
HAL Id: hal-02494731
https://laas.hal.science/hal-02494731

Preprint submitted on 29 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integrating Path Planning and Visual Servoing in
Manipulation Tasks

Joseph Mirabel, Alexis Nicolin, Florent Lamiraux, Olivier Stasse, Sébastien
Boria

To cite this version:
Joseph Mirabel, Alexis Nicolin, Florent Lamiraux, Olivier Stasse, Sébastien Boria. Integrating Path
Planning and Visual Servoing in Manipulation Tasks. 2020. �hal-02494731�

https://laas.hal.science/hal-02494731
https://hal.archives-ouvertes.fr

Integrating Path Planning and Visual Servoing in Manipulation Tasks

Joseph Mirabel1, Alexis Nicolin1,2, Florent Lamiraux1 , Olivier Stasse1 and Sébastien Boria2

Abstract— This paper proposes a novel methodology to
integrate both geometric manipulation planning and visual
servoing. Geometric manipulation planning is able to handle
robots with many degrees of freedom in cluttered environ-
ments while visual servoing makes execution of the planned
trajectories robust to inaccuracies. The method is illustrated
by a demonstration on a real humanoid robot manipulating an
object.

I. INTRODUCTION

Performing manipulation tasks including regrasping on a
humanoid robot is known to be a difficult task for several
reasons. The first reason is the necessity for the robot to
measure the position of the objects to manipulate with on-
board sensors, before grasping but also after each grasp or
regrasp since the object may slightly slide in the gripper
during those steps. This perception issue is far from being
solved for any object. The second reason resides in the
high number of degrees of freedom of the system (robot
+ objects) and in the complexity of manipulation planning
in the presence of obstacles.

To cope with the first reason mentioned above, a lot of
work has been proposed in visual servoing in order to control
the motion of the robot based on the perception of the
position of the objects that are to be manipulated.

To cope with the second reason, a lot of work has also been
proposed to plan manipulation motions based on models of
the robot, of the objects and of the obstacles.

To our knowledge however these two corpuses of work
have largely evolved independently. Visual servoing usually
aims at reducing an error between perceived and desired
features. It does not take into account the reference trajectory
that may have been planned priorly by a motion planner. One
may argue that the planned trajectory implicitely defines a
time-parameterized trajectory for the desired feature to be
controlled by visual servoing, as in [15]. However, if the
feature image is affected only by a subset of the robot degrees
of freedom – the left arm for instance, the other degrees of
freedom will not be controlled.

A. Visual servoing

[3], [4] provide an overview of the state of the art in this
domain until 2007. The second reference mentions the case
of moving target only at the very end. In a more recent
work [2], the authors perform a grasp task on a Romeo
humanoid robot, tracking the position of the hand and of

This work has been supported by the Airbus-CNRS Joint laboratory
Rob4Fam.

1LAAS, University of Toulouse, CNRS, Toulouse, France
2Airbus SAS,OMIR, Toulouse, France

Fig. 1. Example of the effect of visual servoing on the motion execution
accuracy. Eventhough the box has slipped in the gripper, the controller
successfully positions the box vertically before putting it on the table.

the object to grasp with a camera. In this latter work, there
are no obstacles and collision of the hand with the object
during the approach phase is not addressed.

B. Manipulation planning

Manipulation planning is a class of path planning problems
where some robots manipulate some objects with grippers,
in an environment cluttered with obstacles. Manipulation
constraints raised by the fact that objects cannot move if
they are not grasped and that they are ridigly attached to a
gripper when they are grasped define several foliations of the
configuration space of the whole system (robots + objects).
From a given configuration with a given set of grasps, the
system can only move on a submanifold of the configuration
space called a leaf.

Since the pioneering paper [24], manipulation planning
has been tackled using random sampling based method [10],
[12] in order to explore the leaves of those foliations [21].
Manipulation planning is traditionally decomposed into sev-
eral subdomains: Rearrangement planning [11], [20], [13],
[6] where the goal specifies only the final position of
the objects, multi-arm motion planning [8], [9], [5], and
navigation among movable obstacles.

