load, R, in the voltage input, V in , or in other components, needing to guaranty output robustness with respect to parameter variations, or even, to modelled errors. To this deal, we introduce an extra dynamic to regulate the voltage output, y(t).

This dynamic is given by

˙ = -K 1 -K 1 K 2 x4 , (25) 
where K 1 and K 2 are predefined positive parameters, such that, Property 1 holds. The variable gathers the current reference variations to compensate any perturbation occurred in the voltage due to any parameter change. Therefore, it is needed to add to the current references. In particular, to the reference of x e,1 = i 1 + i 2 , and x e,3 = i 1 -i 2 . Thus, we can define 

where

Āv :=            -R L -1 2L 0 v 2L -K 1 K 2 -K 1 + R L 1 2C0 0 -v 2C0 0 v-1 2C0 0 v 2L -R L -1 2L -K 1 K 2 -K 1 + R L -v 2C0 0 1 2C0 -2 R0C0 v-1 2C0 0 0 0 -K 1 K 2 -K 1            Bv :=            2Vin L 0 0 0 0            +            A v x e (λ e ) 0            C := [0 0 0 1 0].
From this dynamic, we can formulate the robust hybrid system as follows:

H :

                                                                                           χ v τ χae λe χe               =                  Āv χ + Bv 0 1 -dz( τ T ) Āλe χ ae + B f 1 (V r ) f 2 (λ e ) 0                  , ζ ∈ C               χ+ v + τ + χ + ae λ + e χ + e               ∈                χ argmin i∈{-1,1} χ P ( Āi χ + Bv ) 0 χ ae λ e χ e                , ζ ∈ D, ỹ = Cχ (27) where ζ = [ χ v τ χ ae λ e χ e ] ∈ H, such that, H := { χ ∈ R 5 , v ∈ {-1, 1}, τ ∈ R + , χ ae ∈ R 5 , λ e ∈ [ν, 1 -ν]
, χ e ∈ R 5 }, with a parameter ν > 0 small enough.

Moreover, Āλe = Āv , where v is replaced by λ e and B := [ B 0 ]. Likewise, the flow and jump sets are

C := { ζ : χ P ( Āv χ + Bv ) ≤ -χ Q χ, τ ∈ [0, T ]} (28) D := { ζ : χ P ( Āv χ + Bv ) ≥ -χ Q χ, τ = T }. (29) 
with matrices P , Q 0 ∈ R 5 .

Theorem 3. For a given output reference V r = V max sin(ωt), consider χ e (x e (λ e (V r ))),

being x e (λ e ) defined in Proposition 1 and some given parameters T e and T , such that condition (15) is satisfied. Moreover, consider there exist matrices P ∈ R 5 0, Q ∈ R 5 0 and parameters γ 2 = ρ > 0 and > 0, such that, all Lemma 4 assumptions are satisfied. Then, for any parameters X t > 0, X > 0 and for

ε 0 (t) := γ 2 2 t+Te t dχ ae ( t) d t 2 d t.
and any scalar T ∈ [0, T * ] the following holds:

1. set

A t := {ζ ∈ H : χ -χ e ≤ X + X t , τ ∈ [0, T ]} is compact, 2. set A t is UGAS for hybrid system (27)-(29), 3 
. the system output is bounded by

t+Te t |y(t) -V r ( t)| 2 d t < T e X 2 + ε 0 , (12)- (14) 
, 4. set A t,0 := {ζ : χ -χ e ≤ X t , u ∈ {0, 1}, τ ∈ [0, T ]} is globally practically asymptotically stable for system (12)-( 14). As long as, T is small enough, set A can be arbitrarily close to A 0 .

Proof. The proof is direct from Theorem 2 proof. Now, all items of Problem 1 are satisfied.

Simulations

In this section, we validate our hybrid control approach to the boost inverter (2) in simulations. These simulations are performed in MATLAB/Simulink by exploiting the HyEQ Toolbox [START_REF] Sanfelice | A toolbox for simulation of hybrid systems in Matlab/Simulink: Hybrid equations[END_REF].

The boost inverter parameters are given in Table 2, satisfying Assumptions 1.

Moreover, we take K 1 = 1 and K 2 = 1000. Then, the related optimization problem of Theorem 3 provides = 9 • 10 -8 , ρ = 1.14 • 10 -5 , and 

P =            3 
          
.

The upper bound of T for a chattering of 10A in the currents, 4V in the voltages and 2 • 10 5 in ρ is T * = 7.92 • 10 -4 . Hence, the selected minimum dwell-time was T = 10 -6 s. This scenario is characterized by a perturbation of the load resistance, R 0 , of 100% with respect to its nominal one, i.e., it changes from 100Ω to 200Ω at 0.02s. Figure 4 shows the evolution of the voltages, currents and variable of [START_REF] Manandhar | Efficiency comparison of dc and ac microgrid[END_REF] when the controlled hybrid system (27)-( 29) is applied. Note, after the change of load R 0 at 0.02s, the currents i 1 and i 2 converge to a different equilibrium.

Moreover, Fig. 4 performs the system output. Note, the extra state evolves, such that, the system output gets to reject the perturbations and the modelled errors. 

