N

HAL

open science

Activity Report: PhD 2nd Year
Yann Argotti

» To cite this version:

Yann Argotti. Activity Report: PhD 2nd Year: Study of Qualimetry essentials applied to embedded
software product and organization, with consideration to software entropy. Activity report linked to
contract n°179808; Rapport LAAS n° 20045. 2020. hal-02491526

HAL Id: hal-02491526
https://laas.hal.science/hal-02491526
Submitted on 26 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://laas.hal.science/hal-02491526
https://hal.archives-ouvertes.fr

LAAS
CNRS

RISC / ISI Group

Activity Report: PhD 2nd Year

Study of Qualimetry essentials applied to embedded software product
and organization, with consideration to software entropy

ARGOTTI Yann
2-24-2020

Laboratoire conventionné

. , , . \ avec I'Université Fédérale
Laboratoire d’analyse et d’architecture des systemes du CNRS Y

de Toulouse Midi-Pyrénées

Confidential C

Table of Contents

N [0 d o o [¥ ot o T o H 2
R U o To -1 L =To I = {o T | PP P PRSP 2
3- Updated organization of reSearch WOrkKccveiviiiiiie ittt s erae e 4
- CUITENT ACHIEVEIMENTS. ..ciiiiiiiciiieeceeesieeesite e ete et eete e te e et e e sbe e et e ssseeeebeesnssessnseesssseesnseessssessnsenas 5
LT o o ol U111 [PSR 10
2] £=T =Y T LSS 11
FAY] [(L OO PUPUPPPPN 12

A- First part of quality model classification and decision tool: get_synonyms.py.........cccceeueeeneen. 12

B- Journal paper: IEEE Transaction on Software ENgiNEering.......cccceeceeeeiveeecrieesiieeeieeeciiee e 13

C- Conference paper: ERTS Conference 2020c..eveeccviveeiiecrieeeesieeeessireeeeenveeesssssnessssssnesssnsnes 31
Figure 1 - Current research and development fIOW.........ccceecieeciie e s 4
Figure 2 - Few highlighted differences between ISO/IEC 9126 and ISO/IEC 25010ccceevvrervreevrennnnne 5
Figure 3 — Ad-hoc & universal polymorphism applied to AUtOMOLIVEccevciveeiiiiiiieecce e, 6
Figure 4 - Our project scorecard linked to quality model, process, product and project metrics.......... 7
Figure 5 - Examples of several implemented metric graphiCs.......cccvereieeecieeiiee e 7
Figure 6 - Coarse quality model survey: list of 196 quality models vs their citationscccccvveeenneee. 8
Figure 7 - Coarse quality model survey: detail results of our analysis.........cccccceeviviiiiieeciieee e, 8
Figure 8 - Our four-filter stage publication selection ProCesscccveeecveeeecciieee e 9
Figure 9 - Systematic literature review: referenced quality models per publication year...................... 9
Figure 10 - Systematic literature review: list of the 125 referenced quality models vs their citation
L1001 o1 TSP 9
Figure 11 - Systematic literature review: distribution of quality modeling types.......ccccecvveeeviveeeennnen. 9
1|Page

Confidential C

1- Introduction

The purpose of this report is to summarize the second year of research activity related to Yann Argotti’s PhD
inside the RISC / ISI group at LAAS-CNRS. This PhD candidate is registered at EDSYS school and INSA Toulouse in
“Computer science and embedded systems” specialization track. Claude Baron, RISC / ISI group responsible and
Philippe Esteban, member of RISC / ISI group, are co-joint thesis directors. Thesis subject is “Study of Qualimetry
essentials applied to embedded software product and organization, with consideration”

This second year was the continuity of the first year during which an analysis of the thesis problematic was
performed, identifying several road blockers that we started to address mainly from a theoretical point of view.
So, this year we began to apply our contributions to qualimetry theory against automotive software
development, demonstrating their applicability, interests, and benefits. Moreover, we synthetized the thesis
progress over the production of two research papers, one submitted to IEEE Transaction of Software Engineering
journal [1] which was unfortunately rejected, but with some constructive feedback, and one to ERTS 2020
conference [2] which was accepted and then presented on end of January 2020 (see Annex for a copy of both

papers).

In parallel, we initiated a new systematic literature review on quality models related to software product,
process and project. The goal of this work is to perform a study not only to build a unique and precise landscape
of quality models in this field, but also to create the necessary quality model substrate to decide which model(s)
we must be using in order to complete the construction of our solution.

Thus, and because this research work is incremental and multi-annual, the next parts of this report are a
complement to the 1%t year activity report and cover an update of goals we are targeting for this PhD work, an
update of our research work organization and a review of our current achievements before concluding.

2- Updated goals

Since Qualimetry is by definition the quantification of Quality for any object, including process, and
considering the technological barriers seen in previous section, the inceptive thesis main goal is to:

Define and evaluate an optimized Quality Model in order to bridge and quantify quality not only for
software development (ie requirements, models, source code) but also for software organization, with
conformance® to ASPICE MAN.6 [3], ISO/IEC 25010 [4], ISO 26262 [5] and ISO/TS 16949:2009 [36].

Main Goal

Secondary initial thesis goals are to exercise this quality model and achieve:

o Software Maturity within Continuous Integration process measurement
o Traceability / Quality by design / Change impact
o Test efficiency
o Project Landing zone (Time to market vs risk & complexity)

8
©
o
(U]
>
<
©
e
c
o
o
(]
(%)

e Software Aging measurement
o Software Model Aging (e.g. Impact from Maintenance, FOTA and/or Complex system vs impact
to safety & reliability)

o Product Aging Landing zone /

1 The company, welcoming student here, is in automotive field which therefore drives standard choices here.

2|Page

Confidential C

However, on first year and then on second year, our further study and analysis performed on Qualimetry
and quality models required us to refactor slightly and consolidate these originals goals. Indeed, we were able
not only to confirm our early statement that there is no obvious solution for quality model for software
development and for software organization, but also that there is a misunderstanding about Qualimetry? [7] and
we identified gaps on quality model classification and on decision for the quality model solution to apply/use.
Comparison studies we can found in [8], [9] or [10] illustrate clearly that fact. Only some work done by Oriol et
al. [11] including ontology consideration and 51 quality model references open the perspective of a solution. So,
to be able to address our main initial goal, we can decompose it into:

s A
1- Build a precise landscape for quality model for software

a. Build a taxonomy for quality model,
b. Perform a systematic literature review of quality models for software product, process &
project,

)
=3
@

©
o

(O]

=
©

=

c. Reference and classify found quality models based on our taxonomy,
2- Create a SW product quality model genome
a. Build a methodology to create a quality model genome,
b. Build a first candidate list of SW product quality models to be used as a 15t quality model basis
as genome creation,
c. ldentify SW product quality model main genes
3- Define an oracle for decision to get optimum quality model(s) solution,
a. ldentify key criteria for oracle definition (e.g. Non-Parametric Linkage usage against genome),
b. Build a decision oracle for quality model,
c. Apply to our case study that oracle to Renault Software Labs use case to generate a basis

quality model to be used with polymorphism concept,
(. J

To help and support these tasks, we are adding a fourth sub-goal that must be achieved in parallel to these
ones: this is the creation a unique tool and quality model database. Moreover, that tool will demonstrate that
our proposal is viable and usable.

s \

4- Define and implement a tool to support quality model taxonomy & oracle

a. Describe Quality model seen in state of the art (use Yaml for quality model description,
pedigree, setup bridge/dictionary of “synonym” =>http://www.atlas-semantiques.eu/?I=EN),

Main Goal: sub-

b. Apply the computation over the multiple quality model combination,

¢. Quality model decision helper (oracle?),

Thanks to this goal refinement, we can rewrite the first initial secondary goal relying on the taxonomy and
oracle studied and developed in our main goal. In addition, we understand that the amount of work required
to achieve it may bring risk to not be able to complete on time initial secondary goals. Therefore, the rewritten
secondary goals are defined below:

e Quality Models and Metrics linked to CI
a. Derived oracle identified quality model to ECU covered by Cl,
b. Apply these derived quality models to Cl applicable characteristics and metrics,
e Software Aging measurement
a. Summarize problematic and difference against regular (ie often associated to reliability) vs our
definition of Software Model Aging

r
1
1
i
1
1
1
:
1
1
1
1
1
:
1
1
1
1
1
i

1D
©
o
(U]
>
-
©
el
c
o
o
(]
(%]
c
(]
+
)
=
=
(]
o

2In general, qualimetry is understood as “applied qualimetry” and not really as qualimetry as a science.

3|Page

Confidential C

b. Takes examples: Impact from Maintenance, FOTA and/or Complex system vs impact to safety
& reliability, product aging landing zone

3- Updated organization of research work

Research work is organized into several incremental steps, organized around the goals and sub-goals
defined and refined in previous section.

Indeed, the first step was to proceed on study and analyze the current concepts and problematics behind
the thesis subject. This study was based on a rigorous state of the art, started from the early listed references,
on qualimetry, quality quantification, quality models and our fields of interested which are embedded software
product and its organization. In addition, and as written in previous section, our analysis concluded on the need
to build a precise quality model landscape using a specific taxonomy for quality model and then followed by a
need to construct a methodology on decision / oracle to generate optimum quality model solution.

This global approach is acting on the theory field. However, we will need to exercise regularly our findings
against the practical field, applying on some specific case studies, such as software product quality models and
continuous integration process. These experiments phases will allow us to loop back to correct, consolidate,
optimize our taxonomy, decision methodology and then quality model landscape. We are planning multiple back
and forth loops between theory and practice field to be able to converge on a suitable and practicable solution.
To support also these experiments, we are planning to implement a tool.

Theory Field Practice Field

Creation of a tool !
We are here

) #7 “Methodology on - Wi ABPIY CISSTHEATGR ~ %y
Definition and Approach : classification methodology on case |
Understand conceptand Setup methodology to classify and ’ studies 1
problematic . organize quality model Classify and organize SW product 1
— J s S v 7
i i C lid 1!
1 !
: 1<—Current RQI Consoli ate too
1 1
pply decision
[1 Apply decisi
I Methodology on decision 1 p methodology on case
=Setup methodology decide on quality 1 studies
\ model suitability 7 Decide which SW product quality
~) models to apply to Cl (SW Labs)

————————— -
> Er GH KL

I Extend tool !
1

CL T LT DL L L Ll LIl LY T I Y9

l = ' -
Qualimetry applied to SW Lab y Exndedmeies) < Resolution
ualimetry applie S : 3 . .
with consideration to software entropy ' Sieniicry &L:%g; Stics e Implementand deploy SW product : 0 UtSI de t h ESI S
‘ quality modelsto CI (SW Labs) 1

- -

Figure 1 - Current research and development flow

The research work organization is summarized in Figure 1. We see the various task sequence, the theory vs
practice aspects, and their loopback and the tool supporting our overall approach. We can notice that we have
completed first task and are currently focusing in parallel on quality model taxonomy (or classification
methodology) and decision to reflect work on quality model landscape. Also, we note that due to our current
workload, we have to consider delaying the extend metrics study and realization.

4|Page

Confidential C

4- Current achievements

As indicated in section 1-, our first-year contributions were done mainly from a theorical point of view to
gualimetry. So, our first achievements on 2019 were the application of our theory contributions, and more
particularly polymorphism ones, against one of our current use cases: automotive embedded software.

T = Z xixjnij

H (1)

Our first achievement is the successful application of the degree of polymorphism formula (1), introduced
by Nei and Li in 1979 [12] in genetic domain, against two well-known quality model standards which are also
successively referenced in the successive versions of Automotive SPICE [3]: ISO/IEC 9126 [13] and ISO/IEC 25010
[4]. Even if ISO/IEC 25010 is replacing officially ISO/IEC 9126 as standard software product quality model, the
degree of polymorphism is indicating that the two quality models are disjoined by ~68%3 which is not minor
differences between the two models. Figure 2 is illustrating some of the differences between these two quality
models.

ISO/EIC 9126

external and

internal (2001) quality in
quality use
I I 1
L)
functionality reliabliity usabliity efticiency | [maintainanin portabliity [T I]
=
I effectiveness productivity safety satisfaction
ouitadiy aturty understandabiity o ai
vorne | | e, | [| emewore| [gy ||
garoperanity oy operabilty rosous ‘stabil existence
e ooy | | et | G || SN | A
andiondity., reliaicy usaniey dmeiency mantanasiey abitty
compance 1-4,_corpunce | | compianca | | foriarce | | "camotance | =4
. h

g 7
- 7~ S
s ’
y /
., 4 P
.f /

/o Feupisatare ISO/EIC 25
(N [/ TEEms) some T

/
/

[[71 Z1 I"--.Al [1 7 {1 I
Functional 3 . =Y Maintain-
Suitability etﬁcxenq/'c"'“w“"j‘f Usability Reliability] Security ability Portability 2 [\v][]
L Eectiveness thoency Satsfaction freefom From sk | | Context Coverage
Trezer o ﬁ“\? Acompriatensss Moty o
oo | | Dilkeperaviny v "

Res:

Effectiveness Efficiency Trust
wwwwwww

Comfort

LS

Figure 2 - Few highlighted differences between ISO/IEC 9126 and ISO/IEC 25010

An additional achievement linked to that distance formula is our exploration with regards to the impact and
benefits of quality model distance. The needs to use or refer to that distance between quality models are
associated to a need to evaluate, modify, change or update quality model due to a variety of root causes such
as: change of life cycle stage (e.g. from design to implementation), evolution of product (e.g. addition of new
features), insufficient quality area coverage (e.g. gaps in safety or security), change of targeted product (e.g.
from car to truck), new or updated process or standard (e.g. from ISO/IEC 9126 to ISO/IEC 25010), The main
benefits are enumerated here:

Evaluate risk linked to quality model change (low distance = low risk, high distance = high risk),
Evaluate change workload and cost,

Identify most impacted areas and characteristics,

Identify where quality quantification, assessment and control are changing,

Identify and evaluate validation path finding change (Capture of different types of bugs
possibly never found before, Discard other areas and path)

m a0 T

3 Degree of polymorphism = 0.6792 (0 = identical; 1 = 100% disjoined): 53 leaf characteristics, 32 unique, 8 similar

5|Page

Confidential C

f. Support decision and control change / update of quality model

Our next achievement this year concerns the application of ad-hoc* and universal® polymorphism concept
to Automotive quality model product: starting from ISO/IEC 25010, we defined a generic quality model common
to all vehicle Electronic Control Unit (ECU), and then deriving it into In-Vehicle Infotainment (IVI) and Body
Control Module (BCM) ECU quality models (see Figure 3).

Is derived from Sys/Sw product qualit
s nnnnan Common ECU QM
[from A-SPICE]

ISO/IEC 25010

Derived into

Punctional suitability

Sys/sw product quality

IVIECU QM : ot BCMECU QM [
g > L qualicy in use 22308 { Quality in use e
Measurements Measurements

Chart: Oections breskdown

" kil SO — R YN PO
tabilit b Portability Reliabilty

Figure 3 — Ad-hoc & universal polymorphism applied to Automotive

Another application aspect to which we contributed was the design and internal publication of a project
scorecard for Renault and Renault Software Labs. This scorecard, showed in Figure 4, is part of Alliance (ie
Renault — Nissan — Mitsubishi) SoftWare Process (ASWP). It integrates usage of software product, process and
project metrics, includes all metric definitions, “risk vs opportunity” based thresholds and a mapping between
each metrics with corresponding ASWP process. Its junction with a quality model is realized thanks to the
software product quality indicator which aggregate software metrics accordingly to that quality model.
Completing that scorecard, we started the implementation of automatic metrics collection and corresponding
graphic generation (ie pie charts, cumulative flow charts and trend charts — see Figure 5) in python language
with yaml, jira, matplotlib, numpy and pandas library.

4 Common quality model characteristics or “interface” (ie Ad hoc polymorphism: overloading & coercion)
5 Variations with heritage between quality models (ie Universal polymorphism: sub-classing, inheritance, or overriding,
extension)

6|Page

Confidential C

KPI based on quality model (ISO/IEC 25010 based) & related to SW metrics
y =5

process performance
Lead Time / Cycle Time

e e

- Completion -% | Lead time
Scope Creep Fix response rate
SW Product Quality ¥_Automation rate % Mssues out of delay rate

Name |
Current WW'Y |
SW GATE SWG Ta
ASIL Level Performance Indicators
-% Completeness -% Consistency

gl Test Rate

Used for " ' SN
. o E ul
- Normalization - SW Component
- Weighting » Wacmpara
- Complexity Open Bugs Sw Qualification %

Input Requirement
SRS v o Code Coverage Unit Component] Project quality performance
SAD x5 Une x Function % E:
SW Rule Violations % Statement % -
SW Issues % - Branch *
v 9 1P Scan Violations % % MC/DC = :

Traceabliy =

Performance Notspphicable o
SRS Implementation Rate -%} CPU Load v
Memory Footprint

ASWP Qualimetry - v0.10

Figure 4 - Our project scorecard linked to quality model, process, product and project metrics

e Ferrey " :
o W ! J
® tstesevennee © '
» » d
« wls seseseeged '
* 0 ‘% ' Www20'03 - FACE / SW_G4
® o 4 [{[Partially Covered 35
» » '
» ® i
» 0 rerreves '
' o _No(Covered 33
SEEASENASRNANERanes SeEaTaRaaeRs :
B B '
s x Carrectrass - relative !
= ANCIVWACSY SW GRSWGT o ANCIVMACS! | SWGUSW.G7 ~
- ANCIVRACH Vom0 G450, G3 o ANCivaancy pemsanm e S0 o5 G5 '
- AV2.make” pr G by RS SV o= A2 “make”part done by RSV 5 H
& AN ke pat dine by KW [rerameng OC] | SW_GS A2 “make” pat dune by RSV [remaming OC] - SWGS :
o~ SWEET200 ADAS U SW boche2 - 5W G o~ SWEET200 ADKS £CU SW bache? |
- ace sw. - 1ace sw G4 '
- Vel ey W G2) 1
pret |
'
|
I
'
'

ww20'03 - AASP Internalization - MMC Internalization / Step 2

E

.

