Silvano Dal

MCC: a Tool for Unfolding Colored Petri Nets in PNML Format

Keywords: Tools, PNML, High-Level Petri nets, Colored Petri nets 1

est destinée au dépôt

Introduction

The Petri Net Markup Language (PNML) [START_REF] Billington | The Petri Net Markup Language: concepts, technology, and tools[END_REF] is an XML-based interchange format for representing Petri nets and their extensions. One of its main goal is to provide developers of Petri net tools with a convenient, open and standardized format to exchange and store models. While its focus is on openness and extensibility, the PNML spotlights two main categories of models: standard Place/Transition nets (P/T nets), and a class of Colored Petri nets, called High-Level Petri Nets (HLPN), where all types have nite domains and expressions are limited to a restricted set of operators [START_REF] Chiola | On well-formed coloured nets and their symbolic reachability graph[END_REF][START_REF] Jensen | Coloured petri nets[END_REF].

In this paper we present mcc, a tool designed for the single task of unfolding the models of High-Level Petri nets, given in the PNML syntax, into equivalent Place/Transition nets. The name of the tool derives from the annual Model-Checking Contest (MCC) [START_REF] Amparore | Presentation of the 9th edition of the model checking contest[END_REF], a competition of Petri tools that makes an extensive use of PNML and that provides a large and diverse collection of PNML models, some of which are colored. Our choice when naming mcc was to underline the main focus of the tool, which is to provide an open and ecient solution that lowers the access cost for developers wanting to engage in the MCC.

We seek to follow the open philosophy of PNML by providing a software that can be easily extended to add new output formats. Until recently, the tool supported the generation of Petri nets in both the TINA [START_REF] Berthomieu | The tool TINAconstruction of abstract state spaces for Petri nets and Time Petri nets[END_REF] (.net) and LOLA [START_REF] Schmidt | Lola a low level analyser[END_REF] formats; but it has been designed with the goal to easily support new tools. To support this claim, we have very recently added a new command to print the resulting P/T net in PNML format. This extension to the code serves as a guideline for developers that would like to extend mcc for their need.

The rest of the paper is organized as follows. In Sect. 2, we describe the basic functionalities of mcc and give an overview of the PNML elements supported by our tool, we also propose three new classes of colored models that are representative of use cases found in the MCC repository [START_REF] Hillah | Petri Nets Repository: A tool to benchmark and debug Petri net tools[END_REF]. Next, we describe the architecture of mcc and discuss possible applications of its libraries. Before concluding, we compare mcc with other existing solutions. Despite the fact that the problem we target is abundantly covered in the literature, we show that it is still possible to innovate. We describe two particular examples of optimizations that have proved useful when dealing with some of the most challenging colored models in the contest, namely the use of a restricted notion of higher-order invariant, and the support of a Petri net scripting language.

2

Installation, Usage and Supported PNML Elements

The source code of mcc is made freely available on GitHub 1 and is released as open-software under the CECILL-B license; see https://github.com/dalzilio/ mcc. The code repository also provides a set of PNML les taken from the open collection of models from the MCC [START_REF] Hillah | Petri Nets Repository: A tool to benchmark and debug Petri net tools[END_REF].These les are provided in the source code repository to be used for benchmarking and continuous testing. The tool can also be easily compiled, from source, on any computer that provides a recent distribution of the Go programming language.

Basic usage.

Tool mcc is a command-line application that accepts three primary subcommands: hlnet, lola and pnml. In this paper, we focus on the mcc hlnet command, that generates a Petri net le in the TINA net format [START_REF] Berthomieu | The tool TINAconstruction of abstract state spaces for Petri nets and Time Petri nets[END_REF]. Similarly, commands lola and pnml generate an equivalent output but targeting, respectively, the LoLa [START_REF] Schmidt | Lola a low level analyser[END_REF] and PNML formats for P/T nets.

We follow the UNIX philosophy and provide a small program, tailored for a precise task, that can be composed using les, pipes and shell script commands to build more complex solutions. As it is customary, option -h prints a usage message listing the parameters and options accepted by the command.

The typical usage scenario is to provide a path to a PNML le, say model.pnml, and invoke the tool with a command such as mcc hlnet -i model.pnml.

By default, the result is written in le The mcc tool, in its latest version, supports all the operators used in models of the Model-Checking Contest. To better understand this fragment, we give three examples of HLPN that can be expressed using these constructs, see Fig. 1 to 3.

Each of these examples illustrate an interesting class of parametric models found

in the MCC and will be useful later to discuss the strengths and weaknesses of our approach. None of these models are part of the MCC repository (yet), but their PNML specication can be found in the mcc source code repository.

Three representative examples.