C. Sensor-based manipulation planning and control

[25] addresses the problem of rearrangment planning for
a disc robot manipulating circular objects in the plane.
The paper presents impressive experimental results with
a quadruped robot equipped with a lidar and avoiding

unexpected obstacles. [22] proposes a method to plan a
sequence of controllers that move a system composed of
two robots and one object from an initial state to a goal
state in a dynamic environment. The algorithm performs a
random exploration of the configuration space, using simu-
lated controllers as a steering method. The controllers are
implemented using eTaSL/eTC framework [1]. Our work
share similarities with this latter paper. The main differences
are that we do not explicitely address dynamic environments,
but we implement visual servoing.

D. Contribution

In this paper, we propose a novel approach to manipulation
planning and control for a robot with a high number of
degrees of freedom in the presence of obstacles. The
approach is broken down into three steps. In the first step, a
manipulation planning algorithm computes a manipulation
planning path starting from the initial configuration and
reaching a goal configuration or set of configurations. In
the second step, the manipulation path is decomposed
into segments. To each segment a controller taking into
account both the planned path and visual features attached
to objects or robot bodies is associated. These controllers
regulate sequences of tasks with priority orders [23]. In the
third step, a finite state machine keeps track of the current
segment and selects the controller accordingly. Note that a
preliminary version of this work has been described in [19].
However, in this previous work, no visual servoing was
implemented.

The paper is organized as follows. In Section II, we define
the problem and introduce some notation. In Section III, we
describe the manipulation planning algorithm that we use
to produce reference trajectories. In Section IV, we explain
how a manipulation trajectory is mapped to a sequence
of hierarchical task based controllers. In Section V, we
describe how the resulting motion is executed by the robot.
In Section VI, we describe some experimental results that
validate the approach.

II. DEFINITION OF THE PROBLEM

We consider a robot with configuration space denoted as
Cr and no ≥ 1 objects of configuration spaces SE(3)1. The
configuration space of the whole system is the Cartesian
product of the configuration spaces of the robot and objects:
C = Cr × SE(3)no . Some static obstacles are present in the
workspace of the robot.

A. Grippers, handles, grasps

The robot is equipped with ng ≥ 1 grippers i.e. frames
that are attached to some of its links. To each object oi,
i ∈ {1, · · ·no}, nh,i ≥ 0 frames called handles are rigidly
attached. We denote by

• g1, · · · , gng
the robot grippers,

• hj,i for i ∈ {1, · · · , no} and j ∈ {1, · · · , nh,i} the j-th
handle of oi.

1SE(3) is the group of rigid-body transformations

For any configuration q ∈ C, and any gripper g and handle h,
we denote by g(q) ∈ SE(3) and h(q) ∈ SE(3) the positions
of g and h in configuration q. We define a grasp – denoted
as gr(g, h) – as the part of C containing all configurations
of the system such that the frames defined by g and h are at
the same position:

gr(g, h) = {q ∈ C, g(q) = h(q)} .

B. Contact surfaces, placements

To each object oi, i ∈ {1, · · ·no}, nc,i ≥ 0 convex
polygons called object contact surfaces are rigidly attached.
Convex polygons called environment contact surfaces are
attached to the environment.

• Contact surfaces of oi are denoted by ci,j for j ∈
{1, · · · , nc,i}.

• Environment contact surfaces are denoted by c0,j , for
j ∈ {1, · · · , nc,0}.

An object is in a placement configuration if one of its contact
surfaces is in contact with one environment contact surface.
Two convex polygons are said to be in contact if the plane
supporting them is the same and if the center of the first
polygon is inside the second polygon. Contact constraints
can be represented by an implicit numerical constraint over
the configuration C. See [17] Section 4.1.2 for details.

We denote as pl(oi) the subset of C of configurations
where object oi is in a placement configuration.

C. Visual features

The robot is equipped with a RGB-D camera providing
an image I ∈ RGBD = Co × Co × Co × R where Co ,
{0, · · · , 255}. We assume that a localization function is able
to localize object oi with i ∈ {1, · · · , no} or gripper gj with
j ∈ {1, · · · , ng} such that:

cT̂oi : Ioi 7→ SE(3)
cT̂gj : Igj 7→ SE(3)

(1)

where Ioi ⊂ RGBD and Igj ⊂ RGBD are the domains of
the image space where the localization function successfully
computes a pose, cT̂gj , cT̂oi are the respective poses of gj
and oi in the camera frame, as computed by the localization
function. We denote by

gj T̂oi =c T̂−1
gj

cT̂oi : Ioi ∩ Igj 7→ SE(3) (2)

the localization function that maps an image to the relative
pose of the object in the gripper frame.