— =
:

.

.

.

.

E

Todo 26 :
.
|
.

]

.

.

:

.

.

Wy e M Ae e 0n e o

Since 1t day Last 30¢ days

Weekly SW Gate Acceptance Criteria

Test pass rate
(preliminary result)

SW Gate Stories

Figure 5 - Examples of several implemented metric graphics

On second half of this year, our focus was on the creation of a precise quality model landscape in the fields
of software product, process and project. Therefore, to acknowledge the benefit of such effort, we first
performed a coarse quality model survey, identifying 196 distinct models with their number of citations within
the survey (cf Figure 6) which was much more productive than Oriol et al. [11] paper with 51 quality models:
that paper is the one with the most important number of cited quality models to our knowledge. In addition,
we analyzed that set of quality models, splitting by basic vs standard vs tailored, and per main technology:
components (e.g. COTS), web, service, open-source, reuse. The conclusion of our analysis (see Figure 7), also
based on citation numbers and the 9 challenges identified by Thapar et al. [14], allowed us to identify an early
list of 10 candidate quality models which could be used as a basis for our quality model genome: McCall, Boehm,
Dromey, FURPS, I1SO 9126, GEQUAMO, Bawane, Alvaro (CQM), Kalaimangal and 1SO 25010.

7|Page

Confidential C

Citation rate %

6 Most referred / cited quality models in survey, classification comparison papers
* 4 Basic QMs: Boehm (1976/78), McCall (1978), FURPS (1987), Dromey (1995)
* 2 Standard QMs: ISO/IEC 9126 (1991), ISO/IEC 25010 (2011)
Most cited: ISO/IEC 9126
Regular production of quality models overtime based on specific case: from scratch or from
other QMs

Figure 6 - Coarse quality model survey: list of 196 quality models vs their citations

28% of companies use Praduct
the standards and . w= Produ
79% customized them N— Ls_tandard Quallty MOdE|S Process
[Wagner et al., 2012] A

QM neryear

Evolution of SW
Engineering:
Reuse /
Components (e.g.
COTS), open-
source, web,
service

<Unkown>

\ Tailored Quality Models

Upsdhyy
1)

it Basic vs Tailored on 2000 [Thapar et al., 2012], [Miguel et al., 2014]

* Open Source Quality Model

Figure 7 - Coarse quality model survey: detail results of our analysis

Once our coarse survey completed, we decided to strengthen our survey methodology, and by
consequence the results here, by initiating a quality model systematic literature review following Kitchenham
and Charter [15] guidelines. This our final achievement for this year. We adapted the guidelines to our needs,
setting a four-filters stage to filter digital library raw publication results into a short list of papers to study. That
process and results of filtering stage are described in Figure 8. We can already note that we are finding more
models (see Figure 9 and Figure 10), especially before 2004 years, than with our coarse study, extending the
result time range: the 2 first quality models on 1968 Rubey & Hartwick [16] and Shooman [17]. We are also
taking into account predictive and statistical quality models (see Figure 11) and during our referencing of each
quality model, we are classifying to them across multiple criteria: the 5 quality perspectives of Garvin [18], the
DAP purpose of Deissenboeck et al. [19], citation number (publisher & google scholar)

8|Page

Confidential C

Apply Apply
search strings Apply inclusion/ exclusion criteria data extraction
ACM digital library [280] — 1 Y \
—
IEEE Xplore [1,074] —_— Filtered
abstract results

Springer [212] — 3 res

/ v N “ v = v % Global publication count per year
Scopus [973] / Total 121 | x

documents ‘ |

Web of Science[695] Publication

years 1977 - 2020 1977 - 2020 1979 - 2019 1979 - 2019 1979-2019 .

Figure 8 - Our four-filter stage publication selection process

NEW PUBLISHED QUALITY MODEL COUNT PER YEAR

6

5
5

wn
< <
(2] o
P e g e P i Ry I 1 N A O O NE NS Y N BN §H RA AN
wla] |a] [a]=|]] -
AN O 1 ANMT N ONODNDNO A ANMT VNOMNONO ANMT NONODADOO AN MNMT NDONONO ANMNMT NHNONONO
O O NNMNNNNNNDNMNOODOGOONO®ONONOWONMWOWWAND DO OO0OO0OO0OO0OO0OO0OO0OO0 o o f o f -+ 4 N
[+ 0 < - W - T~ W T+ W N < T+ W< T < T < N+ T < T+ I < T W< < T+ N I+ T+ < T+ T < T+ T < I = T - I Y - I I < I I > Y - T I < T - I I - I = Y = T > I = I - I o}
o A H AN AN AN AN NN ANNNANNANNNNNNNNNN
Figure 9 - Systematic literature review: referenced quality models per publication year
QUALITY MODEL CITATION COUNT
3 (0 MEANS(\YATION(OUNTUNK)NOWND
?'| “‘

RUBEY - HARTWICK

coNsTRUCTIVE @

Figure 10 - Systematic literature review: list of the 125 referenced quality models vs their citation numbers

MAIN QUALITY MODELING METHODS STATISTICAL QUALITY MODELING METHODS

MW Hierarchical W Statistic-implicit W Meta-model W Other

W Decision Tree- based

= Neural Network

W Logistic regression

M Classification Tree

W Discriminant analysis

W Fuzzy classification

W Discriminative power techniques

W Pattern-recognition

W Regression tree

W Statistics - Optimized Set Reduction
W Statistics - Bayesian Network (BN)
W Statistics - Machine Learning (ML)
W Genetic Algorithm (GA)

W Statistics - Case-based reasoning (CBR)
m Discriminant coordinates

3%

32.26%

Figure 11 - Systematic literature review: distribution of quality modeling types

9|Page

Confidential C

To conclude on this section, we would like to highlight that we detailed and promoted part of our
contributions with conference presentations and the achievement of two submitted papers. Thus, we
presented our last year accepted paper to IEEE International System Conference (SysCon) in April 2019. We
submitted a research paper against to |IEEE Transaction of Software Engineering journal, with a scope of
software engineering. Unfortunately, it was rejected but the reviewers provided some constructive hints to
refactor the paper. The second submission this year was done to Embedded Real-Time System (ERTS) 2020,
with a scope of embedded systems and software, and contained practical application aspects. That second
paper was successfully accepted and presented in the conference. A copy of these two papers is available
in the Annex section.

5- Conclusion

In conclusion, like first year, this second year was quite productive in term of contributions and
achievements: seven new contributions over which five of them are already acknowledged by peers either by a
presented ERTS conference paper or company internal peer reviews and agreements. We note that the scope
of our achievements is not only software engineering but also system engineering.

Moreover, we consider having performed a serious step forward in our thesis research work this year.
Indeed, it was the first time that we successfully applied our contributions to qualimetry theory against a real
use case, and more particularly, the application of our polymorphism concepts to the automotive embedded
software.

In our next steps we are going to complete our research work on quality model systematic literature review,
taxonomy, genome and then finalize our answer to our thesis subject: “Study of Qualimetry essentials applied
to embedded software product and organization, with considerations to software entropy”.

10| Page

Confidential C

References

[1] Y. Argotti, C. Baron, and P. Esteban, “Qualimetry Applied to Embedded Software Development: Definition and
Approach,” IEEE Transaction of Software Engineering, Jun. 2019.

[2] Y. Argotti, C. Baron, P. Esteban, and D. Chaton, “Quality Quantification Applied to Automotive Embedded Systems and
Software,” presented at the Embedded Real Time Systems (ERTS) 10th Edition, Toulouse, France, 2020.

[31 VDA QMC Working Group 13 / Automotive SIG, “Automotive SPICE Process Assessment / Reference Model., version
3.1 - revision 656.” 01-Nov-2017.

[4] “ISO/IEC 25010:2011 - Systems and software engineering — Systems and software Quality Requirements and
Evaluation (SQuaRE) — System and software quality models,” International Organization for Standardization, 2011.

[5] “ISO 26262-6:2011 - Road vehicles - Functional safety - Part 6: Product development at the software level,”
International Organization for Standardization, 2011.

[6] “ISO/TS 16949:2009 - Quality management systems - Particular requirements for the application of ISO 9001:2008 for
automotive production and relevant service part organizations,” International Organization for Standardization, 2009.

[7]1 Y. Argotti, C. Baron, and P. Esteban, “Quality quantification in Systems Engineering from the Qualimetry Eye,”
presented at the 13th Annual IEEE International Systems Conference (SysCon), Orlando, USA, 2019.

[8] Y. Boukouchi, A. Marzak, H. Benlahmer, and H. Moutachaouik, “Comparative Study of Software Quality Models,”
International Journal of Computer Science Issues (1JCSI), vol. 10, no. 6, pp. 309—314, Nov. 2013.

[9] S. Manoj Wadhwa, “A Comparative Study of Software Quality Models,” International Journal of Computer Science and
Information Technologies (1JCSIT), vol. 5, no. 4, pp. 5634-5638, 2014.

[10] M. Moronge Abiud and P. Mbugua, “An analytical comparative analysis of the software quality models for software
quality engineering,” Comprehensive Research Journal of Management and Business Studies (CRIMBS), vol. 1 (2), pp.
15-24, Oct. 2016.

[11] M. Oriol, J. Marco, and X. Franch, “Quality models for web services: A systematic mapping,” Journal Information and
Software Technology, vol. 56, no. 10, Oct. 2014.

[12] M. Nei and W.-H. Li, “Mathematical model for studying genetic variation in terms of restriction endonucleases,” in In
Proceedings of the National Academy of Science of the USA, 1979, vol. 76, pp. 5269-5273.

[13] “ISO/IEC 9126-1:2001 - Software engineering - Product quality - Part1: Quality Model,” International Organization for
Standardization, 2001.

[14] S.S. Thapar, P. Singh, and S. Rani, “Challenges to the Development of Standard Software Quality Model,”
International Journal of Computer Applications, vol. 49, no. 10, Jul. 2012.

[15] B. Kitchenham and S. Charters, Guidelines for performing Systematic Literature Reviews in Software Engineering.
2007.

[16] R.J. Rubey and R. D. Hartwick, “Quantitative measurement of program quality,” in Proceedings of the 1968 23rd ACM
national conference (ACM ’68), New York, NY, USA, 1968, pp. 671-677, doi:
http://dx.doi.org/10.1145/800186.810631.

[17] M. L. Shooman, Probabilistic reliability : an engineering approach. New York, N.Y. : McGraw-Hill, 1968.

[18] D. Garvin, “What does ‘product quality’ really mean?,” Sloan Management Review, vol. 26, pp. 25-45, 1984.

[19] F. Deissenboeck, E. Juergens, K. Lochmann, and S. Wagner, “Software quality models: Purposes, usage scenarios and
requirements,” in Proceedings of the 7th International Workshop on Software Quality (WoSQ ’09), 2009.

11| Page

Confidential C

Annexes

A- First part of quality model classification and decision tool: get_synonyms.py

This short python program is the first piece of our tool: it makes a web request to www.atlas-
smeantiques.eu site in order to get a json based result of synonym and their corresponding
constellations. The first text box below is an example of screen display of that python script: it
looks for “functional” synonym. The second text box is the python script itself.

$ /get_synonyms.py functional
Request word => functional

Constellations:

Lvl: 0 =>
in working order, operable, operational, operative, practical, running, serviceable,
usable, useable, useful, utilitarian, working

Lvl: 1 =>
official

#!/usr/bin/env python
import sys
import urllib, json

active or not some debuge trace

debug = 0

try:
url = "http://www.atlas-semantiques.eu/view/synjson.php?r=" + sys.argv[l] + "&d=EN"
here is an exemple of URL
url = "http://www.atlas-semantiques.eu/view/synjson.php?r=functional &d=EN"

response = urllib.urlopen (url)
data = json.loads (response.read())
if debug:

print data

Request: our root word
print "Request word => " + data["request"] + "\n"

Word list: Assume that we are asking only EN => we have only one item
tab = data["words"][O0]
word list = tab["word"]
if debug:
print word list
Fermeture : lists of words associated => constellations
print "Constellations:" + "\n"
lvli =0
tab = data["fermetures"]["fermeture"]
if debug:
print tab
for each constellation, from the closest to the farest
for i in range(len(tab)):
elt = tab[i]
print "Lvl:", 1lvl, " => "
words = elt["wordRef"]
get all words of that constellation (concatenate for nicer display)
res =""
for j in range(len(words)):
we are getting only wordref, so we need to get the real walue
res += word list[words[j]]["text"]
if (j < (len(words)-1)):
res += ", "

print res + "\n"
1vl+=1
except:
print "Bad argument: expecting word to look-for as first parameter”

12| Page

Confidential C

B- Journal paper: IEEE Transaction on Software Engineering

Submitted on the 17 of June 2019, decision as rejected on 23™ of September 2019, Snapshots are

below:

B

Journal 2019 -
Qualimetry applied to

IEEE TRANSACTIONS ON JOURNAL NAME. MANUSCRIPT ID

Qualimetry Applied to Embedded Software
Development: Definition and Approach

Yann Argotti, Claude Baron, and Philippe Esteban

Abstract— Within the aim of delivering high guality level embedded software products, this paper tackles the gquestion of applying
gualimetry to embedded devel t. Beside the need of improving guality in that context and clarifying the
concepts related to gqualimetry and its aim - providing the foundation for quality quantification - the paper identifies the main road
blockers that prevents from a straight forward applicability of it. Thus, our investigations and resolution for sach of the blockers
conduct us to rationalize and propose solutions to reinforce the use of gualimetry, fixing some pi due to the discipline's
youth. We come up with several contributions: a unified conception for quality mode! resulting of our quest of a pattern for quality
model design, the use of polymorphism as an attribute to compare gquality models, and the design of the measurement refinement
process. To complete our answer, we analyze what is L th “embedded soff devel it” and theref: fak a
model describing and mapping eight distinct objects that are involved in the evaluation of the quality of our object of interest. As

a matter of fact, we conclude on the wider applicability of cur contributions.

Index Terms—Qualimetry, guality model, polymorphism, metrics, : engi ing, ion,

L 4

1 INTRODUCTION

ODAY guality is a key aspect that drives software devel-
Topment since its beginning. Delay and coding workdoad

reductions, technical back and forth optimization linked
to qualification, customer acceptance and sustaining phases
are essential stakes in project cost: solely, these activities
represent around 65% of overall cost and nen-quality costs
5% of total revenue [1]. As well, bad testing processes can
increase the risk of project delay or cancellation by 25% to
300% [2] and we can see regularly a worst case scenario
happening, turning reality into serious nightmare. Let us
mention a few: over the 1985-1987 pericd, Therac-25
causes massive radiation overdoses to six patients [3]; on
June the 4% 1996, Ariane 5 was self-destructed less than 40
seconds after ignition [4]; on September the 23™ 1999, the
Mars Climate Orbiter burned in the Martian atmosphere [5];
on August the 1% 2012, Knight Capital Group lost $440 mil-
lien in 45 minutes [6] and the Takata's bankrupt occurred in
June the 26% 2017 [7]. In the first four examples, the cata-
strophic event was a direct consequence of an uncaught
software bug in opposite to the last one, which was directly
linked to an unaddressed major defect in airbag, illustrating
that quality is a matter of all system types, including all sub-
systems that composed them. We also note that the three
first cases are more particularly within embedded software
scope.

Qualimetry [8]-[10], a 50 years old science aiming at
quality quantification, brings a set of good practices, fosters
dysfunction detection, enhances control. increases
efficiency and productivity, not only to individual

* ¥ Argotti is with the System Engil ing Dep Université de Tou
louse, INSA LAAS-CNRS, Renault Software Labs, Towlouse France E-mail’
yann.argotti@® laas.fr

* (Baron is with the System Engineering Department, Université de Tou-
louse, INSA, LAAS-CNRS, Towlouse, France, E-mail claude baron@iaas.fr

* P Esteban is with the System Engii ing Department Université de Tou-
louse I, LAAS-CNRS, Toufouse, France, £-mail : phifippe. esteban@iaas fr

000000 DT 00 £ 200x IEEE

13|Page

contributors but also to overall organization. Mastering this
scientific discipline is therefore decisive in terms of quality
characterization, assessment and control through standard-
ized or tailored quality models [11], metrics and controlled
processes.

This article guides our journey of applying qualimetry to
embedded software development, setting the focus on the
definitions and the approaches which are the preliminary
steps of this journey. Moreover, since gualimetry can be ap-
plied to any domain, narrowing the scope of our study to
the embedded software development domain doesn't pre-
vent our contributions to be extended and applicable to
other domains than embedded software. On the contrary,
its applicability scope is multi-systems and multi-fields ori-
ented. Moreover, our analysis methodology is inspired from
a diversity of domains, including concepts from systems and
software engineering, biclogy/genetic or socioeconomics
for instance.

Thereby, section 2 of this paper first addresses the con-
text and problems of qualimetry applied to embedded soft-
ware development. In this section, we study and rationalize
concepts related to quality, gualimetry, measurement and
objects of interest; we also identify the road blockers pre-
venting our journey to move forward, Then, the next sec-
tions review our contributions and solutions to overcome
the current road blockers. Consequently, section 3 intro-
duces a unified conception for quality model, crawling over
methodologies coming from various horizons, including
also qualimetry one. This section ends with the usage of this
unified conception in an example: the comparison between
ISO/IEC 9126:2001 [11] and ISO/IEC 25010:2011 [12] quality
models. With section 4, we introduce a new process to ra-
tionalize the transformation sequence of raw measure-
ments into quality measurements with a refinement pro-
cess. Section 5 focuses on our object of interest “the em-
bedded software development”, analyzing what it is really

Pubfished by the IEEE Computer Society

Confidential C

and which quality model, if any, is already covering ade-
quately it. The last section, &, finally concludes on the first
part of our journey, preparing next one,

2. CONTEXT AND PROBLEMS

From the introduction, we understand that it is fundamen-
tal to ensure that a right level of quality is achieved for the
embedded software.

But what are really quality and qualimetry? And, what
are precisely the concepts behind quality model, measure-
ment and object(s) of interest applied to embedded soft-
ware development in order to proceed it right?