Scenario II

In this second scenario, the input voltage V in changes a 30% with respect to its nominal value, i.e., from 48V to 100V at 0.02s. Figures 5 and6 show the state and output system evolutions. Note, the system output rejects the perturbations and modelled errors with the introduced extra state ρ, converging conclude the error tracking system output is regulated, such that, is robust with respect to the considered perturbation.

Conclusion

In this paper, a hybrid control law is proposed for a DC-AC converter also known as a boost inverter. This control takes into account the real nature of the inverter signals, meaning the continuous-time dynamics represented by the voltages and the currents and the discrete-time dynamic, which is the discrete input signal. Moreover, a minimum dwell time is also considered. UGAS is guaranteed to an attractor, ensuring the convergence of y(t) to a neighbourhood of its reference, small enough. An extension of this result is given to provide robustness properties in terms of error tracking output regulation. Here, it is shown the ability of the system output to reject any parameter change.

The future work is to obtain experimental results in a prototype. 
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 2 Figure 2: Block diagram of the control mechanism.
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 3 Consider matrices P, Q ∈ S 4 satisfying Property 1, for each point x e ∈ R 4 satisfying Assumption 2, then, min i∈{-1,1}

x

  e, := x e (λ e ) -Υ , where x e (λ e ) is given in Property 1 and Υ := [1 0 1 0] . Defining the augmented vectors χ := [x ] , χ ae := [x ea 0] and χ e := [x e, 0] , as well as, χ := χ -χ e , we get the following error system dynamics    χ = Āv χ + Bv , ỹ = C( χ + χ e -χ ae ),

Remark 4 .

 4 Remark 3 makes reference to modelled errors, when considering R 0 R. This can be compensated from the hybrid scheme (27)-(29) and applying Theorem 3.
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 3 Figure 3: Evolution of the states with a 100% variation of R 0 w.r.t. its nominal one.

y

  (t) to V r (t) = V max sin(ωt) after the change of V in . Nevertheless, we can
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 4 Figure 4: Output with a 100% variation of R 0 w.r.t. its nominal one.

Figure 6 :

 6 Figure6: Output system with a 30% variation of V in from its nominal one.
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 1 Boost inverter switching logic.

  -x ae ) (A λe(t) ) P + P A λe(t) )(x e -x ae ) -2(x e -x ae ) P dx ae dt . I and on the right by its transpose, we obtain (x e -x ae ) (A v P + P A v + 2 I + 2C C)(x e -x ae )

	ae ) P -(x e -x ae ) P and due to (19), we can write dV 2 dt = (x e Multiplying (20) on the left by (x e -x ae ) dxae dx ae dt + dx ae dt dx ae dt -dx ae dt P (x e -x ae ), P (x e -x ae ) dt , using the selected Q = C C + -2(x e -x ae ) P dx ae dt -γ 2 dx ae dt dx ae dt ≤ 0, t+Te t dx ae ( t) d t 2 d t ≤ 0. From equation (22), we have: V 2 (x t+Te t |y e ( t) -y ae ( t)| 2 d t -γ 2 2 t+Te t dx ae ( t) d t 2 d t ≤ 0, and by the periodicity of x ss (t), dx Then, t+Te t |y e ( t) -y ae ( t)| 2 d t ≤ γ 2 2 t+Te t 2 dx ae ( t) d t d t.

a dt = A λe(t) (x e -x ae ).

with v = {-1, 1}. Note that A 1 = A(1) and A -1 = A(0). Now, multiplying the first inequality by λ(t) and the second one by 1 -λ(t), and summing the two resulting inequalities, we obtain: (x e -x ae ) (A λe(t) P + P A λe(t) + 2 I + 2C C)(x e -x ae ) -2(x e -x ae ) P dx ae dt -γ 2 dx ae dt dx ae dt ≤ 0. Then, by the positivity of (x e -x ae ) 2 I(x e -x ae ) we have dV 2 dt + 2|y e (t) -y ae (t)| 2 -γ 2 dx ae (t) dt 2 dt ≤ 0, which in turns by integration on [t, t + T e ] gives V 2 (x e (t + T e ), x ae (t + T e )) -V 2 (x e (t), x ae (t))+ t+Te t 2|y e ( t) -y ae ( t)| 2 d t -γ 2 e (t + T e ), x ss (t + T e )) -V 2 (x e (t), x ss (t))+

  2 , integrating from t to t+T e and applying Theorem 1 and Lemma 4 to bound |y -y e | 2 and |y e -y ea | 2 respectively, we have

	t+Te t	|y( t)-V r ( t)| 2 d t <	t+Te t	|y( t)-y e ( t)| 2 d t+
	t+Te			
	t			

Table 2 :

 2 Simulation parameters

	Parameter	Notation Value Units
	DC input voltage	V in	70		V
	Reference peak voltage	V max	220	√	2	V
	Nominal angular	ω	120π	rad/s
	frequency					
	Nominal load resistance	R 0	100		Ω
	Estimated series	R	0.02		Ω
	resistance					
	Inductor	L	44		mH
	Output capacitor	C	200		λF
	Note that Property 7 and condition (15) are satisfied. Some simulations are
	performed considering two scenarios:					
	6.1. Scenario I					

  Figure5: Evolution of the states with a 30% variation of V in from its nominal one.
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