D. Problem definition

The problem we want to solve consists in moving the
system from an initial configuration where the objects are
in stable configurations, to a goal configuration where the
objects are still in stable configurations. We decompose this
problem in a sequence of sub-problems:

1) manipulation planning: computation of a collision-free
manipulation path along which each object is either in
a stable configuration or grasped by a gripper,

pl(o1) gr(g1, h1,1)

loop|
pl(o1)

g1 > h1,1|pl(o1)

g1 < h1,1|gr(g1, h1,1)

loop|
gr(g1, h1,1)

Fig. 2. Constraint graph corresponding to a robot with one gripper and
an object with one handle. “g > h”, (resp. “g < h”) in transition names
means that grasp of h by g is created (resp. removed). “|s” means that
transition starts from state s. Note that transition “g1 > h1,1|pl(o1)” lies
in state pl(o1) and therefore contains the constraint that the object should
be in a stable position. It also contains an additional constraint stating that
the object should not move along this transition.

2) controller generation: computation of a sequence of
controllers corresponding to successive segments of the
planned path,

3) motion execution: successive activation of each con-
troller after detection of the end of the previous seg-
ment.

Item 2) above is the main contribution of this paper. In the
three following sections, we explain how we tackle the above
sub-problems.

III. MANIPULATION PLANNING

To plan a manipulation path, we use algorithm Manip-
ulation RRT as described in [16]. This algorithm is an
extension of RRT that explores the foliations induced by the
manipulation constraints.

A. Constraint graph

The manipulation constraints are stored in a graph
• the nodes of which are sets of grasps as defined in

Section II-A called states, and
• the edges of which are called transitions and connect

states that differ by only one grasp.
Transitions contain the constraints of the state they belong
to and additional constraints stating that objects not grasped
should not move. See Figure 2 for an example.

B. Grasp waypoints

Grasp configurations are usually very close to collision
since the object and gripper are almost in contact. To avoid
the so called narrow passage effect in path planning, we
define some intermediate states called waypoints in the
constraint graph. clearance parameters are added in the
model of each object handle and of each robot gripper. For
each pair (g, h) of gripper and handle, the pregrasp of h by
g is defined as the following subset of C{

q ∈ C, g(q)−1h(q) = T
}
,

where
• g(q)−1h(q) ∈ SE(3) is the relative position of h in g

frame (in configuration q),

gr(g1, h1,1)
gr(g1, h1,1)

gr(g2, h2,1)
∩g2 > h2,1|gr(g1, h1,1)|pg

grasp transition

release transition

clo clg

Fig. 3. Top: partial view of a constraint graph with a grasp waypoint
state inserted between two states. The robot has two grippers g1, g2 and
manipulates object 1 by two handles h1,1, h1,2. Bottom: example of a
configuration in waypoint state g2 > h2,1|gr(g1, h1,1)|pg. clo and cl1
respectively represent the clearance of h1,2 and of g2. Red arrows represent
x-axes.

pl(o1)

gr(g1, h1,1,)

g1 > h1,1|pl(o1)|pg

g1 > h1,1|pl(o1)|gp

g1 > h1,1|pl(o1)|pp

grasp transition

lift transition

release transition

put transition

Fig. 4. Top: partial view of a constraint graph with 3 placement waypoint
states inserted between two states. Bottom: example of 3 configurations in
waypoint states pregrasp (pg), grasp-placement (gp) and preplacement (pp).

• T ∈ SE(3) is the translation along x axis of abscissa
the sum of gripper and handle clearances.

With this definition, we augment the constraint graph with
intermediate pregrasp states along transitions that create a
new grasp. See figure 3 for an example.

C. Placement waypoints

Between a state where an object is in placement and a
state where the same object is grasped – all other grasps
and placement being unchanged, we insert 3 waypoint states
corresponding to

• pregrasp: defined as in the previous section (III-B),
• grasp-placement: the object is grasped and still in

placement,
• preplacement: the object is grasped and translated by a

positive distance equal to the grasp clearance along the
normal to the environment contact surface.

D. Special transitions

Using definitions in sections III-B and III-C, for clarity,
we refer to some transitions as follows.

• Grasp transitions connect pregrasp and grasp-
placement states.

• Release transitions connect grasp-placement and pre-
grasp states.

• Lift transitions connect grasp-placement and preplace-
ment states.

• Put transitions connect preplacement and grasp-
placement states.

• Loop transitions connect a state to itself.