2.1 Quality and Qualimetry

Quality is a quite popular field of interest for people world-
wide, with a relatively constant interest trend year after year,
confirmed by nowadays information technology such as in-
ternet search engines [13]. However, what also points out
from these search engines is the myriad of possible defini-
tions for this word, letting us with a sense of no precise
unique definition afterwards. So, our aim here is not to deep
dive on all possible definitions to conclude on the best suit-
able one, but rather build a core knowledge about this con-
cept to be able to define, characterize, use, evaluate and
predict accurately quality.

Starting from human history, we can consider that the
premises of quality were given by the 5% century B.C. Greek
philosophers that are Socrates, Aristotle, Protagoras, Hera-
clitus and Plato [14], [15] in the quest of "what is
knowledge: and later summarized by Aristotle with “8y
quality’ | mean that in virtue of which people are said to be
such and such [..] The body is called white because it con-
tains whiteness” [16]. Then, according to these early defini-
tions, even if an ambiguity remains due to people interpre-
tation, it appears that quality is an cbject property by itself,
and an object can be anything, from someone to some-
thing.

To proceed further, we are considering several sources
of word definitions. The first obvious one comes from the
Oxford English dictionary [17], where quality is explained
through two definitions, or interpretations:

- “The standard of something as measured against
other things of a similar kind, the degree of excel-
lence’ of something”

- "A distinctive attribute or characteristic possessed
by someone or something”

Naot only we retrieve the object property or attribute
characterization as well as the fact that an object can be of
any entity type, but also, now we are referring to a standard
for measurement or comparison versus similar objects,
which leads to the measurement of the excellence degree
of that object.

To complete our understanding of quality and since our
scope is within engineering field, we naturally consider well-

1 Excellence is different from quality but, from its latin definition exce/
fere, we understand that it corresponds to the noffion of “surpass”. Then
here, the idea is to shoot for the best.

£ Many other valuable contributions exist such as W.E. Demings [18], B.
Kitchenham and S. Pfleeger [19], D. A. Garvin [20], R.M. Pirsig [21], to cite
few, but again, the purpose here is not to debate on which definition is the

14| Page

|EEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

known intemational industry standards, limiting our focus
to two major standard organizations® in engineering: 15O
and IEEE.

Let us first consider the intermnational standard for quality
management, aka 1SO 9000:2015 [22], where quality is de-
fined as:

"The quality of an organization’s products and senices is
determined by the ability to satisfy customers and the in-
tended and unintended impact on relevant interested par-
ties.”

with this scope:

" The guality of products and senvices includes not only their
intended function and performance but also their per-
cefved value and benefit to the customer”

QOur second reference is not dedicated to quality by defini-
tion but is used by the Intemational Software Testing Qual-
ification Board (ie ISTQB) glossary [23]. This is the IEEE
standard glossary [24] where quality is defined this way:

"The degree to which a system, component, or process

meets

1 specified requirements.

customer or user needs or expectations.”

So interestingly, even if we are noticing differences in
their descriptions to reach quality and the object of focus
mainly due to each applicability context, we acknowledge
an existence of a convergence in the interpretation.

As a result, from these different sources, we summarize
that quality is defined, or characterized, by:

the set of distinctive intended, and unintended, proper-
ties of an object of any type that "become apparent during
its intended use (operation, application or consumption)”
[15] within the scope of a degree of excellence for that ob-

Ject.

Finally, there is a last base knowledge about quality we
must integrate which is ‘integral quality”. Indeed, integral
quality is the sum of quality and cost effectiveness (1) in so-
cioeconomic field [15] [25], where cost effectiveness is de-
scribed by the object properties linked to the input capital
for production and consumption of that object. The distinc-
tion of quality versus integral quality is important when we
use qualimetry (introduced in next paragraph) to look for
quality characteristics, quality model, measurement, assess-
ment and quality control.

Integral Quality = Quality + Cost Effectiveness (1)

Now that we have clarified what is beneath quality, let
see how to evaluate it thanks to qualimetry.

Qualimetry, from the Latin qualis "of what &ind” and the
Greek ztpse "to measure”, can be described as the science
of method and problem solving for quality quantification of
any kind of object such as service, product. people, project
or process [15].

The concept of quality quantification is not recent as was
indicating G.G. Azgaldov et al [15], the founder of

best one or build an history of the definition of quality, and therefore we
limit ourselves here to two commenly used reference standard organiza-
tion in embedded software,

* We remarked a debate about integral quality [25], however this aspect
is important as it is conceming cost characteristics which may vary for same
type of object of interest, depending on project model, for instance.

Confidential C

AUTHOR ET AL.: TITLE

qualimetry; J. Diez in [26] also clearly emphasized this fact
citing works done by H. Helmholtz in 1887 or by N. Camp-
bell in 1920. However, until late 1960°s the quantification of
the degree of excellence was exclusively done for only one
specific type of object at a time, primarily product oriented
one and without direct reuse or generalization over other
similar objects. On the beginning of 1968, in former US.S.R.
a scientist group of interest around problems linked to qual-
ity quantitative evaluation and control, published a com-
mon summary paper of their workshop [8]. The force of this
group was due to the fact that its members were coming
from a large variety of domain horizons and shared the
same concems. It was the ignition of an international dis-
cussion that lead to the birth of qualimetry, a new scientific
discipline, during 1968.

In addition, G.G. Azgaldov et al. [15] demonstrated that
qualimetry was not only a scientific discipline but a real sci-
ence by itself, reminding what Plato said on the 5% century
B.C. "Exclude from any science mathematics, measure and
weight and it is left with very little". In 1981, that science
was split into two distinct disciplines: theoretical qualimetry
[27] (i.e. focusing on problems and method issues, with a
mathematical view to object to evaluate) and applied
qualimetry [28] (i.e. application of qualimetry to evaluate
type of objects that were not evaluated before). We remark
also that qualimetry relies on domain-independent con-
cepts, or foundations, and therefore can be applied to any
domains.

To describe the structure of these concepts, we make an
analegy with architecture, borrowing Deric architecture vo-
cabulary. Qualimetry sits on an entablature, symbolizing
both theoretical and applied qualimetry aspects, which itself
relies on two architraves A) quality model (i.e. deriving ob-
Ject characterizations, following a set of rules, into madel)
and B) measurement (i.e. linking characteristics to metrics,
combinatory formula and decision thresholds to allow as-
sessment and quality control). This upper structure is sup-
ported by 6 pillars: 1) object analysis, 2) derivation rules, 3)
weight factors, 4) thecries of measurement, 5) aggregations
and 6) thresholds. Finally, the whole structure is founded on
object(s) of interest (i.e. object(s) candidate to be quality
quantified). Fig. 2 represents our proposal of the House of
Qualimetry and its Pillars [29]. making an analogy with the
House of Quality [30], where we can retrieve the three key
elements (object(s) of interest, quality model, and measure-
ment) that needs our attention in order to apply qualimetry.

In the next sections of this paper, we review and detail
the different elements that compose this House of Qualim-
etry, starting by the two architraves — Quality Model and
Measurement - and the foundation — Object(s) of Interest.

2.2 Quality Model, Measurement and Object(s) of
Interest
A. Quality Model

A quality model, for an object, is a theoretical descrip-
tion and charactenization of its quality [32], thus its creation
is a critical step in qualimetry. In the aim of creating quality

4 DAP stands for Definition, Assessment and Prediction.

15| Page

Qualimetry
Theoretical & Applied Qualimetry

Quality Model Measurement

Object(s) of Interest
Fig: 2 The house of qualimetry and its pillars [29]

model, we can rely on several works, that are chronologi-
cally presented here after.

In parallel to the birth of Qualimetry on 1968, Rubey and

Hartwirck [33] setup the first attempt to have an organized
software quality based on some code attributes with their
corresponding metrics. This initial study about quality at-
tributes were used as a basis for multiple work including the
ones done by Boehm et al [34] with the achievement of
software quality tree in 1976, Then appeared in 1977, the
Factor / Criteria / Metric (FCM) method by McCall et a/ [35]
and its generalization in 1994 by Basili er s/ [36] into the
Goal / Question / Metric (GQM) method. They were the
most usual methods for designing quality models; as an ex-
ample, ISO/IEC 25010:2011 [12], a reference standard for
systemns and software quality domain, is based on GOM.
Their principle was to reply to questions such as " what are
the object of interest quality goals, the questions related to
these goals and their corresponding metrics?. However,
with these methods, we miss some important aspects in the
design, generalization and adaptation methodology be-
cause the scope is narrowed to a specific product; for exam-
ple, its GOM focus may not fit the needs for slighty different
products.
In 2009, Deissenboeck ef al. [31] defined a categorization of
quality models over three different purposes: Definition, As-
sessment and Prediction (see Fig. 1). In 2013, Wagner [32]
consolidated the knowledge related to DAP models, devel-
oping further their descriptions and characteristics. Unfor-
tunately, he didn't provide a methodology to create such
model and his focus was restrained to two types of objects:
software product and software project.

Assessment
Models

Definition
Models

Prediction
Models

Fig. 1 The cenfric based DAP* classification [31]

Confidential C

In 2015%, Azgaldov er a/[15], with a sociceconomic per-
spective that can be generalized to any field, provided ad-
ditional characteristics, defined specific rules and methods
to accomplish the design of such model, and established an
algorithm for quality assessment. However, in their meth-
odology, they restricted themselves to only one specific
representation of model, a hierarchical one, also called ‘tree
structure’, while Wagner shown that other depictions are
possible, such as statistical model like the maintainability in-
dex done by Coleman et al [37], for example.

In parallel to these main streams of contributions, we
can cite various achievements for quality models. These
achievements are resulting by the elaboration and publica-
tion of guality models. We can summarize and illustrate
these types of achievement i the ISO/IEC 250nn [14], [43]-
[47] examples done from 2007 to 2016. Unfortunately, none
of them is giving either methods, rules or general charac-
teristics about quality model design but rather provide
static quality model with its charactenistics linked to the ob-
Ject to be measured. In the ISO/IEC 250nn case, the object
of interest is mainly software product, even if we could also
consider system product.

Thus, we don't have a unique and obvious approach for
creating quality model but rather several more or less dis-
tinct ones that need to be unified under the qualimetry ban-
ner to design properly our quality models.

B. Measurement
The second key element, fundamental to proceed from a
quality model definition to guantification, assessment and
quality control, is the measurement. Measuring is the action
to take a measure, that is to say, to "ascertain the size
amount, or degree of (something) by using an instrument
or device marked in standard units"®.

Historically, we find three may streams of measurement
theory [43]. The "representational measurement” theory, in-
itiated with the work of von Helmholtz in 1887 [44], focuses
on setting a relationship between objects and number sys-
tems wia equivalence classes. A second theory, the "opera-
tional measurement”, was introduced by Bridgman in 1927
[45]; its focus is put only on operations used to proceed to
measure, neglecting relationships between equivalent
measured objects. The last stream is not a single theory but
rather a sort of "melting pot” of various other theories [26],
[46], minor in front of representational and operational the-
ories. In many of these theories, major or minor, there is a
common factor that is underlying: the scale. We note also
that despites which definition is used, "size amount, or de-
gree” and "standard units” are direct references to the scale
theory of measurement.

Indeed, here scale is essential when we measure quality
attributes with the goal of either validating that the meas-
urements are matching some criteria (e.g. being above a
certain threshold) or controlling quality by comparing their
difference over a certain period or even, predicting what will
be quality measures. It enables measurement interpretation,

* We are tented to say that this work occurred in 2013 but we didn't find
any dear indication. So, we are indicating 2015 because of the date of this
fransiation from Russian,

® "to measure” definition from Owford dictionary

16 |Page

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

standardization and comparability by describing mathe-
matically types of element with their corresponding opera-
tors, properties and functions.

In 1946, S. 5 Stevens” introduced and published a theory
of scales of measurements [47] which is part of the repre-
sentational measurement theory and still widely used by
scientist nowadays despite criticism from statisticians [48].
Stevens categorized data into four typologies or scales:
nominal, ordinal, interval and ratio.

The 'nominal’ scale represents the group of data related
to labels or type of numbers and words or letters (e.g.
{"Red", "Green", "Blue"} or {"True", “False"}). It can be used
for classification and membership assessment. The ‘ordinal’
scale corresponds to the data set characterized by order.
rank, and therefore allows comparison and sort of elements:
for instance, it is possible to tell that a quality result is better
or worse to another one. The third scale, ‘interval’ is extend-
ing the field of possible operations one step further by add-
ing difference and affinity operations between values to be
meaningful. Thereby, distances between measures are used
to take action and decision. For example, man can tell that
a quality result is not only better or worse than previous one
but also about how much it progresses in term of difference.
And last scale is 'ratio’. At that level, and as its name is indi-
cating, the ratio - or magnitude - between measurement
values is relevant and useful. It has also the important prop-
erty of having a unique and non-arbitrary zero value (ie.
Kelvin temperature scale is a good illustration of a ratio
scale since its zero absolute corresponds to -273.15 © Cel-
sius, while Celsius temperature scale is an interval scale).

Another aspect, independent to scale definition but
linked to measure, is measurement property. In fact, there
are two main properties® that are critical to qualify a meas-
ure [50]. These properties are reliability and validity of the
measure. The reliability means how repeatable over time the
measurement is providing consistent results (i.e. with same
exact condition and same exact way to measure, measure-
ment values must be equal). Part of reliability is measure-
ment error and intemal consistency. Coencerning validity,
this property means whether or not measured value is
measuring what we are expecting to measure; it includes
content validity, construct validity and criterion validity. The
Fig. 3 gives a good visual explanation of impact of these two
measurement properties, based on the analogy of “target
shooting”. Here, our “sniper” is trying to hit the target
shooting several times in the same conditions. If all shoot-
ings are in the target, result is valid, and if shootings are

©®OE®

b
Vaalid Nk s Vil B

N fteliad

et Vil Rckiabilc 7 Vil

Fig. 3 lllustration of the concept of reliability and validity of measures
[49]

T &n American paychologist who was the founder and director of psycho
acoustic laboratory at Harvard University.

B It is possible to have additional properties of measurements likes some
of the ones use in heafth related field [50], construct validity, responsive-
ness far measurement tools or interpretability, for instance,

Confidential C

AUTHOR ET AL TITLE

close together, we can conclude that the shootings are re-
peatable over time and therefore result is reliable.

Starting from left to right, on the most left target, we notice
that the shootings are both spread (i.e. not quite repeata-
ble), inside and outside the target (i.e. they are not valid
shootings). On the second target, the shootings are still
spread but now all of them are inside the target we can
conclude that the shootings are valid but not repeatable, or
reliable. With the third target, all shootings are grouped but
some of them are outside; we understand that shootings
are repeatable over time but not valid. Finally, in the last
case not only shootings are close together and they are all
inside the target; the result is therefore valid and reliable.

Parallelly to these characteristics, we have the rating of
each guality characteristic, which consists in combining
measured value to a scale point on an ordinal scale [51] (e.g.
{Lowest; Low; Medium; High; Highest}), aggregation opera-
tors [32]. [52] to combine multiple or range of measures into
one, for instance, and thresholds [15], [32] to support deci-
sion of rejecting or, on the contrary, accepting during qual-
ity assessment or control.

Unfortunately, beside the enumeration of measurement
properties or characteristics, the only available process re-
lated to measure consists in asking user to pay attention to
properties and then aggregate measures done via some
measurement functions [44]-[47]. Thus, there is no rigorous
methodology or process taking benefits of all these prop-
erties or characteristics to transform raw measures into
quality measures,

C. Object(s) of Interest

Qur last key element in our journey of applying qualimetry
to embedded software development corresponds to the
objects of interest that we have behind "embedded soft-
ware development”. We put an 's’ to objects because we al-
ready feel that there is not a single object behind this con-
cept and immediately, we can cite two, embedded software
product and project.

The life cycle of a software, like a system, is a suite of
more or less distinct consecutive stages. These stages are
implemented over 14 technical processes, if we refer to
ISO/IEC/IEEE 15288:2015 [53] with regards to system con-
text, with 18 additional software specific processes®, if we
refer to ISO/IEC 12207:2008 [55], and some of theses 32
processes are being performed in parallel. A typical product
life cycle, shown in Fig. 4, is provided by ISO/IEC/IEEE
15288:2015, addressing " Systems and Software Engineering
- system life cycle processes” [53]; this life cycle gets its
foundation from ISO/IEC/IEEE 24748-1:2018 [56]. It prom-
ises five main typical stages. The first one is the concept
stage where new concept, idea, technology or feature is
studied, including some exploratory prototype, requirement
elicitation and project planning. Second stage is the devel-
opment one. Here, the system architecture and design are
created, the initial system is implemented and qualified. In
the production stage, the system is manufactured or

“ These 18 software specific processes are grouped into three categories:
7 software implementation processes, 8 software support processes and 3
software reuse processes. However, since 2017 and the new version
ISCYIECAEEE 12207:2017 [54], these processes are included into technical

17 |Page

produced and then delivered to customer. We regroup the
next two stages into one because they are happening in
parallel. Indeed, utilization and support stages correspond
to the operational and evolution life of the system which
includes deployment, use, corrective and evolutive mainte-
nance, The final stage corresponds to the retirement of the
system, or say in other words, the system end of life man-
agement.

() e) =)

Fig. 4 Typical System Life Cycle from ISOAEC/IEEE 15288:2015 and
ISCYIEC/IEEE 24748-1:2018

Another model, not antinomic to this typical one but in-
tegrating much better the system or software evolution as-
pect, is the Staged Model [57], [58] illustrated in Fig. 5. The
move across the five stages, that are Initial development.
Evolution, Servicing, Phase - out and Close down, is condi-
tioned by the level of conservation of the software or the
system familiarity, for instance.