Our rst example, Fig. 1, illustrates the use of colors to model a complex network topology. While Diusion is not part of the MCC repository, it is the colored equivalent of model Grid2d; it is also the main benchmark in [START_REF] Liu | An ecient method for unfolding colored Petri nets[END_REF]. In this model, values in the place Grid are of the form (x, y), with x, y ∈ 0..4. Hence we can interpret colors as cells on a 5 × 5 grid and values as tokens in these cells.

t 1 (a = x ∨ a = x++ ∨ a = x--) ∧ (b = y ∨ b = y++ ∨ b = y--) ∧ (a = x ∨ b = y) 1 (a, b) 1 (x, y) Grid : CD × CD CD : 0..4 Figure 1: Diusion Acc s < 5 StopTable 1 (1, 1) + 1 (2, 3) + 1 (3, 6) + . . . Dec s > 0 TrainState 1 (train1, 0, 0) + 1 (train2, 0, 0) 1 (id, s, d) 1 (s, d) + 1 (s++, d) 1 (s, d) + 1 (s++, d) 1 (id, s++, d) 1 (id, s, d) 1 (id, s++, d) DisTable : DIST × SPEED × DIST TrainState : ID × SPEED × DIST DIST : 0..45 SPEED : 0..5
1 (x) 1 (x) 1 (x) 1 (x--)

(x--)

Here, There : RESOURCE RESOURCE : 1..10 high-level code (HLPN) into low-level instructions (P/T net). We follow a traditional structure with three stages where: pnml corresponds to the front-end (responsible for syntax and semantics analysis); hlnet provides the intermediate representation; and corenet is the back-end, which includes functions for unfolding an hlnet and for code generation. A last package, cmd, contains boilerplate code for parsing command-line parameters and manage inputs/outputs.

Each of these packages is interesting taken separately and can be reused in other applications. Package pnml, for instance, includes all the types and functions necessary for parsing a PNML le: it denes a pnml.Decoder, which encapsulates an ecient, UTF-8 compatible XML parser and can provide meaningful error messages in case of problems. The hlnet package, for its part, denes the equivalent of an Abstract Syntax Tree data structure for PNML les.

Both of these packages can be easily reused in programs that need to consume PNML data. In particular, they can help build a standalone PNML parser with good error handling.

Finally, package corenet contains the code for unfolding an hlnet.Net value into a corenet.Net, which is a simple, graph-like data structure representing a P/T net. The package also contains the functions for marshalling a core net structure into other formats; see function corenet.LolaWrite for an example. More than compliance with the standard, mcc takes care of many of the idiosyncrasies in the way PNML model are written in the MCC. For instance we consider the case where numberof does not declare a multiplicity.

A tool developer that would like to adopt mcc to generate a core net, using his own format, only needs to provide a similar Write function. In the case of the pnml subcommand, that was added on the last release of the tool, one hundred line of codes were enough to add the ability to generate PNML les.

A gure that is similar to what we observed with the lola subcommand.

Using package hlnet for drawing Colored nets.

Package hlnet also includes a function to output a textual representation of an AST that is compatible with TINA's net syntax. It generates a net that includes all the places and transitions in a colored model as if it was a P/T net and uses labels to display the expressions associated with transitions and the initial marking of places. The net also includes nodes (comments similar to sticky notes) for information about types, variables and arc inscriptions. The result can be displayed and modied with nd, the NetDraw graphical editor distributed with TINA. We show such an example in the screen capture of Fig. 4, which is obtained by using mcc with option --debug on the HLPN model TrainTable of Fig. 2.

While modications cannot be saved back into PNML, this capability is still useful to inspect colored model (and is often more accurate than the graphical information included in the cover ow provided with every model). We can also use the export function included in nd to generate a L A T E X(tikz) representation of the net. This is what we used to generate an initial version of the diagrams that appear in Fig. 1 to 3 of this paper. The problem of (eciently) unfolding colored models has been abundantly covered in the literature and many of the proposed algorithms have been implemented. We can cite the works of Mäkelä, with his tool MARIA [START_REF] Mäkelä | Optimising enabling tests and unfoldings of algebraic system nets[END_REF]; of Heiner et al. with Marcie [START_REF] Liu | An ecient method for unfolding colored Petri nets[END_REF][START_REF] Heiner | Marciemodel checking and reachability analysis done eciently[END_REF]; or the work of Kordon et al. [START_REF] Kordon | Optimized colored nets unfolding[END_REF], that makes a clever use of decision diagrams in order to compute results for very large instances.

This approach is implemented in CPN-AMI [START_REF] Hamez | New features in CPN-AMI 3: focusing on the analysis of complex distributed systems[END_REF] and provides the reference for P/T instances derived from Colored model in the MCC. All these works provide good motivations for why it may be useful to unfold a HLPN instead of trying to analyze it directly.