In the above definitions, we do not make any difference
between waypoint and regular states. Figures 3 and 4 show
examples of these transitions.

E. State pruning

Without additional information, each gripper may grasp
each handle, making the number of states potentially very
high. To keep the number of states reasonable, we filter out
states that are empty because

1) configurations satisfying the grasp constraints of the
state are always in collision, or

2) no configuration satisfies the grasp constraints of the
state.

States of the first type are detected by randomly generating
one configuration in the state and by testing collision only
of the bodies constituting the grippers. Those body relative
positions are indeed constant for all configurations of the
state. States are declared of the second type if none of
a given number of attempts to generate a configuration in
those states is successful. Attempting to generate a node in
a state consists in generating a random configuration and to
solve the state constraints using a Newton based non-linear
equation solver as described in [18] (Algo 1).

F. Path smoothing

The result of Manipulation RRT is post-processed in two
successive steps in order to make it executable on a real
robot.

1) a random shortcut algorithm is applied [7] to shorten
the path and remove useless detours,

2) the result of the previous step is time-parameterized
using sequences of Bezier curves in order to make it
continuously differentiable and in order to bound the
maximal joint accelerations from above.

IV. SENSOR BASED MOTION CONTROL

The output of the manipulation planning process described
in the previous section is a continuously differentiable tra-
jectory composed of a sequence of segments such that
each segment is subject to a set of numerical constraints
stored in the constraint graph edges. Segments are linked
by configurations that belong to states (including waypoint
states) of the constraint graph.

If models of the robot, of the object and of the environment
were perfect, if the control of the robot motors were perfect
and if the sensors were perfect, controlling the joints by
feeding them with the planned trajectory would make the
task execution successful. However, in the real world, none
of the above is perfect. Particularly, if the robot links are
light as is the case for legged humanoid robots, the overall
flexibility of the structure induces important variations be-
tween the position of the end effectors computed via forward
kinematics and the actual position. Those variations can only
be partially corrected by a calibration step. In this paper, we
use visual servoing to cope with the above inaccuracies.

To do so, we use a hierarchical task-based controller as
described in [14]. This software basically implements the
algorithm described in [23].

A. Hierarchical task based controller

The controller is based on the following concepts:
• task: a mapping from C to T a vector space or a Lie-

group (usually SE(3)). It can represent the pose of an
end effector, the posture of the robot, the pose of an
object;

• task reference: a mapping from R to T that represents
the desired trajectory of the task along time.

• error: a mapping from T×T to a vector space that maps
to zero pairs of identical task values. For instance, if the
task is the pose (T = SE(3)) of a robot end effector,
and if T1, T2 are two elements of SE(3),

eSE(3)(T1, T2) = log
(
T−1
1 T2

)
(3)

is the screw velocity (v, ω) ∈ R6 that moves T1 to T2

in unit time. Particularly, the error is equal to zero iff
T1 = T2. If T = Rn for a given positive integer n,

eRn(T1, T2) = T2 − T1. (4)

Note that expression (3) is equivalent to (4) if we
consider Rn as a Lie group with + operator.

S0 S1 S2 S3

Tr0 Tr1 T2

t0 t1 t2 t3

C

Γ(t)

T01

T02

...

controller 0
T11

T12

...

controller 1
T21

T22

...

controller 2

Fig. 5. Sequence of controllers. As explained in Section III, the output of
the manipulation planning algorithm is a sequence of time-parameterized
trajectory segments belonging to transitions of the constraint graph. In
this figure, all states – waypoint or not – are represented by circles. A
hierarchical task based controller is associated to each transition.

If we consider a planned trajectory Γ as a mapping from R
to C, and a task T with output space T, we define the task
reference associated to T for the trajectory Γ as the mapping
from R to T:

T ∗(t) , T (Γ(t)) (5)

and the error for this task along Γ as the mapping from C×R
to Rn for a given n:

e(q, t) , eT(T (q), T ∗(t)). (6)

A hierarchical task based controller is initialized with an
ordered list of tasks Ti, i ∈ {1, · · · ,m} for some positive
integrer m, with decreasing order of priority. It takes as input
a robot configuration q and computes a robot control q̇ in
order to make the errors converge to 0. If no value of q̇
makes all the errors converge to 0, the controller computes
the best control value q̇ given the priority order. We refer
to [14] for details about the computations.