Evolution Serviciug Phase-out
Changes Patches atches
¥ | ¥ l A
Initial 5 o i
= Evolution Servicing Phase-out = Closa down

Development
Fig. 5 Life Cycle: Staged Model

In this model, the software product is moving then from
a stage where it is under development to operational stages
where it is in use and in eveolution, until its close - down,
corresponding to its retirement. During the initial develop-
ment stage, the software is created according to customer
requirements. The end of this stage is triggered with the first
version delivery of the software product. The second stage
corresponds to evolutions, including corrections, of the
software product. Here, the developments are associated to
the product in use feedback, environment evelution and,
customer and market needs. The next stage, servicing, is
close to the evolution one, but customer support is more
corrective and there are only minor and specific evolution-
ary changes. The software product is moving to that stage
because of a serious loss of familiarity'®. When the loss of
familiarity reaches a level where effort cost is considered too
high by the software organization, we are entering to the
phase-out stage which should be maintained until the soft-
ware product replacement is developed and delivered to
customer.

Both ISO/IEC/IEEE 15288:2015 and Staged Model life cy-
cle highlight that software product quality model is some-
how a polymorphous quality medel of our product of inter-
est. The polymorphism means that a generic quality model
depicting software product, for example, can be derived to
a variety of more precise quality models, depending on the
type of objects (e.g. web-service software, operating system

processes for implementation processes, into technical management pro-
cesses for suppodt processes and into for reuse processes.

9 Software product complexity, major environment changes or f and loss
of key elements {e.g. a software architect) prevents evolutionary changes
o be handled with a reasonable cost for the software organization [58].

Confidential C

software, engine control embedded software ...). It means
also that the quality model may evolve based on the pro-
cess of life cycle stage, for instance development versus uti-
lization stage. If we take the ISO/IEC 25010:2011 [12], we
have two strictly distinct quality model forms associated to
software product. The first, focusing on system/software
product in development, is composed of 8 characteristics
and 31 sub-characteristics while the second one, focusing
on software in use, is composed of 5 characteristics and 12
sub-characteristics (see Fig. 6). Unfortunately, there are
nothing related to the development phase versus evolution
phase.

ISOTEC 25010
(2011} - Quality Model
Syatem / software pradiet
| Fumetinnal switabilit
Performance ffiviensy | |- P compcmess
1 |- Fundon comermeess
nmctiomal pgpropitmess
| Compattilisy
Usalsllity Coesemr
Interopardeii:
Apprarlnnes ecomisiblry | |- Reliabiliey
Laarbli | g
Openandry | Mihrity
User s pemeision | Aty
User bperfuce seibericy - Faskioberanc e
Agceribdry Rec oveabiley
Secarity |
oty | | Maintnimakility
L
Hem-repudam Bidalariy
Arcamisiiity | Rrmabiiey
amtemicky | - Amymbiky
Partallity Dl
Terubisy
Adzpebgn |
Binabiblny
Wepbicebdy

Quality in nse

Effectivencss
Efficbency L Effectiveses
Tifickncy Satistactien
Freedom from ek Usefidis:
; Tt
Teononk: nrk migadn. — —
Hexkh 1né oafary cxk Mgt L Comton

Exvwomennl ik ekigaios - - Centaxt

wrage

i cormem onpletentes
Flnsriry

Fig. 6 1SOJE 25010:2011 quality model, including "System [Software
Product” model and "Quality in uss " model
In conclusion, this quick analysis demonstrated that
there is not an obvious nor existing answer to identify the
objects of interest for our case study and their respective
quality models. Therefore, we must perform a deeper ana-
lyze not only to list all those disctinct objects of interest but
also clearly identify the relationships between them in a
matter of understanding their mutual impacts''.

1 This is a mandatory aspect when considering prediction and resuft
analysis, associated to assessment or quality control.

2 We use definition of “meogle” from the Oxford dictionary [60] in the
domain of “quality”.

18| Page

|EEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Over section 2.2, we have seen that we have three types of
problems to solve in order to be in a position where we can
apply gqualimetry to embedded software development:
quality model conception, measurement transformation
and objects of interests belonging to embedded software
development. Next sections sequentially address each of
them.

3. A UNIFIED QUALITY MODEL CONCEPTION

During the previous sections, we settled the foundations of
the quantification of the quality. Indeed, we understood
that quality is the reflection of distinctive intended and un-
intended properties of an object that "become apparent
during its intended use (operation, application or consump-
tionS" [15], and that qualimetry is the science to quantify
quality, using quality models.

Unfortunately, and even if there were some commaonal-
ities between the various characterization approaches of
quality model, none of them encompass the others. 5o, in
the following paragraphs, we elaborate an inventory of
quality model attributes, reviewing and comparing the de-
tail attributes with the aim of identifying a pattern in quality
model design and consequently propose a unified concep-
tion for quality model.

1) "Evaluation context and plan” attribute: The first con-
sideration that reguires our attention is the definition of
quality model evaluation context [15] and plan [59]. These
elements correspond to the documentation aspect about
requirements, motivation, purpose, limitation, applicability,
stakeholders, object(s) of interest, usage context and any
details about evaluation within the quality model. This is
close to a master test plan [23] where we aim at document-
ing all major information that describe how testing is
planned, covering and managed at the various levels. Most
of the time, this critical document is missing and without
properly performing that step, we won't be able to have a
quality model that fits our needs.

2) "Purpose” attribute: By definition'” a quality model is
a representation of the quality of an object of interest over
a proposed data structure. That representation can be also
used to "assess andl/or predict quality” [32]. Therefore, we
see that a quality model can be characterized by its in-
tended purpose, starting from quality definition, then as-
sessment and ultimately prediction.

Definition. As we indicated previously in section 2.2.A,
this categorization was first introduced by Deissenboeck et
al[31] via the centric based DAP classification (cf. Fig. 1). We
found at its center the quality model describing all the qual-
ity characteristics and properties related to the object of in-
terest. A good illustration” of definition models are the
models described by ISO/IEC 25010:2011 [12] (cf Fig. &

3 We consider ISO/IEC 250nn series as good illustration because we
share the same context software product.

Confidential C

AUTHOR ET AL TITLE

where we created a jointed version of the two' quality

models of this standard). Indeed, a quality model of soft-

ware product can be decomposed into two categories:
the main quality characteristics of software product,
composed of one functional characteristic, itself re-
fined into three sub-characteristics, and 7 non-func-
tional characteristics with their 28 sub-characteris-
tics in total.

- the quality characteristics of software product in

use, described over five characteristics and 12 sub-
characteristics.

Assessment. If we complete the definition model with
further information like, for instance, metrics, aggregation
methods, acceptance or reject threshold, assessment pro-
cess, then we come to the assessment model, If we take the
previous ISO/IEC 25010:2011 example, assessment -in-
cluded in evaluation process- is described by ISO/IEC 25040
[61]. completed by ISO/IEC 2502n [38]-[42] with regard to
measurement aspect (see Fig. 7 illustrating a possible exten-
sion for reliability/maturity assessment and linked to soft-
ware product quality model definition).

Prediction. The last advancement level (cf. Fig. 1) of the
quality model is the prediction one which is used to predict
object quality, relying on statistical and data learmning or
mining methods applied to assessment model. So, jurmping
back to our example, we are reaching the current limit of
the ISO/IEC 250nn standard. Prediction is the area of busi-
ness intelligence and decision support system (ie. DSS)
tools. Igbal and Babar [62] are providing an example of such
DSS based on ISO/IEC 25010:2011 and fuzzy logic.

Eventually, we can find 2 model combining these three
purposes: this is multi-purpose model. We can cite as a
multi-purpose model example COQUAMO [63] model. Nev-
ertheless, such model has limitations due to unclear rela-
tionships between the diverse types of measurements that
are linked to project phase, quality factor (also known as
quality characteristics) and purpose of the measurements
(e.g- specification and design metrics, module metrics or
testing metrics).

3) "Quality Evaluation Method (QEM) to assess qualit”
attribute: The third attribute that describes a quality model
is Quality Evaluation Method (QEM). We can find the con-
cept in sociceconomics field [15]. The idea behind is to
identify how accurate will be our assessment and what type
of source of information is going to be used to identify qual-
ity properties. The QEMs are split into two parts done se-
quentially.

First, we must decide which method to apply to assess
quality over three possibilities: rigorous, short-cut and ap-
proximate. With a rigorous method, as we could imagine,
‘we are considering all possible known valid approaches and
technigues to evaluate quality property value, integrating all
parameters that affect this property. Certainly, such methed
gives minimum error in the assessment, and then maximum
of reliability, but the drawback of this exhaustivity is that it
requires an extreme work effort. At the opposite, we have

*# In this standard, we have a third quality model but dedicated only to
data quality that may be handled in the software product but not charac-
terizing the guality of the software product So, we are skipping it here,

19| Page

the short-cut methed where we consider only single value
for each property. The result is less intensive in term of
workload, but we have to deal with a possible maximum er-
ror and minimum reliability allowed. The third method is
simply a mix between rigorous and short-cut: that tradeoff
is called gpproximate method.

system / Seftware product quality model
(fram ISOTEC 25010

Fumctional voirabiliny

| B covepiesenens
| T s
T s

Pefarmiance o ficirncy

 Sr——
[M-
ity
©amgpanibiliny
En sty
Emropeeabiles
Socuriey
Comtdimte;
R ——
Aot
r——

Unatdlity

it ressgabdin
Lossmabtey

| —
i . Assessment part extending Msturity
Amsilley sub-characteristic of Quality Modei
Reabaey
e .
et R
T Bereen Febes ST -,
[ra——— .
[e F— S,
s Meariar B
St 14 a1 5
s %
Ty [
R Taees]
., s Mraran L
N, Tranan Fored
s i
., [—
By
jorees e, o
bt i
Rty

Maintatnaldiny

Fig. 7 Example of assessment model extending ISO/EC 25010
software product quality model

4) "Source of information for value in QEM" attribute:
Once decided how exhaustive and accurate our quality
model is going to be to assess quality, the second step with
QEM is to pick up which method we are going to apply to
identify the sources and weight factors of each indices and
properties. As previously, we have three levels based on the

Confidential C

implication of experts to handle those identification tasks.
Proportionally to expertise involvement magnitude, we
have expert method, hybrid method and non-expert
method, also called analytical method.

5) "Data organizational type” attribute: A fifth attribute
of quality model is about the way of combining and organ-
izing the data, and their relationship, related to the quality
knowledge such as quality characteristics and sub-charac-
teristics, for instance. We can identify three main distinct
data organizational model types [32]: hierarchical, meta-
model based, statistical and implicit model.

The most common type of quality model is the hierar-
chical (or tree) model (e.g. Fig. 6). Quality elements are or-
ganized starting from the most general concept down to
the finest details. Moreover, each level of the tree comre-
sponds to the same level of characteristic abstraction and
can regroup same type of sub-characteristics under them.
Also, due to the simplicity of how to arrange knowledge and
link elements together, this is the preferred solution for def-
inition model, We note as well that one of the first software
quality model, done by Mc Call in 1977 [35] (cf. Fig. 8), was
a hierarchical based model composed of three product
stage categories subdivided into a total of 11 quality factors,
themselves regrouped into set of two to five quality criteria.

The next quality model data organizational type, meta-
maodel, is aiming to help building specific model. It is com-
posed of more generic and abstract elements such as qual-
ity charactenistics, factors, properties, metrics and rules
linked together. Fig. 9 is representing a meta-model we pro-
pose, which can be used to derive specific assessment qual-
ity model for software product. To illustrate the meta-model
concept applied to quality model, we build in UML this
meta-model generalizing the software product quality
measurement reference model defined in ISQ/IEC 25020
[32] together with the relationship among properties to
quantify, measurement method, quality measure elements
and quality measure that are described in 1SO/IEC 25021
[33]. However, even though a metamodel brings some ge-
nericity and over the existing meta-model set, it does not
exist a quality model applicable to any case yet. This is also
confirmed by Wagner is in [32].

The third and last type we are considering is the statisti-
cal and implicit model. Its particularity is to link not deter-
ministically measurement with corresponding quality char-
acteristic, supporting the explanation of influences or im-
pacts, but rather statistically, exploiting tools like, for in-
stance, Bayesian Network [64] or Bayesian Belief Network
[65]. Such meodel is often used for prediction purpose (e.g.
the maintenance index model defined by Coleman et al

[37D).

6) "Derivation rules” attribute; Next, and therefore sixth
attribute to include into our quality model creation, is di-
rectly bonded to the hierarchical or tree structure, As a mat-
ter of fact, tree conception must rely on a set of rules to
denive it from set of quality property or characteristics. We
can certainly exercise some computer science theory about
tree balancing, but theoretical qualimetry has formalized
around 30 rules to support adequately those tasks.
Azgaldov et af [15] emphasize the most important ones.

20| Page

IEEE TRANSACTIONS ON JOURMAL NAME, MANUSCRIPT ID

TABLE 1 is listing the 10 main global derivation rules while
TABLE 2 is focusing on the b main specific ones.

Me Call Quality Model
(1977)

Product Operathn

Tracehliy
- Correctnesy | Cossiteecy
Comghetcarsi
- Enon sderarce
- Reliabiliry ;“‘“’“
L Seplicir
Execuion rificms
b ey [e
Actess conmd
i
¢ Thinieg
Usability & Camssicatirars
Dpriabidty

Product Revislon
Camstaney

gl
© Mishitanability - Cocormess
Soddum
Self Desergthveness
Modadarirr
Conrealy
Expratibiy
Sl Chwncrigerenen
iy
Mol
+ rrwsenynm
el Dearigahene i

Flexibitiry |

Testability

Product Tramition

Moabduey
Se Desepeveneny
Macbime mkpradeaze
Softmare v adepralese
Gonamir;
Modidariy

| safrware nmem rdepessesce
Machme ilegendens
Self-Descsiptiveness

Sdoddaris

Portability

Reusability

Dty commaraley
Fig. 8 — One of the first software product quality model: McCall (1977)

Software Product , , Software Quality

1 1
. 1

; Mensurement
Function

= X
1

Fig. 9 A meta-medel proposal of ISO/IEC 25010 with ISOMEC 2502n

T) "Weight factor" attribute: Seventh attribute of quality
model interest is weight factors, That attribute is defined for

Confidential C

AUTHOR ET AL.: TITLE

each characteristic, sub-characteristic, property and index of
our quality model. It corresponds to the importance that
each element has against its peers’ elements (i.e. the ele-
ments located at the same level of hierarchy in a tree case,
forinstance), so their impact could be decisive. Hence, spec-
ifying them may require a certain expertise.

TABLE 1
GENERAL RULES FOR QUALITY MCDEL TREE DERIVATION
| 1d | Rule
Global rules

1 | Maximum height of free
Branch a tree until only simple or quasi-simple properties

2 remain at its top ter

3 | F & Indifference of Properties in a Group

4 Exhaustive consideration of the Application features of
an object

5 Exclusion of reliability "> properties (ie this must be part

| of integrated gquality index => Kus)
| & | Structural rigidity of the primary tiers of a tree
| General sub-tree rules
1 7 Division by an equal characteristic
| & | Functional orientation of property statements
| | Necessary and sufficient number of properties in a
group
| 10 | Reference number of purpose properties within a group

TABLE 2
SpeCIFIC RULES FOrR QuaALITY MoDEL TREE DERIMVATION
Id | Rule
Specific rules for the application of the expert method to
weight factor
Random order of properties in a grou
12 | Mini n number of properties in a group (max < 9
Specific rules to be used if the amount of information obtained
in a quality assessment can be reduced thought the use of the
rank scale
Exclusion of equally expressed properties when the
rank scale is admissib}
14 | Truncated tree when the rank scale is admissible
Specific rules to be used if the amount of information obtained
in a quality assessment may/may not be reduced by more pre-
cise methods

13

15 Incomplete tree when a short-cut assessment of quality
is admissible

16 Complete tree when exact quality assessment alone is
admissible

8) "Polymorphism attribute: In addition to the attributes
we enumerated, to take into account our remark in section
2.2.C related to the capacity a quality model to describe dif-
ferent type of objects, we are proposing to add a last attrib-
ute that we call polymorphism. This is the same concept that
we have in object oriented programming [66]. We note that
a quality model can cover multiple "forms” of objects, but
also it can be a "form” of another quality model, inheriting
from it. That polymorphism can be linked to either differ-
ences between objects of interest or the development life
cycle phases of the object(s) of interest. We complete this
concept with a characterization of its degree versus other
quality models,

' Reliability include storability, faultess operation, bility and
durability ; Published via @ Russian regulatory documents {GOSTs) decree
[15].

21| Page

Indeed, we evaluate the degree of polymorphism m us-
ing nucleotide diversity formula (2) introduced by Nei and
Li in 1979 [67] where we consider the analogy of DNA se-
quences as quality model characterstics sequences and
therefore x; is the frequency of the £th sequence in the
quality characteristic / sub-characteristic population and 7,
is the number of quality sub-characteristic differences per
quality characteristic site between the ith and jth sequences.

= E:; (2)

To finish on the quality model topology enumeration,
we have been reviewing height distinct elements that must
be taken into account in order to appropriately construct
the expected quality model: " Evaluation context & plan’,
“Purposes”, " QEM to assess quality”, " Source of information
about values in QEN, " Data organizational types”, " Deriva-
tion rules”, " Weight factors" and " Polymorphism'”. Further-
more, we have noticed in the literature three main streams
of works that summarized the characterization of quality
model. Wagner [32], with a focus around software product
and project, explains and details general attributes of qual-
ity model. The second one, ISQ/IEC 250nn [12], [38]-{42],
[61], like the myriad of quality models that are published in
the literature, is providing specific quality models with no
characterization of quality model to help to design other
ones; we also nate that the focus here is software product.
The third one, Azgaldov et al [15], is following a socioeco-
nomics approach; it gives quality model descriptions and an
assessment methodology.

i

It is interesting to note that none of these approaches
simultaneously contain all those attributes with their full set
of distinct contents (e.g “purpose” attribute has {"Defini-
tion®, “Assessment”, “Prediction”, "Multi-purpose”} set of
distinct contents). We remark that & of theses attributes are
shared among the different approaches, one attribute is
unique, the derivation rules, belonging to Azgaldov et al.
and one attribute is new: the polymorphism. Furthermaore,
with the comparison synthesis of these works over the qual-
ity model attributes, done inTABLE 3, we can easily highlight
the element composition, or union, that we must perform
to create a unified conception for quality model. Our result
is summarized in Fig. 10 and represents all the ordered steps
to follow sequentially during quality model conceptions.

Thus, our proposal consolidates current qualimetry field
related to quality model conception, based on knowledge
and methodclogy coming from system and software fields.
In addition, we add a missing concept that we consider as
fundamental on both quality model design, implementa-
tion, comparison and evaluation: the polymorphism.

To illustrate the use of this work, we exercise our 8 quality
model attributes against two standards: ISO/IEC
9126:2001[11] and ISO/IEC 25010:2011[32]. The second
standard is the official new substitute of the first one, and
therefore corresponds to its evolution which is confirmed
in ISG/IEC 25010:2011 document: “This Irternational
Standard rewvises [SO/EC 9126-1:2001, and incorporates

' There exists a "magic number” which is 7 +2” in experimental psychol-
ogy corresponding fo the number of units an individual can handle,

Confidential C

10 |EEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

the same software quality characteristics with some TaBLE 3
amendments. COMPARISON OF THE THREE MaIN DISTINCT APPROACHES SUPPORT-
= The scope of the quality models has been extended to ING QUALITY MOD;EJEC;:'?SAHON
& . . moQel
include compf:rer s}:srems, and qua.-’:t}_' in use from a sys- Stream of ap- lsuch as ISO/IEC |Azgaldov et ai
tem perspective [..]". TABLE 4 summarizes the results. We pioach Wagner 321 begnn 1121, 381 151
remark that the degree of polymorphism which represents [421, [61]
the distance {|.e. variety) between the two quality models i i o Proiectand [system & Soft
is clearly showing that they are 6?.9%_. d_n"ferent despite the uality "’:’ Software are product |Any area
fact that the other attributes are similar. Therefore, the op product and in use
proofed reality is fhat is |E not a s.:mple extens;or! or E\.:olu.— 47| Evaiuaton - amaton o [Falustion con-
tion but rather a "drastic E_.-'oluhon that may brings risk if context & plan pl text
ISO/IEC 9126:2001 was previously used successfully, forex- |
ample. + Definition
2 % » Assessment |+ Definition Definition
urposes |, predicti + Ass . s
Unifled Quality Model Concoplisn N Mrslé-plsg teval:agisi?:r:)arﬂ + Assessment
o pose
i1 Evalmation Context & Plan * Rigorous
i i QEM: method [Mot specified c method
2 Purpose ' #3 |tp assess qual- but assumes Notspedfied bu * Short-cut
H H : 2 @ssumes approx-
i approximate e method
Assesamen i method + Approximate
i ericum method
; Malti parpest I QEM: source » Expert method
{3 Quallty Evalustion Metbods (QEM) of information [Not specified |Not specified but |+ Non-expert
: o msvess quality i 4 about values |Dutassumes fassumes expert method (i.e. ana-
e il i in QEM expert method method lytical method)
i + Hybrid method
Approximate meibod ris 2 = Hierarchical
: = Organiza- |, peta-model |+ Hierarchical L]
4 (mality Evaluation Meibods | b = #5 i
s Sowrs af Bilormtion ot valist, © tional types |, seatistical |(» Meta-model) || Ferarchical
H and implicit
Expert methed H t =
Ny 1t method © - - [~
i n\::::.n.« | #6 rules 30 rules
5 Duta orgaseationsl types i .#7 Weight Per property / |Per property/ Per property /
: Seatne factors characteristic |characteristic characteristic
i [#8|Polymorphism - = -
Additional Assessment al-
& Dwrivation ey i -
Method gorithm
Grneral mubey
& Cilohal niben
1 Greneval ssb tree rales
Specific rules TABLE 4
T A i OUR 8 QuALITY MODEL ATTRIBUTES EXERCISED VS. SAME STAND-
e v O pe— ARD EvoLumion: ISO/EC 9126 & ISO/MEC 25010
T e e Attribute ISO/IEC 9126:2001 | ISO/IEC 25010:2011
T Negt Gactecs Information Technol- | System [computer ori-
Per bt ke Evaluation con- | ogy Software prod- ented] & Software
rrege o ¢ Beat text & plan uct guality & quality product quality, quality
s 4 in use inuse & data quality
T & Petymrphim 1 Definition & Definition &
i i : #2 | Purp: A [evalua- [evalua-
g paloymade. | tion) tion)
QEM to assess
3 5 Short-cut method Short-cut method
quality |
QEM as source
gd | of information Hybrid method Hybrid method
| | aboutvaluss
Data organiza- . . Hierarchical (& meta-
5] Honaltypes Hierarchical model)
Fig. 10 Our unified conception for Quality Model Bt Respect of giobal | Respect of global rules
To complete our unified characterization proposal, and [® | rules ;'eslw:: ex?'::f’" :5'"‘ e;_m:ﬂ_t on o e
. b ruie relia Igt | 11’2 301 !EI
since two of the quality moc_iel pUrposes are assessment and 7 Weight factors | Not weighted Notweightel
prediction, we must consolidate it with the measure aspect. [, [D=sr=e ot poly- | 0.6752 (0= id=ntical; 1 - 100% disjoin=d]
Next section deals with this topic. morphism [53 leaf characteristics, 32 unique, 8 similar]
22| Page

Confidential C

AUTHOR ET AL TITLE

Faw Saale

Measures

= Measure proporics
- Mnthemstical operstors
- Permissible Stafistics

T—a Saled
Mezisures

Valid & Reliable
Sealed Measures

Rated, Valid & Reliable
Senled Mensures

Weight Fuolors
sub-characterstic measures

Aggregation Aggrezation
purpose operubor
&iun:iuw
Rejeet
Quality Aceeplance
Measures Thresholds Target
Helerence

Fig. 11 The measurement refinement process

4. THE MEASUREMENT REFINEMENT PROCESS

Measurement and metrics are fundamental complements
to quality model. Thanks to them, we are in the position
where quantification, assessment and quality control are
possible. Thus, we start from the quality characteristic ele-
ments, in our quality model, that don't have any sub-char-
acteristics called indices", and process up to the object to
evaluate, We have discussed in section 2.2.B, a certain num-
ber of properties or characteristics. Regrettably there isn't
any defined process integrating all of them in order to
transform a raw measure into a quality measure, in spite of
an existing natural order’® between some transformation
operations. Therefore, we propase to fill this gap by intro-
ducing a measurement refinement process depicted by Fig.
1.

" In quality model represented via a hierarchical {or tree) structure, the
indices are also called the leaves (of the tree).

'8 For example, scale transformation should be done before aggregating
measure, aggregation processing should ocour before acceptance thresh-
olding.

23| Page

The first transformation step for a raw measure is to as-
sociate it to the right scale, starting from 5. 5. Stevens ‘scales
[47]. This is the most crucial step because this operation al-
lows the measure to be stuck to a mathematical set and op-
erators. We are then in a position where we can operate,
process and manipulate the measures. Moreover, at this
level, we get the knowledge of permissible statistics and dis-
tributions that are appropriate on this measure based on
the associated scale.

The next processing task is the assessment of reliability
and validity of the measure. Thanks to the scale we have the
mathematical tools to evaluate these two key properties. If
the measure is neither reliable nor valid, we reject this meas-
ure since we consider it as noise'®,

Now that we have a valid & reliable scaled measure, we
can start interpreting it by rating it. The rating task, which
depends on the type of scale that it is used, consists to give
a coarse interpretation of the measurement. TABLE 5 and
TABLE & are examples of rating values depending on two
scale types, nominal and ordinal scales.

TABLE &
RATING NOMINAL SCALE ACCORDING TO ISO/IEC 33020
FEE- Meaning Description
ting
Mot | There is little or no evidence of achievement

N L of the defined process attribute in the as-
achisved
sessed process.
| There is some evidence of an approach to,
and some achievement of, the defined pro-
cess attribute in the assessed process. Some

Partially

hieved
achisvs aspects of achievement of the process attrib-

] ute may be unpredictable.

There is evidence of a systematic approach
to, and significant achievement of, the de-
fined process attribute in the assessed pro-
cess. Some weaknesses related to this pro-
cess attribute may exist in the assessed pro-
cess.

There is evidence of a complete and system-
atic approach to, and full achievement of, the
Fully defined process attribute in the assessed pro-
achisved cess. No significant weaknesses related to
this process attribute exist in the assessed
process.

TABLE 6
RATING ORDINAL SCALE IN PERCENTAGE VALUES ACCORDING
TO ISO/IEC 33020

Largely
achieved

Rating Meaning Range values

u N 0o £ 15% achievement
achieved

po | PR | o 10 < 50% achievement
achieved |
Largely .

L < > 50% to £ 85% achievement
achieved

F Futy > B5% to < 100% achisvement
achieved

To continue exploiting and enriching the measure, we
aggregate it. For this operation, we have to select the ag-
gregation purpose, that is to say what type of aggregation

¥ However, we are not throwing away the measure, We are keeping track
of the noisy measure because it may tell us that our measurement system
needs to be recalibrated, for instance, or there is a defect that may require
our attention,

Confidential C

we want to perform. By definition, aggregation is an opera-
tion to combine elements together. According to Wagner
[32]. purpose can be: assessment, prediction, hot spot iden-
tification, comparison and trend analysis. Based on the pur-
pose, we are ready to use aggregation operators™ which are
obviously the real mathematical and statistical tools. We
note that at this stage, we may use other measures, as well
as the quality model weight factors, as inputs for aggrega-
tion operation. Moreover, if we are using “/dentity” aggre-
gation operator, it means that this process task is simply
copying our input measure to our cutput process.

The final task of our treatment process is the carry out
of the refined measure against thresholds. Usually two types
of threshold are used extensively”'; however, we can distin-
guish four ones [15]: reject, acceptance, target and refer-
ence. The reject threshold is the inclusive barrier where all
quality measures conduct to reject decision. The acceptance
one is the worst threshold above the reject threshold and
can be renamed as the "good enough” threshold. Starting
from this level, the quality measure is at least at the mini-
mum allowed. The target threshold corresponds to the
quality measured level that is aimed while the reference
threshold is the best reached quality measure in the world
and industry, at the moment of the measure is done, for
same type of object that is under qualification. We can iden-
tify a fifth and last thresheld, the "forecasted” which is linked
to prediction and enhancement traceability required, for ex-
ample, by 1SO 26262 [68] for safety.

This measurement refinement process we propose, de-
scribed here above and synthetized in Fig. 11, is a new way
to have clear and systematic treatment chain for the
measures done jointly with our quality models. It prevents
mistakes in measurement manipulation and ensure that
critical steps are done at the right time.

On the first steps of the way of our journey of applying
qualimetry to embedded scftware development. we learnt
how to define quality wia object characterization done under
the form of quality model and how to proceed consistently
on the measures. The remaining part to resolve is to identify
what are the objects beneath “embedded software devel-
gpment' and how they are articulated together.

5. OUR CASE STUDY: THE EMBEDDED SOFTWARE
DEVELOPMENT

Over sections 2 to 4, our analyses, approaches and contri-
butions were not restricted to software field but rather had
a wide focus, applicable to any system. Nevertheless, as we
were indicating in our introduction, our case study is target-
ing embedded software product and therefore we now have
to narrow our scope of work around it. This means that the
objects of interest against which we are going to apply
qualimetry are not only the product by itself, but also the
software development life cycle (cf. Fig. 4), which covers its
specification, development and maintenance states, and the
software development organization that realizes it. 5o, in
the next sub-sections we study first what are the objects of

! We can cite arithmetic or weighted mean, k-mean, median, minimum
and maximum, variance and standard deviation, t-norms and t-

24| Page

IEEE TRANSACTIONS OM JOURNAL NAME, MANUSCRIPT ID

interest beneath embedded software development life cy-
cle and product. completing secondly with some consider-
ation to software organization. Then, in last sub-sections,
we evoke the question related to which quality models, if
any, should be applied to our objects of interest.

5.1 Embedded Software Development Life Cycle
and Product

Before jumping into software development life cycle con-

cept, let's first review the fundamental piece that we are

aiming to build: the embedded software product.

By referring to IEEE glossary [24], embedded software is
simply defined as a software which is part of a larger system
and performs a sub-set of that system requirements. In ad-
dition, embedded software is often an assembly of software
modules and, or components, themselves composed of
software units. We recall also that a system has three di-
mensions - physical, computational {or logical) and human
- and every system is a combination of these three dimen-
sions [69]. Thus, we understand that an embedded software
product is characterized, or described, by its specifications,
expressed as functional and non-functional requirements,
coming from the three dimensions of the system it is part
of. The realization of such product is done by implementing
and fulfilling these specifications within a dedicated project
[53].

Furthermore, we understand that our embedded soft-
ware is favorable to change or evolution. The cause is linked
to the fact that embedded software is part of a system de-
fined by three types of components (i.e. physical, computa-
tional and human) subject themselves to change or evolu-
tion due to real world interaction and execution environ-
ment. 5o, we can state that our embedded software product
is subject to continuous evolution once the first product
version is released.

To go one step further, we would like to refer to the work
done by Lehman on software evolution and his software
program, or system, categorization [70], [71]. Lehman's
three types, 5-, P- and E-, are summarized via TABLE 7, Obvi-
ously, we can associate the system which encompasses em-
bedded software product to Lehman's E-type system: sys-
tems that operate in and resclve a problem of real world.
Such systems are evolutionary oriented. As opposed to 5-
type and P-type system, the height Lehman' software evo-
lution laws [71] (cf. TABLE 8) are applicable to that system.
Even if there may be some limitations on their direct ap-
plicability, they are useful guidelines with regard to the soft-
ware development life cycle.

So, the System Development Life Cycle reflects all the
activities from system initiation up to its disposal. Morever,
one of its subsets focus on the software product: this is the
Software Development Life Cycle illustrated in Fig. 13 that
the authors built based on ISO/IEC/IEEE 15288:2015 [53]
ISO/IEC/IEEE 12207:2017 [55] and the Systern Engineering
handbook [72].

conorms...We invite to refer to Detyniecki [52] for an introduction to a va-
riety of aggregaticn operators.
41 These are generally acceptance and target thresolds

Confidential C

AUTHOR ET AL TITLE

TABLE7
THE THREE LEHMAN'SYSTEM OR PROGRAMS TYPES ORDERED
BY COMPLEXITY

Type name Scope

Examples
Rigorous and static Calculator, DVD
specification oriented player
Practical real-world prob-
lem solution oriented

S-type or
S-program
P-type or
P-program

Chess program

Smartphone, Au-
tomotive or aero-
nautic system

E-Type or Real world evolutionary

E-Frogram oriented

TagLE8
THE EIGHT SOFTWARE EVOLUTION LAWS OF LEHMAN
Law Year of
Mumber creation
| 1974
| 1] 1974
1} 1974

v 1980

W 1980
| Vi 1980
Wil 1996

Vil 1996

Name

Continuing Change

| Increasing Com plexity
Self-Regulation
Conservation of Organizational Stability
[work rate)

| Conservation of Familiarity

| Continuing Growth

. Declining Quality
Feedback System (first stated in 1574
and formalized as law in 1996

“System Development Life Cycle ™

Production
stagy

Concept | Developuent
st e

LHil@ntion st Ructrement
- il
Suppet srage Bl

Requirenent mplemensstrn
=, B, el 50,
Integrmtion Undiziticn shgs Retiremant

stz Suppan stag= stage

\ !
\ f

. o

Fig. 13 Software Development Life Cycle is part of System
Development Life Cycle, bazed on typical phases.

Bath system and software life cycles are a suite of more
or less distinct consecutive phases, implemented them-
selves aver 14 technical processes [53] and where some of
them can be performed in parallel. A typical life cycle, shown
in (see Fig. 4) is provided by the ISO/IEC/IEEE 15288:2015
[53]. As seen in section 2.2.C, there is another model fitting
both cases and not antinomic to the typical one. This model
integrates better the system, or software, "evolution” phases
and relies on the level of conservation of familiarity, for in-
stance. This is the staged model [57], [58] illustrated in Fig.
5 where we have initial product release versus evolution,
servicing, phase-out and close down. However, the structu-
ration, behaviors and characterizations of these stages are
conditioned by the development methodology® that is de-
riving the life cycle. Among all available methodologies, the
ones shown in Fig. 12 are part of the main most different
ones, illustrating the vanety of available solutions: waterfall
[7312[74], V-model [76]. spiral [77] and agile [78].

* We remarked that development methodology concept is assimilated
1o System Development Life Cycle in INCOSE Handbook [72] which is not
case of ISO/IEC/IEEE 15288:2015 [53].

* We would like to raise that even if Waterfall development process
origin may be finked to W.W., Royce [73], the first use of the term was done

25| Page

- \ == ==/
" == e |

: T Y N
\ VAN /

Fig. 12 Development methodology samples
. From top to bottom & right to left: waterfall, V-model, Spiral, Agile

To summarize, we identified several kinds of objects
against which we need to apply qualimetry (see Fig. 14 for
the complete map of our Objects of Interest).

Objects of Interest

| Organization
| People

‘ Supplier

| Project

Process

Techmical processes (14}

| Techmical mamagemest processes (8)
(s i projact)]
Agreement processes (1)

Product

| Product in dewlopmens
Product in nse
Service

Fig. 14 Our Objects of Interest to be applied against qualimetry

First, accordingly to software development life cycle, we
have the product, and more precisely the embedded soft-
ware product. that we split into prodluct in development (or
internal product stage) and product in use # (or extemal
product stage). These two product types correspond to the
two distinct active states in the product life cycle. Moreover,
we note that the product in use is a released product which
is impacted by evolution and feedback: Lehman's law 3
“self-regulation” and 8 “feedback system”. It is cbvious that
we have interest to quantify the quality of our product not
only during its conception and development phase, but also
during its use or life. Then, since by definition a product is
the result of a process of an organization [22], we must pay
attention to that specific "process” which is the project

by T. E. Bell and T. A. Thayer [74]; note that some lectures of the original
paper bring another interpretation of i, as [75].