B. Synthesis of a sequence of controllers

The main contribution of this paper is the automatic gener-
ation of a sequence of hierarchical task-based controllers, one
for each transition of the constraint graph along a planned
trajectory. To each type of transitions defined in Section III-
D, we associate a controller as described below.

a) System specific task: Possible robot specific con-
straints are inserted at the higher priority level (level 1). This
task can be for instance quasi-static equilibrium of a legged
humanoid robot, or a predefined trajectory of the base of a
mobile manipulator. Note that these constraints are also used
during motion planning.

decreasing priority

task 1

task 2

task m

system specific task

posture task

transition specific tasks...

task m− 1

Fig. 6. Controllers are associated to each type of transition.

b) Posture task: The posture task takes values in Rn

where n is the number of actuated degrees of freedom of the
robot. The value of the task for a given configuration q is
obtained by extracting from q the parameters corresponding
to the actuated degrees of freedom.

Tasks specific to each transition are inserted between the
system specific task and the posture task as described in
Figure 6.

c) Visual servoing task: In this task, the relative pose
of object i in the robot gripper gj frame is regulated.
Therefore the task output is T−1

gj Toi where Tgj and Toi are
the respective poses of gj and of oi. Following (3), the error
of the task is defined as:

e = log
(

(oi T̂gj)−1T ∗−1
gj T ∗

oi

)
(7)

where oi T̂gj , defined by (2) is the measured value of the task,
while T ∗−1

gj T ∗
oi is the time varying reference of the task.

d) Grasp and release transitions: if the link of the
gripper about to grasp and the object to be grasped are
equipped with a visual feature, the transition specific task
is a visual servoing task of output space SE(3). The value
of the task is the relative pose of the object in the gripper
frame.

e) Put and Lift transitions: if the object about to be put
and the object (or environment) holding the contact surface
are equipped with a visual feature, the transition specific task
is a visual servoing task of output space SE(3). The value
of the task is the relative pose of the object in the frame of
the contact surface.

f) Loop transitions: if along the transition, an object is
grasped by two grippers, the transition specific task is the
relative pose of a gripper with respect to the other one. This
task value can be measured

• by visual features if available, or
• joint encoders and forward kinematics. In this case,

the reference of the task is not the value computed
from Equation (5), but the value measured by the joint
encoders at the beginning of the transition.
g) Other transitions: transitions that do not fit one of

the above definitions do not have any specific tasks.
h) Note: visual servoing tasks are inserted only if the

corresponding visual features are visible from the robot

Vision

Estimation

Control

Robot

Planning

Supervisor

Fig. 7. ROS Architecture: arrows display the flow of information.

camera. This can be enforced at the motion planning level
by adding a constraint on the camera orientation, or at least
predicted from the planned trajectory.

V. MOTION EXECUTION

Motion execution is performed on the robot using ROS
architecture. The ROS nodes involved are displayed in Fig-
ure 7 and described below.

a) Vision: detects and publishes the poses of visual
features with respect to the camera frame.

b) Estimation: reads the poses of objects as published
by the Vision and the robot joint encoders. These raw data
correspond to a configuration q̂ that is not contained in
any state of the constraint graph. The node projects q̂ on
all states and publishes the state and configuration q̂proj

corresponding to the closest projection of q̂.
c) Planning: runs the manipulation planning algorithm

and publishes the references that are extracted from the
solution trajectory and that the controllers request. The initial
configuration is read from the Estimation node.

d) Supervisor: computes the sequence of controllers
and handles synchronisation between the different nodes.

e) Control: embeds the hierarchical task based con-
trollers into the ros control interface.

VI. EXPERIMENTAL RESULTS

We have implemented our framework on Pyrene robot
displayed in Figure 1. The experimental setup is composed of
the humanoid robot, a table and a wooden box both equipped
with AprilTags [26].

In this section, we show the execution of a manipulation
sequence where the robot is asked to flip a box upside down
on a table. The reference path is planned and optimized by
our software platform HPP as explained in section III.