We apply to software product the same decomposition that is defined
in ISO/IEC 25010 [12] : software quality against guality in use,

Confidential C

Finally, to conduct all these project and development activ-
ities, despite the methodologies that are applied, we are re-
lying on a "ser of interrelated or interacting activities that
transforms inputs into outputs” [53], or process; and there-
fore we must have a strong control on them. ISO/IEC/IEEE
15288:2015 [53] is helping us for their identification: the
software development lifecycle processes are defined by 14
technical processes and the project by 8 technical manage-
ment processes,

5.2 Software Organization

Section 5.1 reviewed two types of products that need our
attention and the central parts that are project and process
to generate them. However, we missed a fundamental as-
pect from our system, which makes product, project and
process useless: this is the human dimension, as indicated
also in this section 5.1.

Indeed, people are the mandatory and elementary brick
that empowers the organization, makes possible innova-
tion, creation and delivery of products. Applying qualimetry
on people ensures that we balance and optimize the use of
this critical resource, But this is not a trivial task and requires
respect of ethic and data privacy. A good example is the
new European law on " General Data Frotection Regulation”
[79] showing some of the strengthened limits that 3 com-
pany must avoid to cross: this regulation European law is
acting on data protection and privacy for all individuals, ask-
ing companies to have business process in place to manip-
ulate these sensitive data. An example of protection here
can be the pseudo or full anonymization of these data.

Moreover, people, all together with facilities, are the es-
sence of the organization [53] that we ultimately need to
quantify in term of quality. In our case, we consider the soft-
ware organization because we are dealing with embedded
software product, but the approach is identical for any type
of systems. Again, likes project and software development
life cycle, we have some dedicated set of processes [53] that
are helping the execution here. These are two agreement
processes and b organizational project-enabling processes,
show in Fig. 14 and Fig. 15.

ﬁliu tian 2

Process - S
g [Dlglninliunxl If
Project-Enshling|
L Pmemsi. o

System ! Softwane || ¢ o f oftware ﬂ

Eradiact by Froduct in wse
thevelopment

N S —

Fig. 15 Our objects of interest for qualimetry: organization, process™,
project, people, ier, service and softy product.

5 |n this figure, green arrows highlight to wich the process set the SW specific
processes are belenging to since ISO/IEC/IEEE 12207:2017 [54] in 2017.

26| Page

|EEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

To complete our overview of the objects to assess and
control, we have to introduce two additional objects. The
first one corresponds to another type of product that the
organization delivers to customers: this is the service [22]. It
can be either produced standalone of jointly with a software
product, increasing the global value delivered to the exter-
nal or internal customer. The last object is the supplier, or
provider [22], [80] which is responsible for some deliveries
to the organization and therefore may hawve serious impact
to it. To handle suppliers, we have two agreement processes
defined [53]: acquisition process and supply process.

In conclusion, our analysis resulted in the identification
of six main objects or areas that we must assess and control
using qualimetry science: organization, people, supplier,
process, project and product. Our proposal is close to what
can be found in the standard such as Automotive-SPICE
[801%, with MAMN.6 process (i.e. Measurement process) but
with two exceptions: we consider risk as part of project, that
choice being confirmed by ISO/IEC/IEEE 15288:2015 [53],
and there is no counterpart of our organization object in
A-SPICE. TAsLE 9 is summarizing this comparison while Fig.
15 is a visual recap of our objects of qualimetry interest
enumeration with respect to each other (i.e. reflecting de-
pendencies).

TABLES
AREAS OR OBJECTS TO BE MEASURED: COMPARISON BETWEEN
OUR ANALYSIS AND AUTOMOTIVE SPICE MAN.6
Our objects to assess and con-
trol
1 Organization | -

d | A-SPICE MANS

2 People Persennel Performance
3 Supplier (Managed in A-Spice
ACQ4 process: Supplier
monitoringy:
4 Process {includes 30 processes) | Process
5 Project Project
| Risk
| & | Product | Software productin | Quality

development

Software product in Field
use

] Service | Service

5.3 Which Quality Model(s) to apply to our

Objects?

From the last subsections 5.1 and 5.2, it cbviously appears
that for each of the eight cbjects that we highlighted, we
will need not only to determine right quality definition mod-
els but also, to extend their respective definition guality
model with the corresponding assessment quality model
because object quality properties and measurements may
be different.

Regarding product, and most particularly the software
product?, since 1977 and the publication of one of the first
software product quality model by McCall [35] (cf. Fig. 8).
myriads of software quality models were regularly defined

“UWe chooss to compare our results to A-SPICE because this standard is
focusing on automeotive software which is embedded software likes our
scope.

#7 We recall having also service as a product (see section 5.2).

Confidential C

AUTHOR ET AL.: TITLE

or derived (i.e. tailored) from others, including some effort
of normalization with IEEE model [81] in 1992, SIE model
[82] in 1995, 15049126 [11] in 2001 and ISO/IEC 25010 (i.e.
SQuUARE) [12] in 2011. Concerning tailoring of these types
of model quality, Miguel er a/ [83] confirmed than prior to
2000, efforts were put on the study and creation of such
models, and since year 2000, investments have been in-
creasingly set to reuse and tailor those set of models. Then
based on the large number of available models® and their
comparison studies [84]-[87] that don't conclude on any
best "solution”, we state that current situation is not satisfy-
ing.

Furthermore, even if we take the latest version of soft-
ware product quality model standard ISO/IEC 25010 [12] (cf.
Fig. &), we reach the same conclusion: in this quality model
we have reliabifity characteristic while general tree deriva-
tion rule 5 (cf. TABLE 1) states that refiabifity must be ex-
cluded since it is part of cost effectiveness, itself part of in-
tegral quality (see section 2.1). So, at least, we have to ex-
clude this characteristic and its sub-characteristics, and
therefore alter this quality model.

By consequence, the solution is to proceed first to a clas-
sification of existing software quality models based on our
unified conception proposal, introduced in section 3, as cat-
egorization landmarks. Then, decomposed our three types
of product into multi-levels of characteristics, properties
and indices. Finally, map each of our object decompasitions
to the model which has the closest distance to it™. We may
be in the situation where this distance is too far (for in-
stance, cases where at best less than 50% of characteristics
are matching), and, for that reason tailoring wen't be suffi-
cient: a new model will be necessary. We remark after all, if
this is not defined in theoretical qualimetry, this object map-
ping into quality medel is similar to projecting this object
into quality space.

For our remaining cbjects that are project, process, peo-
ple, supplier and organization, there are only partial solu-
tions, such as, for example, A-SPICE [80], CMM [88], CO-
COMO?[89]. The two first ones are giving some guidelines
about object attributes that have interest in their scope. For
the last one, the focus of the software project quality model
is put on effort, cost and schedule estimation. Obviously, we
can find other characteristics that must be took into account
likes productivity, defects, estimations, technical manage-
ment process efficiency... Even so no direct quality models
are suitable, we have identified that Software Process Im-
provement (i.e. SIP) have the fundamentals - confirmed by
Unterkalmsteiner et a/ studies [90], [91] - for designing the
right quality model for each our cbjects?',

In any case, we proved that the answer to our question
on "which quality models to apply to our objects? is not
obvious and require a more intensive effort of inventory,
classification, object of interest characteristic identification,
quality model assessment and most probably tailoring.
However, with our unified conception (section 3),

“ Proper query to portalacm.org, www.ieeexplore.org, www.sco-
pus.com, isiknowledge.com or link.spri r.com, as used also in [84], gives
us more than 44 distinct software product quality medels.

¥ Polymorphism will be of a great help by providing a measurement with
the degree of polymorphism for a guality model computed against the
other candidate ones,

27| Page

measurement refinement process (section 4) and the 8
identified objects of interest (section 5) we have now all el-
ements to proceed accurately on setting the different qual-
ity models to then assess and control their quality.

6. CONCLUSION

This paper describes the first part of our journey of applying
qualimetry to embedded software development: the planifi-
cation of this journey.

Indeed, through a brief study and discussion, we ration-
alized the concept about quality and qualimetry, inventing
a synthesized view of the ideas behind the quality quantifi-
cation science via the schema "the house of gualimetry and
its pilars”.

With a subsequent discussion, we went further by clari-
fying "embedded software development” notion and ex-
plained how qualimetry is applied to it revealing the exist-
ence of several road blockers that we removed over five new
and unique contributions.

First, we elaborated a unified conception for quality
model to guide quality model design, classification and as-
sessment. That conception relies on height attributes in-
cluding our proposal to add polymorphism concept to
quality model, encapsulating the idea of quality model im-
plementation can be of different forms and the fact that
many existing quality models may be a closer form to some
other ones. This last aspect is evaluated following our pro-
posal to apply polymorphism degree concept, coming from
biology (i.e. genetic) field, to quality model conception and
classification. This measure is used successfully in genetic
and its usage in qualimetry is indubitably useful.

In addition, our measurement refinement process, ra-
tionalizes the multiple transformation sequences that con-
verts raw measures into quality measures. And last, we pro-
posed an “embedded software development” characteriza-
tion over a height objects of interest map. That contribution
is resulting of a study related to objects linked to embedded
software development, their evolution and a comparison
against A-SPICE standard which shares the same boundary.
This contribution is not apart to our other ones because its
appropriateness domain is finally also system, even if we
considered embedded software case,

In conclusion, we made six contributions that can be ap-
plied to any type of system, such as the variety of our study
sources (i.e. socioeconomics, biology, system and software
engineerng), without limitation. This paper develops the
first part of our journey and certainly one of the most critical
one since we setup our foundations. Next part is proceeding
on quality model classification, selection and then tailoring,
or creation, for all our 8 objects of interests. To achieve this
task, we will rely, for example, on polymorphism concept
and measure to support our investigation and decisions.
Obviously, our contributions are opening the field of new
perspectives and solutions.

* The acronym stands for COnstructive COst MOdel which deals with
cost evaluation of software engineering.

1 All our objects are under SIP radar and we recall that standard such as
CMM and A-SPICE, as we were previously referring to, have their highest
maturity level closely linked to process improvement.

Confidential C

REFERENCES

i “Enguéte Mationale: les Couts de la Non-Qualits dans I'Indus-
trie.” Afnor Group {in French), Oct-2017,

21 R. Black, Critical Testing Processes. Addison-Wesley, 2003,

]| M. G. Leveson and C. 5. Turner, “An Investigation of the Therac-
25 Accidents,” Computer, vol. 26, no. 7, pp. 1841, 1993.

4] R. L Baber, “The Arane 5 explosion: a software engineer's
view,” Risks vol, 18, no. 89, Mar. 1997,

[5] 1. Oberg, "Why the Mars probe went off course,” /EFE Spectrum,
vol. 36, no. 12, pp. 34-39, Dec. 1999,

(3] S. Gandel, "Why Knight lost $440 million in 45 minutes,” Ffor-
tune, 03-Aug-2012,

[Reuters, "Takata’s U.S. Unit Reaches Deal Paving Way for Sale.,”
The New Yark Times, 12-Feb-2018.

[8] G. G. Azgaldov et ai, "Qualimetry: the Science of Product Qual-
ity Assessment,” Standlart y / kachest vo, no. 1, 1968,

91 G. G. Azgaldov, “Development of the theoretical basis of
qualimetry,” doctoral dissertation, Kuibyshev Military Engineer-
ing Academy, Moscow (in Russian), 1981.

[10] G.G. Azgaldov, The Theory and Practice of Product Quality As-
sessment. Fssentials of Qualimetry, Moscow: Ekenomika (in
Russian). 1982.

[11] "ISO/IEC 9126-1:2001 - Software engineering - Product quality
- Part1: Quality Model,” intemnational Organization for Stand-
ardization, 2001,

[12] ISOAEC 25010:2011 - Systems and software engineering —
Systems and software Quality Requi its and Evaluati
{5QuaRE) - System and software quality models,” Intermational
Organization for Standardization, 2011,

[13] ‘“Google Trends on ‘Quality,” 2018. [Onlinel. Available:
hittps:/ftrends.google.com/rends/explore?date=allfig=Cua-
lity.

[14] P. Antman, "From Aristotle to Descartes a Brief history of qual-
ity." [Onling]. Available: hitps://blog.smartbear.com/software-
quality/from-aristotle-to-descartes-a-brief- history-of-quality/.

[15] . Azgaldov, A, Kostin, and A, Padilla Omiste, The ASC of
Qualimetry, toolkit for ing the i hie, Ridero.
2015.

[16] G. P. Stavropoulos, The Complete Aristotfe. Free GPS Library,
2013.

[171 "Onlime Oxford Dictionary - gquality definition,” 2018, [Online],
Available: https://en.oxforddictionaries.com/definition/quality.

[18] W.E. Deming, "Out of the crisis: quality, productivity and com-
petitive position,” 1988,

[19] B. Kitchenham and 5. Pfleeger, "Software quality: the elusive
target,” (EEE Software vol. 13, no. 1, pp. 12-21, 1996.

[201 D.A.Garvin, "Managing Quality - the strategic and competitive
edge,” in Mew York NY: Free Fress fu.a 1988,

[21] R. M. Pirsig, Zen and the art of motorcycle maintenance : an
inguiry info values, New York, N.Y.: Morrow. 1974,

[22] “ISO/EC 9000:2015 - Quality management systems - Funda-
mentals and vocabulary,” intemational Organization for Stand-
ardization, 2015.

[23]1 ISTQB glessary 3.1," hrpsy/www.istgb.org/downloads/cate-
gory/20-istab-glossary. html. .

[24] TIEEE Standard Gloszary of Software Engineering Terminology,
IEEE 5td 610.12-1990." institute of Electrical and Electronic En-
gineers, Inc., New York, NY, 10-Dec-1990,

28| Page

[25]

[28]

[27]

[28]

[29]

39]

B

32

[33]

[34]

33]

[36]

371

[38]

[39]

[40]

[41]

IEEE TRANSACTIONS OMN JOURNAL NAME, MANUSCRIPT ID

A. S. Lobanov, “The Basic Concepts of Qualimetry,” Scientific
and Technical In formation Processing, vol. 40, no. 2, pp. 72—
82, 2013.

J. A, Diez, “A Hundred Years of Numbers. An Historical Intro-
duction to Measurement Theory 1887-1990 Part It The For-
mation Period. Two Lines of Research: Axiomatics and Real
Morphisms, Scales and Invariance,” Studlies in History and Phi-
losophy of Science, vol. 28, no. 1, pp. 167-185, 1997.

P. A. Florenskii, “Some Remarks on Product Quality Assess-
ment,” Vestn. teor eksperiment. elektrotekhnik; no. 11, 1928,
G. G. Azgaldov and A. V. Kostin, "Applied qualimetry: its origins,
emors and misconceptions,” Benchmarking: An Intemational
Journal vol. 18, no. 3, pp. 428-444 2011,

Y. Argotti, C. Baron, and P. Esteban, "Quality quantification in
Systems Engineering from the Qualimetry Eye,” presented at
the 13th Annual IEEE Intemnational Systems Conference (Sys-
Conj, Orlando, USA, 2019,

J. R. Hauser and D. Clausing, "The House of Quality,” Hanamnd
Business Review. Archived from the original on Apnil 16 2078,
May 1988,

F. Deissenboeck, E Juergens, K. Lochmann, and 5. Wagner,
“Software quality models: Purposes, usage scenarios and re-
qui in Proceedings of the 7th /i ional Workshop
on Software Quality (WosQ 09), 2009.
S. Wagner, Software Product Quality Controd, Springer-Verlag
Berlin Heidelberg. 2013,

R. }. Rubey and R. D. Hartwick, "Quantitative measurement of
program quality,” in Proceedings of the 1968 23rd ACM na-
tional conference (ACM 68, New York, NY, USA 1968, pp. 671—
677,

B. W. Boehm,). R. Brown, and M. Lipow, "Quantitative Evalua-
tion of Software Quality,” in Proceedings of the 2nd interna-
tional conference on Software engineenng (ICSE 78), Los
Alamitas, CA, USA, 1976, pp. 592605,

1. A. McCall, P. K., Richards, and . F. Walters, "Factors in Soft-
ware Quality,” Grifiths Air Force Base. NY. Rome Air Develop-
ment Center Air Force Systems Command, 1977,

V. Basili, G. Caldiera, and H. D. Rombach, "Goal Question Metric
Approach,” Encyclopedia of Software Engineering, John Wiley
& Sons inc, pp. 528-532, 1994,

D. Coleman, B. Lowther, and P. Oman, "The application of soft-
ware maintainability models in industrial software systems,” in
In Selected papers of the sixth annual Oregon workshop on
Software metrics, New York, NY, USA, 1995, pp. 3-16.

"ISO/IEC 25020:2007 - Software engineering - Software prod-
uct Quality Requirements and Evaluation (SOuaRE) - Measure-
ment reference model and guide,” /nternational Organization
for Standardization, 2007.

“ISOMIEC 25021:2012 - Systems and software engineering -
System and software product Quality Requirements and Eval-
uation (5QuaRE} - Quality measure elements,” intemational Or-
‘ganization for Standardization, 2012,

"ISO/IEC 25022:2016 - Systems and software engineering -
Systems and software product Quality Requirements and Eval-
uation (SQuaRE) - Measurement of intemnal quality,” /arema-
tional Organization for St , 2016,

“ISO/IEC 25023:2016 - Systems and software engineering - Sys-
tem and software product Quality Requirements and Evalua-
tion (5QuaRE) - Measurement of system and software product
quality,” International Organization for Standardization, 2016.

Confidential C

AUTHOR ET AL.: TITLE

[42]

[43]

[44]

[45]

[48]

[47]

[48]

[49]

[501

511

[521
[53]
[541
[551

[56]

5711

[58]

[591

29| Page

“ISO/IEC 25024:2015 - Systems and Software engineering -
Systems and Software product Quality Requirements and Eval-
uation (SQuaRE) - Measurement of data quality,” intermational
) zation for 51 ian, 2015.

[). Hand, “Statistics and the Theory of Measurement,” Journal
of the Royal Statistical Society, no. 159, pp. 445-492, 1996.