VII. CONCLUSION AND PERSPECTIVES

This article proposes a new framework to automatize the
bridge between motion planning and control. This is achieved
by extracting in the planned trajectory the references that
are relevant for a given portion of the trajectory. This article
illustrates the application of this principle to visual servoing.
Experimentations on Pyrene robot validate the effective-
ness of the approach. They also point out some possible
improvements for a future work. The first improvement
would consist in growing obstacles and robot bodies for

gr(g1, h1,1)

gr(g1, h1,1)

gr(g2, h2,1)
∩

g2 > h2,1|gr(g1, h1,1)|pg

pl(o1)

g1 > h1,1|pl(o1)|pg

g1 > h1,1|pl(o1)|gp

g1 > h1,1|pl(o1)|pp

g2 > h2,1|pl(o1)|pg

g2 > h2,1|pl(o1)|gp

g2 > h2,1|pl(o1)|pp

pl(o1)

g1 > h1,1|gr(g2, h2,1)|pg

gr(g2, h2,1)

gr(g1, h1,1)

gr(g2, h2,1)
∩

Fig. 8. Sequence of states visited to flip the box upside down. The robot
grasps with one hand, changes hand and releases the object in a stable
position. Red arrows correspond to visual servoing transitions. Note that
visual servoing was not performed when changing hand since the required
tags were not all in the field of view of the camera.

Fig. 9. Plots of the linear and angular errors of the visual servoing
task along the approaching box motion (first red transition in Figure 8).
The angular error decreases exponentially. The linear error decreases, then
increases between 9 and 10s and then decreases exponentially again. The
increase is probably due to the descending motion of the gripper to grasp
the box. The gain of the visual servoing task is low because of the small
frequency of the visual servoing process. This implies a delay in following
the descending trajectory.

manipulation planning to account for poor robot calibration.
This operation would be performed only along transitions
without visual servoing. The second one would consist in
providing feedforward to the visual servoing tasks in order
to better follow moving targets.

REFERENCES

[1] E. Aertbelin and J. De Schutter, “Etasl/etc: A constraint-based task
specification language and robot controller using expression graphs,”
in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 09 2014.

[2] D. J. Agravante, G. Claudio, F. Spindler, and F. Chaumette,
“Visual servoing in an optimization framework for the whole-
body control of humanoid robots,” IEEE Robotics and Automation
Letters, vol. 2, no. 2, pp. 608–615, Apr. 2017. [Online]. Available:
https://hal.inria.fr/hal-01421734

[3] F. Chaumette and S. Hutchinson, “Visual servo control, part i: Basic
approaches,” IEEE Robotics and Automation Magazine, vol. 13, no. 4,
pp. 82–90, December 2006.

[4] ——, “Visual servo control, part ii: Advanced approaches,” IEEE
Robotics and Automation Magazine, vol. 14, no. 1, pp. 109–118,
March 2007.

[5] A. Dobson and K. Bekris, “Planning representations and algorithms
for prehensile multi-arm manipulation,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Hamburg,
Germany, 2015.

[6] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Ffrob:
Leveraging symbolic planning for efficient task and motion
planning,” CoRR, vol. abs/1608.01335, 2016. [Online]. Available:
http://arxiv.org/abs/1608.01335

[7] R. Geraerts and M. Overmars, “Creating high-quality paths for motion
planning.” International Journal of Robotics Research, vol. 26, no. 8,
pp. 845–863, 2007.

[8] M. Gharbi, J. Cortés, , and T. Siméon, “Roadmap composition for
multi-arm systems path planning,” in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), Saint-Louis, USA,
2009.

[9] K. Harada, T. Tsuji, and J.-P. Laumond, “A manipulation motion plan-
ner for dual-arm industrial manipulators. in proceedings of,” in IEEE
International Conference on Robotics and Automation, Hongkong,
China, 2014, pp. 928–934.

[10] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566–580, August 1996.

[11] A. Krontiris and K. Bekris, “Dealing with difficult instances of object
rearrangement,” in Robotics Science and Systems, Roma, Italy, 2015.

[12] S. M. Lavalle and J. J. Kuffner, “Randomized kinodynamic planning,”
International Journal of Robotics Research, vol. 20, no. 5, pp. 378–
400, May 2001.

[13] P. Lertkultanon and Q.-C. Pham, “A single-query manipulation plan-
ner,” IEEE Robotics and Automation Letters, vol. 1, no. 1, pp. 198–
205, 2015.

[14] N. Mansard, O. Stasse, P. Evrard, and A. Kheddar, “A versatile gen-
eralized inverted kinematics implementation for collaborative working
humanoid robots: The stack of tasks,” in International Conference on
Advanced Robotics (ICAR), 2009.