H. von Helmholtz, Epistemological Wiitings The Pawl
Hentz/Moritz Schiick centenary edition of 1921, with notes and
commentary by the editors, Chapter 3: Numbering and Meas-
uring from an Epistemological Viewpoint, vol. 79, 1977,

P. W. Bridgman, The Logic of Modern Physics. New York : Mac-
millan, 1927,

1. A, Diez, "A Hundred Years of Numbers. An Historical Intro-
duction to Measurement Theory 1887-1990 Part Il: Suppes and
the Mature Theory and Unigueness Representation,” Stualies 17
History and Philosophy of Science, vol. 28, no. 2, pp. 237-265,
1997,

S. 5. Stevens, "On the Theory of Scales of Measurement,” Sor-
ence, New Senes, vol. 103, no. 2687, pp. 677-680, Jun. 1946.

P. Velleman and L. Wilkinson, "Nominal, Ordinal, Interval, and
Ratio Typologies are Misleading,” The Amerncan Statistician,
no. 47:1, pp. 65-72, 1993.

A, C. de Souza, N. M. C. Alexandre, and E. de Brito Guirardelio,
"Psychometric properties in instruments evaluation of reliabil-
ity and validity,” in Epidemiol. Serv: Saudle, Brasilia, 2017, vol.
26.

L. B. Mokkink ef af, "The COSMIN study reached international
consensus on ta y, tes logy, and of meas-
urement properties for health-related patient-reported out-
comes,” Journal of Clinical Epidemiology; vol. 63, pp. 733-745,
2010,

"ISOfIEC 25030:2007 - Software engineering - Software prod-
uct Quality Requirements and Evaluation (SQuaRE) - Quality re-
quirements,” ! Org ion for 5t ZAtit
2007,

M. Detyniecki, “Fundamentals on Aggregation Operators,”
Computer Science Division University of Califomia, Berkeley
United Sates of America, 2001.

“ISO/IEC/IEEE 15288:2015 -Systems and software engineering
-- System life cycle processes,” intemnational Organization for
Standardization, 2015.

“ISO/IEC/IEEE 12207:2017 -- Systems and software engineering
- Software life cycle processes,” Intemational Organization for
Standardization, 2017.

“ISOFIEC 12207:2008 -- Systems and software engineering -
Software life cycle processes,” /ntemnational Organization for
Standardization, 2008.

"ISOfIEC/IEEE 24748-1:2018 - Sysh and softy i -
ing - Life cycle management - Part 1: Guide for life cycle man-
agement” (ntemational Organization for Standardization,
2018,

K. H. Bennet and V. T, Rajlich, ‘The staged model of the soft-
ware lifecycle: A new perspective on software evolution,” pp. 1-
14, 2007,

E. Arch, "Lehman’s Laws of Software Evolution and the Staged-
Model,” 2011, [Onlinel. Awailable: hitpsy//blogs.msdnmi-
crosoft.com/karchworld_identity/2011/04/01/lehmans-laws-
of-software-evolution-and-the-staged-model/.

“I1SO/CEI 25001:2014 - Systems and software engineering - Sys-
tems and software Quality Requirements and Evaluation

[60]

[611

[62]

[63]

[64]

[65]

[66]

[671

[68]

[69]

[7o]

KAl

[72]

[731

[74]

751

(5QuaRE) - Planning and management,” /nfemational Crgani-
Zzation for Standardization, 2014.
“Online Cxford Dictionary - model definition,” 2018. [Online],
Available: https:/fen.oxforddictionaries.com/definition/model.
“ISO/IEC 25040:2011 - Systems and software engineering - Sys-
tems and software Quality Requirements and Evaluation
(SQuaRE) -- Evaluation process,” intemational Organization for
Standardization, 2011,
H. Igbal and M. Babar, "An Approach for Analyzing I1SO / IEC
25010 Preduct Quality Requirements based on Fuzzy Logic and
Likert Scale for Decision Support Systems,” (LACS4) intema-
tional Journal of Advanced Computer Science and Applica-
tions, vol. 7, no. 12, pp. 245-260, 2016,
B. A. Kitchenham and). G. Walker, "A guanfitative approach
to monitoring software development” Software Engineening
Journal vol. 4, no. 1, p. pp 2-13, 1989,
S. Wagner, "A Bayesian Metwork Approach to Assess and Pre-
dict Software Quality Using Activity-Based Quality Models,” in
Proceedings of the 5th Intemational Conference on Predictor
Models in Software Engineening : PROMISE 09 Vancouver, BC,
Canada, 2009,
M. Neil and N. Fenton, *Predicting Software Quality using
Bayesian Belief Networks,” in Proceedings of 21st Annual Soft-
ware Engineering, Workshop NASA/Goddard Space Flight Cen-
tre, Dec. 1996.
C. Strachey, "Fundamental Concepts in Programming Lan-
guages,” Higher-Order and Symbolic Computation, no. 13, p.
pp 11-49, 2000
M. Mei and W.-H. Li, “Mathematical model for studying genetic
variation in terms of restricion endonucleases,” in i Proceed-
ings of the National Academy of Science of the LS4, 1979, vol,
76, pp. 5269-5273,
“IS0 26262-6:2011 - Road vehicles - Functional safety - Part 6:
Product development at the software level,” /ntemational Or-
‘ganization for Standardization, 2011,
A. Pyster and R. Adcock, "Report of the Workshop on the rela-
tionship between Systems Engineering and Software Engineer-
ing,” Stevens Institute of Technology, Cranfield University,
SERC and INCOSE, Hoboken, Mew Jersey, Jun. 2014.
M. M. Lehman, “Programs, Life Cycles, and Laws of Software
Evolution,” in Proceedings of the [EEE, vol. 68, no. 8, pp. 1060—
1076, Sep. 1980,
M. . M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M.
Turski, “Metrics and Laws of software Evolution - The nineties
View, journal,” in Proceedings of the 4th International Sympo-
sium on Software Metrics, I[EEE 1997, pp. 20-32.
D. D. Walden, G. J. Roedler, K. I. Forsberg, D. R. Hamelin, and T.
M. Shortell, Systems Engineering Handbook: a Guide for Sys-
tem Life Cycle Processes and Activities, Fourth, Wiley, 2015.
W. W. Royce, "Managing the Development of Large Software
Systems:,” In Proceedings of IEEE WESCON, Aug. 1970,
T.E Bell and T. A. Thayer, “Software reguirements: Are they re-
ally a problem?,” in Proceedings of the 2nd intemational con-
ference on Software engineening. IEEE Computer Society Press,
1976, pp. 61-68.
Pragtob, "Why Waterfall was a big misunderstanding from the
beginning — reading the original paper,” 02-Mar-2012. [Online],
https://pragtob press.com,/2012/03/02 why-
waterfall-was-a-big-misunder g-from -the-beginning-
reading-the-original-paper/.

Confidential C

[76]

7]
[78]

[791

[80]

811

[82]

[831

[84]1

[85]

[86]

[871

[88]
[89]

[90]

@]

30| Page

K. Forsberg and H. Mooz, “The Relationship of Systems Engi-
neering te the Project Cycle,” First Annual Symposium of the
National Council On Systems Engineenng (NCOSE], Oct. 1991,
B. W. Boehm, "A Sipral Model of Software Development and
Enhancement,” in [EEE Computer, 1988, vol. 21, pp. 61-72.

K. Beck er af, "Manifesto for Agile Software Development,”
2001. [Online]. Available: http://agilemanifesto.org/.

European Parliament, "Regulation (EU} 2016/673 on the pro-
tection of natural persens with regard to the processing of per-
sonal data and on the free movement of such data, and repeal-
ing Directive 95/46/EC (General Data Protection Regulation),”
27-Apr-2016. [Online]. Available: https:/feur-lex.europa.eu/le-
gal-content/EN/TXT/Turi=CELEX:32016R0679.

VDA OMC Working Group 13 / Automotive SIG, “Automotive
SPICE Process Assessment / Reference Model, version 3.1 - re-
vision 656." 01-Nov-2017.

|EEE Std 1061- 1998, "textitlEEE Standard for a Software Quality
Metrics Methedology, R2009, R of IEEE Std 1061." 1992,
M. Barbacci, M. H. Klein, T. A, Longstaff, and C. B. Weinstock,
“Quality Attributes,” Carnegie Mellon University, Technical Re-
port {CMU/SEI-95-TR-021), ESC-TR-95-021, 1995,

J. P. Miguel, D. Mauricio, and G. Rodriguez, "4 Review of Soft-
ware Quality Models for the Evaluation of Software Products,”
Imternational fournal of Software Engineering & Applications
(USEA vol. 5, ne. 6, pp. 31-53, Nov. 2014.

Meng Yan, Xin Xia, Xiachong Zhang, Ling Xu, and Dan Yang, "A
Systematic Mapping Study of Quality Assessment Models for
Software Products,” presented at the 2017 Intemational Con-
ference on Software Analysis, Testing and Evolution {SATE),
Harbin, 2017, pp. 63-71.

¥, Boukouchi, A. Marzak, H. Benlahmer, and H. Moutachacuik,
“Comparative Study of Software Quality Models,” /ntemational
Jfournal of Computer Saence [ssues (UCS)), vol. 10 {6), no. 1,
Mov. 2013.

S. Manoj Wadhwa, "A Comparative Study of Software Quality
Madels,” intemational Joumal of Computer Science and infor-
mation Technalogies (UCSIT), vol. 5 (4), pp. 5634-5638, 2014,
M. Morenge Abiud and P. Mbugua, “An analytical comparative
analysis of the software quality models for software quality en-
gineering,” Comprehensive Research fournal of Management
and Business Studies ({CRIMBS) vol. 1(2), pp. 15-24, Oct. 2016.
M. C. Paulk, B. Curtis, and M. B. Chrissis, "Capability maturity
model, version 1.1, [EEE Software, vol. 10, no. 4, Jul. 1993,

E. W. Boehm, “Software Engineering Economics,” [EEE Trans-
actions on Software Engineenng SE- 10, pp. 4-21, 1984.

M. Unterkalmsteiner, T. Gorschek, A. L M. M. Islam, C. K. Cheng,
R. B. Permadi, and R. Feldt, “Evaluation and Measurement of
Softy Process Imp t—A Systemaic Literature Re-
view,” [EEE Transactions on Software Engineerng, vol. 38, no. 2,
pp. 398424, Apr, 2012,

M. Unterkalmsteiner, T. Gorschek, A. L M. M. Islam, C. K. Cheng,
R. B. Permadi, and R. Feldt, "A conceptual framework for SPI
evaluation,” Journal of Software Maintenance and Evolution:
Research and Practice, 2013.

IEEE TRAMSACTIONS ON JOURMAL NAME, MANUSCRIPT ID

Yann Argotti Mr Yann ARGOTTI graduated in Com-
puter Science and Electrical Engineering from the
French Grande Ecole ESIEA in 1996 and received the
postgraduate diploma in Fundamental and Applied
Computer Science from Pariz-Est / Mame-la-Vallée
University (France) in 1997; he is currently a PhD Can-
didate in Computer science and Embedded Systems at the University
of Toulouse (France), doing his research at LAAS-CNRS laboratory.
Since 1996 he accumulated experience over a wide range of positions
and technologies. He joined several major companies, such as Intel
and Renault Software Labs -the "Renault-Nissan-Mitsubishi" Alliance
Software Center- where he is currently acting as a specialist in qualim-
etry. His fields ofinterest are on gqualimetry, software development and
evolution of embedded syst with an lication to automoti

field. He authored international articles and is an INCOSE member.

Claude Baron. Pr Claude BARON iz Full Professor at the University
of Toulouse (France). She conducts rezearch in ays-
tems and software engineering at the LAAS-CNRS la-
boratory where she |leads the Systems Engineering
and Integration team. She is interested in optimizing
and thing product develop p . Her re-
search work iz based on a multidisciplinary and collab-
orative vision of the design of complex systems. She
addresses system modeling and process monitoring, considering em-
bedded and critical systems and applications in avionics and automo-
tive. She (cojauthored books and international journal articles and re-
ceived awards for her results. She is an INCOSE and IEEE member.

Philippe Esteban. Dr Philippe ESTEBAN is Associate Professor at
the University of Toulouse (France). He received his
graduate diploma from the School of Engineers of
Tarbes. He is interested in the systems and their com-
mands. He carries out his research activities in Sys-
tems Engi ing in the "Sys# Engi ing and In-
tegration" team of the Systems Analysis and Architec-
ture Laboratory (LAAS-CMRS). He authored intema-
tional conference and joumal articles. He is an INCOSE member.

Confidential C

C- Conference paper: ERTS Conference 2020
Accepted and then presented on the 30™ of January. This paper is available on HAL at:
https://hal.laas.fr/hal-02382316. Snapshots are below:

B

ERTS2020 - Regular
Paper- Argotti, Baron,

31| Page

Quality Quantification Applied to Automotive Embedded
Systems and Software

Advances with qualimetry science
Yann Argotti'?®, Claude Baron??, Philippe Esteban*? and Denis Chaton’

Summary — Quality quantification is an unavoidable topic in today daily company life. In this paper, the
authors review why quality quantification is critical, what are the main difficulties with the current
approaches and highlight the qualimetry approach as the solution. After a state of the art on qualimetry
and on quality model concept strengthened with polymorphism, the first steps of their applications to
automotive embedded systems and software in Renault are showcased. The results are not only the
benefits in quality guantification for complex systems, such as homogeneity, consistency and
compatibility, but also the highlighted risks with the changes in versions of quality models in Automotive
SPICE and how to define a derivable quality model over electronic control units and vehicle,

Keywords — Qualimetry, quality model, polymarphism, metrics, measure, automotive, standards

I Context and research objectives

A. The need to evaluate and quantify quality
Mowadays Renault is producing automotive systems at a high cadence. These automotive systems
are very complex and embed many sub-systems. Evaluating and quantifying the level of quality of a
system and of each sub-system is important, for different reasons exposed below.

First, a company such as Renault has to comply with many standards and regulation. This is obvious
when we consider transportations systems such as cars or airplanes where we have to follow functional
safety standards such as 1S026262 [1], ARP4754A° [2] and DO-178C [3]. Therefore, properly quantifying
quality will tell us if we fulfill or not those standards.

Moreover, “quality quantification” covers both quality aspects (supporting the identification of the
systems main characteristics) and quality models (supporting the organization of these characteristics).
Quantification helps optimizing and controlling the large flow of metrics and measurements, and
extracting the subset that makes most sense to Renault (or which is the most useful for Renault).

We can certainly find many other good reasons why quality quantification is important. However,
missing some steps in quality quantification may sometimes turn into catastrophic scenarios. We can
quickly cite a few well-known examples: the issue of software update with Therac-25 causing irradiation
and death of 6 patients during 1985-1987 [4], Ariane 5 explosion on its first launch on the 4™ of June
1996 [5] due to the reuse of the previous navigation system that was not aligned with the new rocket
version velocity and then resulting on the loss of $370 million, on the 26 of June 2017 Takata's bankrupt
happened due to an unaddressed known bug in their airbag [6] and on 2018, Toyota recalled 2.4 million
hybrid cars because of a failure in the “failsafe” driving mode linked to an uncaught software issue [7].
Through these four examples, we have four different systems with four different quality quantification
contexts, and an obvious demonstration that their consequences, measurad in term of people loss and /
or budget, were catastrophic, thus highlighting the need to have not only a reliable and accurate quality
quantification approach, but also adapted to system usage context.

The quality addressed in this paper is the quality of product during its entire life cycle, including
development (requirement analysis, design, implementation), maintenance and operation.

* Renault SW Labs

2INSA Toulouse

3CNRS - LAAS

&Universi'té de Towlouse lil, Paul Szbatier

3 The authors would like to point out that Aercspace Recommend Practice {ARF) is 2 guideline coming from SAE International, and originally
SAE onal was initially as the Society of Automotive Engineers on 1905.

Confidential C

32| Page

B. Many possibilities but difficulties to find the optimum approach

We understand from above that quality quantification is critical; but depending on which quality
quantification approach is used, we may face different types of challenge. The first case we can face is
when the solution we are considering to quantify quality is too general and then requires a certain level
of refactoring or tailoring without any guarantee to get to the right solution. This is often the case with
references or standards like CMMI [8], ISO/IECS126 [9] or ISO/IEC25010 [10] which have the ambition to
cover as many types of systems/domains of application as possible. A study conducted by Wagner ef al
[11] showed that 79% of companies that use standards customize them. At the oppaosite, the solution
can be too specific and then reuse against another more or less close systems can be hard; this is the
case for instance with Factor / Criteria / Metric from McCall et 2/[12] or with Basili ef 2/ [13] and the Goal
/ Question / Method approaches. A third possibility is
that the solution set we have is too large, and by Qualimetry
consaquence there is not an cbvious right solution; for Thearetical & Applied Qualimetry
instance, it is the case of software products, for which Quulity Model Measurement
more than 40 distinct quality models can easily be] Tl
identified in the literature. Finally, the last case is when | lI
we have both theorstical and applied aspects for I%%‘
quality quantification, like Wagner [14] on software ==
product quality control or Azgaldov et a/[13], [16] on | | 1 3 =1
general quality assessment; these approaches may be Olsject(s) of Interest

Meisir
Aguregalir

a little bit heavier to use but they offer a large
potential: they are part of Qualimetry. Fig. 1-The house of qualimetry and its pillars [17]

In the next sections, we complete an overview of the state of the art about qualimetry and quality
maodel concept, strengthening this last one with the innevative introduction of polymorphism. Then we
apply these concepts to the automotive domain, encompassing embedded systems and embedded
software before concluding on the resuits, the benefits and the next steps.

Il. State of the art on qualimetry and on quality model concept

A Qualimetry

Qualimetry is the science of quality quantification [16] and consequently covers both "intellectual and
practical activity encompassing the systematic study of [.../'[18] quality quantification. These two activities
are reflected by the theoretical and applied qualimetry. In addition, even if this concept is not recent, this
science is relatively young because it was born in former USSR in 1968 [15], following the creation of 2
working group composed of scientists coming from wvarious areas (e.g. economists, architects, civil
engineers, car makers) who were sharing the same goal [16]: generalizing quality quantification approach.
In order to foster its understanding and support its knowledge leveraging within quality quantification
scope, we have proposed a synthetic representation, the House of Qualimetry (see Fig. 1).