[15] Y. Mezouar and F. Chaumette, “Path planning for robust image-
based control,” IEEE Transactions on Robotics and Automation,
vol. 18, no. 4, pp. 534–549, 2002. [Online]. Available: https:
//hal.inria.fr/inria-00352101

[16] J. Mirabel and F. Lamiraux, “Manipulation planning: Addressing
the crossed foliation issue,” in IEEE Int. Conf. on Robotics
and Automation (ICRA), 2017. [Online]. Available: https://hal.
archives-ouvertes.fr/hal-01358767

[17] J. Mirabel, “Manipulation planning for documented objects,” Theses,
Institut National Polytechnique De Toulouse, Feb. 2017. [Online].
Available: https://hal.laas.fr/tel-01516897

[18] J. Mirabel and F. Lamiraux, “Handling implicit and explicit
constraints in manipulation planning,” in Robotics: Science and
Systems, Pittsburg, USA, June 2018. [Online]. Available: https:
//hal.archives-ouvertes.fr/hal-01804774

[19] A. Nicolin, J. Mirabel, S. Boria, O. Stasse, and F. Lamiraux,
“Agimus: a new framework for mapping manipulation motion plans
to sequences of hierarchical task-based controllers,” in IEEE/SICE
International Symposium on System Integration, Honolulu, United
States, Jan. 2020. [Online]. Available: https://hal.laas.fr/hal-02466543

[20] J. Ota, “Rearrangement of multiple movable objects-integration of
global and local planning methodology,” in IEEE Int. Conf. on
Robotics and Automation (ICRA), vol. 2, 2004, pp. 1962–1967.

[21] P. S. Schmitt, W. Neubauer, W. Feiten, K. M. Wurm, G. V. Wichert,
and W. Burgard, “Optimal, sampling-based manipulation planning,”
in 2017 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2017, pp. 3426–3432. [Online]. Available: http:
//ais.informatik.uni-freiburg.de/publications/papers/schmitt17icra.pdf

[22] P. S. Schmitt, F. Wirnshofer, K. M. Wurm, G. V. Wichert, and
W. Burgard, “Modeling and planning manipulation in dynamic
environments,” in 2019 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2019. [Online]. Available: http:
//ais.informatik.uni-freiburg.de/publications/papers/schmitt19icra.pdf

[23] B. Siciliano and J.-J. Slotine, “A general framework for managing
multiple tasks in highly redundant robotic systems,” in International
Conferenceon Advanced Robotics, 1991, pp. 1211–1216.

[24] T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani, “Manipula-
tion planning with probabilistic roadmaps,” International Journal of
Robotics Research, vol. 23, no. 7/8, July 2004.

[25] V. Vasilopoulos, T. Topping, W. Vega-Brown, N. Roy, and
D. Koditschek, “Sensor-based reactive execution of symbolic rear-
rangement plans by a legged mobile manipulator,” in 2018 IEEE/RSJ
International Conference on Intelligent Robotic Systems (IROS), 10
2018.

[26] J. Wang and E. Olson, “AprilTag 2: Efficient and robust fiducial
detection,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 2016.

https://hal.inria.fr/hal-01421734
http://arxiv.org/abs/1608.01335
https://hal.inria.fr/inria-00352101
https://hal.inria.fr/inria-00352101
https://hal.archives-ouvertes.fr/hal-01358767
https://hal.archives-ouvertes.fr/hal-01358767
https://hal.laas.fr/tel-01516897
https://hal.archives-ouvertes.fr/hal-01804774
https://hal.archives-ouvertes.fr/hal-01804774
https://hal.laas.fr/hal-02466543
http://ais.informatik.uni-freiburg.de/publications/papers/schmitt17icra.pdf
http://ais.informatik.uni-freiburg.de/publications/papers/schmitt17icra.pdf
http://ais.informatik.uni-freiburg.de/publications/papers/schmitt19icra.pdf
http://ais.informatik.uni-freiburg.de/publications/papers/schmitt19icra.pdf

	Introduction
	Visual servoing
	Manipulation planning
	Sensor-based manipulation planning and control
	Contribution

	Definition of the problem
	Grippers, handles, grasps
	Contact surfaces, placements
	Visual features
	Problem definition

	Manipulation planning
	Constraint graph
	Grasp waypoints
	Placement waypoints
	Special transitions
	State pruning
	Path smoothing

	Sensor based motion control
	Hierarchical task based controller
	Synthesis of a sequence of controllers

	Motion execution
	Experimental results
	Conclusion and perspectives
	References