By definition, qualimetry is a science, so it addresses both theory and application dimension, These
two dimensions themselves rely on two domains: quality model -focusing on the quality characteristics-
and measurement -addressing the quantification part. Quality model sits on three pillars. The first one is
related to the analysis for identifying quality characteristics while the second one support their
organization and add some rules to control analysis depth. The last pillar here is covering characteristic
importance among other characteristics. On the measurement side, we retrieve the same topology. The
first measurement pillar is key because it is about the different theories of measurement and therefore
brings all the mathematical and statistical tools. Second pillar is reflecting the measuremeant combination
or data aggregation together depending on their purpose. Third and final pillar supports the use of
measurements during assessment, control and prediction: this is the threshold pillar. Completing the
description, the basement of the house is the object(s) of interest that is to say the object(s) candidate
for quality quantification. The two ISO/IEC25010:2011 quality models (ie. "systems/software product
guality" and "quality in use™) [10] illustrate the result that can be achieved by applying the two quality
model first pillars against automotive embedded software product®.

5 The rezson wihy we are linking to 150/1EC 25010 quality mode! is due to the fact that Automotive SPICE [19] -the process assessment and
reference model in automotive field- is referring to that standard for software product quality model.

Confidential C

33| Page

B. Quality Models

To understand the quality model concept more precisely, we can rely on ISO/IEC IS 9126-1 [9] where
a quality model is defined as " the set of characteristics, and the relationships between them that provides
the basis for specifying quality requirements and evaluation”. This definition can be completed by ISO/IEC
25010 [10] which highlights that a quality model is " convenient breakdown of product guality”, " serve as
a framework to ensure that all characteristics of quality are considered” and *provide a set of quality
characteristics relevant to a wide range of stakeholders, such as: software developers, system integrators,
acquirers, owners, maintainers, contractors, quality assurance and control professionals, and users.”,

To go one step further on the quality model knowledge, we have conducted a study [17] to be able
to isolate a pattern related to quality models relative to their design, conception or adaptation. We have
identified a set of eight attributes (cf. TaeLE 1): six shared between all approaches (evaluation context &
plan, purposes, Quality Evaluation Method's (EQM) fo assess guality, QEM as source of information about
values, data organizational types and weight factors), one unique, the derivation nuies coming from
qualimetry field and one new, absent from any previous related streams of work: the pofymornphism.
Moreover, the notable fact with these attributes is that, if we handle or consider them sequentially, we
land with a unified conception process to create or adapt quality model, starting from "evaluation context
and plarm’ up to "polymorphisnt,

TABLE 1— THE 8 QUALITY MODE. ATTRIBUTES EXERGISED AGAINST SAME STANDARD EVOLUTION: 1SOWEC 9126:2001 & ISGHEC
25070:20M1

|| Attribute ISOTEC 9126:2001 ISOTEC 25010:2011
L L Infk 1on Technology Soft System (computer ontented) & Software
#1 | Evaluation context & plan & pisteri it e &bt e,
L Definition & Definition &
[| Parpuses Assessment (evaluation) Assesyment (evaluanon)
#3 | QEM to azses: quakity Short-cut method Short-cut method
Ly QEM as source of information FHybrid method Hybrid od
{ about value:
#5 | Data izational types Hierarchical Hierarchical (& meta-model)
L. L Respect of global mles with Respect of global rules wath excepion of rule
'.;?6 Derivation rules | of rule #5 (reliability) £5 (velizbility)
#7 | Weight factors | Mot weighted | Mot waighred
1 0.6792 (0 =1dentical; 1 = 100% disjomad)
Fs Degres b polymorphism [53 leaf characteristics. 32 unique, § similar]
& Polymarphism

With regards to this last attribute, we consider two aspects for polymorphism concept applied to
quality model: ad-hoc and temporal. To explain what is behind these aspects, we can make an analogy
with biology: let us compare a quality model to a butterfly. For the first aspect, we start with a generic
butterfly which has a set of characteristics (two wings, a trunk, three pairs of thoracic legs, two antennas
). In the real world, we have many variants of this generic butterfly that can be more or less close to
each other (wing color, pattern and shape, size, lifestyle ...). Each of this variant inherits from the generic
butterfly characteristics. Thereby, we can have variants of quality models inheriting from a generic quality
model, The second aspect is linked to a temporal consideration. Like the butterfly, starting as an egg,
then becomes a caterpillar, chrysalis, then a new born butterfly and comes up with a flying butterfly, a
quality model can change, evolve depending of the systems or software product life cycle.

Continuing one step further with biclogy, and more particularly with genetic, we borrow a formula (1)
introduced by Nei and Li in 1979 [20], used to compute the degree of polymorphism between DNA
sequences and we apply it to quality model. Thanks to this mechanism we are able to compute distances
between quality models from a polymorphism or variety point of view.

T = 1)

The mcoefficients are calculated by considering the probability to have a specific quality characteristic
/ sub- characteristic. This calculus is based on a pool of quality models. For instance, if a characteristic
recurrently appears in those specific quality models, its probability is 1. If half of the time the characteristic
is present and the other half is ancther close (e not disjoint) characteristic, then their respective
probability is 0.5, When applying this approach to ISO/IEC 9126 and 1SO/IEC 25010, we identified: 53 leaf
characteristics, 32 unique, 8 similar (ie. close but not identical: for instance, "Modifiability” versus
" Changeability"), and 13 identical. This lands us to find with (1) 67.92% of differences.

Confidential C

34|Page

On the measurement side, we had to enhance current measurement process to include consideration
to the pillars of quality model and measurements. Also, like a processor, we are cadencing the
measurement process with the systems or software development life cycle, to integrate the temporal
aspect of polymorphism we indicated previously.

To summarize, polymorphism is an help in system engineering where we have a context of systems
and/or sub-systems that define a system. Polymorphism brings consistency and support to adaptation
due to the context and stakeholder variety.

D. Quality Mode! distance impacts
The use of polymorphism variety formula is a great tool that help us estimating and explaining what
the impacts and consequences are to change, update or adapt current quality model or to apply one
quality model instead of another one.

Indeed, the consequences are directly linked to what we aim to do with quality model. For instance,
let say that a company was currently using ISO/IEC 9126 and want to be compliant with latest available
standard, which is 1SO/IEC 25010, then this distance will help to understand and estimate:

- what the risks are linked to such change (low distance = low risk, high distance = high risk),

- what are the areas that are the most impacted (where we have more change, declining the
distance for each guality characteristics),

- how much work it will cost,
- where guality guantification, assessment and control are changing,

- how much validation path is changed finding, allowing to capture different types of bugs
possibly never found before and discarding other areas and path,

Changes of quality models can occur due to change or evolution of targeted product or stage in its
life cycle. Consequently, this may lead in different results and the distance can predict that we may get
different results.

In addition, this formula can be used to support decision and to control change or update guality
models, including the case of polymorphism: when distance is low, change can be ignored while a high
distance tells us that we need to apply this change. Finally, the distance formula can help to split quality
model changes into reasonable, from a workload and risk point of view, change increments.

IIl. Application to automotive

A. With regards to embedded systems
Thanks to this overview of the quality quantification from the qualimetry perspective, we are in a
position where we can apply those concepts to the automotive field, thus answering Renault's needs
which are: to have a robust, efficient, homogeneous, compatible and consistent quality quantification as
well as specify a joint “vocabulary” over the entire complex system that a vehicle is.

Indeed, a car is an instantiation of a vehicle platform which is then addressing a set of car variants
such as mini-compact, convertible, super car, cross over, commercial, van.... Therewith, a car is a complex
system, composed of more than 40 systems themselves distributed over more than 60 Electronic Control
Units (ECU), depending on whether this is a low-end, medium or premium car.

Moreover, besides the fact that each ECU is itself composed of a hardware and an embedded
software, an ECU has some common characteristics shared with other ECUs (e.g. diagnostic, connection
interface, power), a set of specific characteristics (e.g. HMI, communication, safety) and its own context
(e.g. door control, engine control, telematic control, seat control), As a matter of fact, each such
subsystem has a vocabulary more or less specific and quality quantification which vary more or less from
the other sub-systems. This system complexity description depicts and corresponds to the complexity
we have in Renault.

B. With regards to embedded software

Concerning quality model for automotive embedded software, Automotive SPICE” [19] advises to rely
on ISO/IEC 25010:2011 for embedded software product quality model in its measurement process, called

7 Renault is refying on Automotive SPICE with regard to its software development activities

Confidential C

35| Page

MAM.6. However, we remark that in previous versions of Automotive SPICE, such as v2.5 [21], the standard
that was referred to for embedded software quality model was ISC/IEC 9126:2001. Moreover, 1SO/IEC
25010:2011 standard is the extension, or evolution [10], of ISO/IEC 9126:2001standard. Thus, to see how
close or diverse the quality models from these two standards are together, we extract the corresponding
pattern instantiations from the height quality model attributes we saw in previous paragraph. TasLe 1
summarizes the comparison results. We notice that most of the attributes are equal except the first one
which deals with " evaluation context and plar, but this is something that we could expect since ISO/IEC
25010:2011 is an avolution of the other one with a wider scope,

Mow if we compute the degree of polymorphism between these two quality models (as seen in IL.C),
we obtain a result indicating a diversity of almost 68% which means that finally those quality models are
quite different. Therefore, this is a drastic evolution, or change despite the fact thatin ISO/IEC 25010:2011
document it is claimed this is an extension. Also, upgrading quality model from previous standard to new
one can bring risk, particularly if your current quality model works well. Fig. 2 highlights some quality
model differences between these two standards.

/ ™

[:'5:'_':' o p——
e e s e E .
e e s s
\ /

Fig. 2 - Example of some differences between ISO/IEC 9126:2001 & IS50/IEC 25010:2011

. With regards to polymorphism
In the above sub-sections A and B, we have captured enough knowledge to begin applying
polymorphism to automotive embedded software, for instance. In the following paragraphs, we limit our
polymorphism application to one level of quality charactenistic enumeration®.

First, we initiate the elaboration of a common ECU quality model using A-SPICE 3.1 guidelines [19].
We note that these guidelines refer also to a subset of ISO/IEC 25010 [10]. The result is a quality model
composed of 6 quality characteristics: functional suitability, reliability, usability, performance efficiency,
maintainability and portability. All those quality characteristics are aligned with a scope of embedded
software. Then, in order to apply polymorphism to this common ECU quality model, we consider two
distinct variants, among many, of this common ECU in our study case here: In Vehicle Infotainment (/e
IV1) ECU and Body Control Module ({e BCM) ECU. The IVl ECU is responsible for infotainment and is the
main human user Interface to control different options of the vehicle. In that sense, the performance
efficiency is not as important as quality in use aspect which must include efficiency, effectiveness and
satisfaction. Indeed, since human-machine interface is key for this ECU, the right performance criteria
must be relying on the user perception of the performance rather than pure processing time for instance.
Regarding BCM, this ECU can be seen as the main vehicle gateway, dealing with various communication
protocols but with no direct interaction with the user ({e there is. human-machine interface). Then
security and safety aspect, included into freedom from risk characteristics, are major quality
characteristics to cover for this ECU.

Fig. 3 below illustrates this example of how to apply polymorphism with a subset of quality
characteristics from generic ECU quality models to IVI ECU quality model and BCM ECU quality model,

% we don't include any sub-characteristics in our example, but we encourage the reader to consolidate current quality models
with further sub-characteristics and metrics.

Confidential C

using ISO/IEC 25010 as complement guidelines. In black characteristics defined in Common ECU quality
models, in red characteristics that may be discarded/not used, in green complementary characteristics.

Funetfanal sulvanillty
Wmliakdzivy
Teabilisy

Byalte proguse qualiny o T T
Maintaizablility

- Frtability
Sezurity
1S0/IEC 25010 Sempanibility
ra £ifactivennes
' Eifizinscy
/ Gttty e 0, Sabbsssmiien
’I Frasdom from sisk
: Contest ocuvermge
{1s derived from
7 - Punatiossl seitabilivy
! ¢ Bmliskiliny
3 [STNETES
L By pedot guAlity O ¥
b partormance sfflcisnsy
Common ECU QM b Malnsalnekiling
[from A-SPICE] L pereabitieg

Sumlizy in use

Pamstisnel weitabllicy

Derived into

b masisbiticy
[sy
| Partormance sttizimssy

Pancrional sultability

Syndiw preduss quality of
T ¥ " ¥ L aineainabitity
| Portability
b Besueity

Balishility
tsakilivy
o Purforsmuos wificiency

- Sys/®e prodect guality ©
Mainzainability
p BCM ECU QM s
Fartanliity L Comput b Lity
IVIECU QM Campat bt trumn
REfmet Lymaman < W Fiimy
ality in use
Hwtler | Freston trem sisk
Guntest seneagn

+ EEticiancy

cuality in sae
matiafaction

Fig. 3 - Quality mode! polymorphism example applied to two ECUs

The early results of these concept appliance in Renault are depicted through several dashboards: on

code for a subset of non-functional characteristics from ISO/IEC 25010:2011 (see Fig. 4) and with regards
to generic quality model for ECU linked applied to their related domain® (see Fig. 5).

Ehart: BOZE010 ivternad chasscteratics.
[~y

roarein

Fig. 4- Example of an evolution of AD ECU code metric results vs o subset of

36| Page

Ehonm] Dinstions irssbhinen
Bmin i

E

— (R

B G — e PN

o s

Fig. 5 Example of an evolution of generic quality model
result per ECU domain

e

ISO/IEC 25010:2011 characteristics

IV. Conclusion
In conclusion, we have seen what is qualimetry, consolidating some of its aspects, and how it can

support generalization, adaptation and repetition in quality quantification activities. It can be as well
applied and used for other activities in systems and software engineering, even at the early stage,
supporting, for instance, conception, requirement elicitation and architecture design. In addition, our

%n Renault, 2 domain is covered by a specific department or “direction”.

Confidential C

37| Page

qualimetry based approach brings homogeneity, consistency and compatibility to quality quantification
in the complex environment which is the automotive one. It helps specifying a joint vocabulary where
each domain has its own. We also are in a position where we can define a derivable guality model for
ECU and vehicle platform thanks to polymorphism. And finally, in a context of agile development
methodology, our approach allows a smooth incremental change management.

Our next steps in Renault will focus on the consolidation and then deployment of our current generic
quality model as well as the various specific quality models related to the ECU variants.

References

[1] IS0 26262-6:2011 - Road vehicles - Functional safety - Part &: Product develk it at the level,” int
Qrganization for Standardization, 2011.

[2] “ARP4754A - Guidelines for Development of Civil Aircraft and Systems,” SAE Infemational, Dec. 2010.

[3] “DO-178C - Soft Consi fons in Airb Systems and Equipment Certification.” Radio Technical Commission for
Aeronautics, Dec. 2011,

4] MN.G.Leveson and C. S. Tumer, “An Investigation of the Therac-25 Accidents,” Compufer, vol. 26, no. 7, pp. 1841, 1993,

[5] R.L. Baber, “The Ariane 5 explosion: a software enginesr's view,” Risks, vol. 18, no. 89, Mar. 1997,

[8] Reuters, “Takata's LS. Unit Reaches Deal Paving Way for Sale.," The New York Times, 12-Feb-2018.

[71 5. MecLain, “Toyota Recalls Mors Than 2 Million \ehicles Over Hybrid-System Fault," The Wall Streef Joumnal, 05-Oct-
2018.

[8] M. C. Paulk, B. Curtis, and M. B. Chrissis, “Capahbility maturity model, version 1.1,” IEEE Softwars, vol. 10, no. 4, Jul.
1993.

[8] “ISQAEC 9126-1:2001 - Software engineering - Product quality - Part1: Quality Model,” Infernational Organization for
Standardization, 2001.

[10] “ISONEC 25010:201 1 - Systems and software engineering — 5 and softy Cuafity Requi ts and Evaluafion
(SQuaRE) — System and software quality models,” Ini fional Organization for Stanc ization, 2011.

[111 5. Wagner, K. Lochmann, S. Winter, A. Goeb, M. Klds, and S. Nunnenmacher, “Software Quality Models in Practice:
Survey Resuits.” Technische Universitat Manchen Insitut fir Informatik, TUM-119, 2012,

[12] J. A-MeCall, P. K. Richards, and G. F. Walters, “Factors in Software Quality,” Griffths Air Force Base, N.Y. Rome Air
Development Center Air Force Sysfems Command, 1977

[13] V. Basili G. Caldiera, and H. 0. Rombach, “Goal Quesfion Metric Approach,” Encyclopedia of Soffware Engineering, John
Wiley & Sons, Inc., pp. 528-532, 1994,

[14] S. Wagner, Soffware Product Quality Control, Springer-Verlag Berin Heidefberg. 2013.

[15] G.G. Azgaldov et al, "Qualimetry: the Science of Product Quality Assessment,” Sfandart y § kachest vo, no. 1, 1968

[168] G. Azgaldov, A. Kostin, and A. Padilla Omiste, The ABC of Qualimetry, toolkif for measuring the immeasurable, Ridero.
2015.

[17] . Argofti, C. Baron, and P. Esteban, "Quality guanitification in Systems Engineering from the Qualimetry Eye,” presented
af the 13th Annual IEEE Intemnational Systems Conference (SysCon), Orlando, USA, 2015,

[18] “Cniine Oxford Dictionary - science definition,” 2019, [Online]. Available:
https:ffen_oxforddictionaries_com/definition/science.

[19] VDA OMC Working Group 13 / Automotive SIG, "Automotive SPICE Process Assessment / Reference Model,, version 3.1
- revision 656." D1-Nov-2017.

[20] M. Meiand W.-H. Li, *Mathematical model for studying genefic variation in terms of resfriction endonucleases,” in in
Proceedings of the National Academy of Science of the LISA, 1979, vol. TG, pp. 5269-5273.

[21] Automotive SIG, VDA, “Automotive SPICE Process Assessment, version 2.5." 10-May-2010.

Confidential C