We decided to compare mcc with three tools that participated in the Model-Checking Contest: Tapaal [START_REF] David | Tapaal 2.0: Integrated development environment for timed-arc petri nets[END_REF] (with its verifypn tool); Marcie [START_REF] Heiner | Marciemodel checking and reachability analysis done eciently[END_REF] (with the andl_converter); and GreatSPN [START_REF] Amparore | 30 years of GreatSPN[END_REF] (that includes a Java based unfolding tool in its editor). Since each tool is tailored for a dierent toolchainand therefore generate very dierent resultsit is dicult to make a precise comparison of the performances. Hence these results should only be interpreted as a rough estimate. For instance, Tapaal is the only tool in this list that do not output the unfolded net on disk. This means that its computation time do not include the time spent marshalling the result and printing it on le.

Unfolding algorithm.

We follow a very basic strategy. For each place p, of type say T , we create one instance of p for any value that inhabits T . (This part is common to most of the existing unfolding algorithms.) For each transition, t, we consider the set of variables occurring in the inscription of arcs attached to it (its environment).

Then we enumerate all possible valuations of the environment and keep only those that satisfy the conditions associated with t.

Our main optimization is to follow a constraint solving approach where we can avoid enumerating a large part of the possible assignments when we know that the condition cannot be satised. For instance a subexpression in a conjunction is falsied. This is a less sophisticated approach than those described [START_REF] Liu | An ecient method for unfolding colored Petri nets[END_REF][START_REF] Mäkelä | Optimising enabling tests and unfoldings of algebraic system nets[END_REF]. For instance, we do not try to detect particular kind of expressions where an unication-based approach could have better performances.

Typically, we should perform badly with instances similar to Diusion, where we may fail to cut down the size of our search space. On the other hand, our approach is not hindered when we need to deal with complex expressions, such as with TrainTable, that involve at the same time tuples, successor, and add.

Actually, our approach may also work with nonlinear patterns, where the same variable is reused in the same expression. Finally, all the algorithms should work equally well on examples like Swap, because of its simplicity.

Even if our approach is quite rustic, our experiments shows that this does not hinder our performances. This may be because few of the colored instances in the MCC fall in the category where clever algorithms shine the most.

Benchmarks.

We selected instances, with a processing time of over a second, from dierent models listed in the MCC repository [START_REF] Hillah | Petri Nets Repository: A tool to benchmark and debug Petri net tools[END_REF] and from the three examples in Sect. 3.

We give the results of our experiment in Table 1. Computations were performed with a time limit of 5 min and a limit of 16 GB of RAM. In each case we give the number of places and transitions in the unfolded net and highlight the best time (when there is a signicant dierence). An absence of values () means a timeout.

Tapaal shows very good performances on many instances and signicantly outperforms mcc for models SafeBus and Diusion. On the opposite, we see that many instances can only be processed with mcc. This is the case with model BART (even with a time limit of 1 h). Use of colored invariants.

The rst additional optimization added to mcc explains our good result on models such as BART. The idea is to identify invariant places; meaning places whose marking cannot be changed by ring a transition. A sucient condition for place p to be invariant is if, for every transition t, there is an arc with inscription e from p to t i there is an arc from t to p with inscription e equivalent to e. (Syntactical equality between e and e is enough for our purpose.) We say that such places are stable ; a concept equivalent to test arcs for an HLPN. This is the case, for example, for place StopTable in model TrainTable. When a place is stable, we know that its marking is xed.

This can signicantly reduce the set of assignments that need to be enumerated.

Use of a Petri scripting language.

The eect of our second improvement can be observed in model Swap (Fig. 3).

In this case, like with model Philosopher of the MCC, it is possible to detect that the unfolded net is the composition of n copies of the same component; where n = |Resource|. Each component x (with x ∈ Resource) is a net with a local copy of the places. As for the transitions, we need to keep one copy for each local interactions (such as t 2) and two copies for distant interactions (t 1): one for the pair of components (x--, x); the other for the pair (x, x++).

Since type Resource is a cyclic enumerationthis is basically a scalar setthe composition of all these components form a ring architecture.

Our tool is able to recognize this situation automatically. In such a case we output a result that uses the TPN format, a scripting language for Petri net supported by the TINA toolchain. This scripting language includes operators for make copies of net; add and rename places and transitions; compute the product or chaining of nets; . . . It also provides higher-order composition patterns, such as pools or rings of components. We use the latter for model Swap.

Our benchmarks of Table 1 include the results on two instances of model Swap. The computation time for mcc (the rst value) is mostly independent from the size of the instance (the only dierence is in parsing the PNML le.) This result conceals a much more complex realty. Indeed, a tool that consumes a TPN script still needs to expand it. This is why we added a second value in Table 1, which is the time taken to generate the result using the mcc pnml command.

For information, the size of the PNML result for model Swap-P100000 is 99 MB, while it is only 200 bytes for the TPN version.

Conclusion

Tool mcc is a new solution to an old problem. It is also an unassuming tool, that focuses on a single, very narrow task. Nonetheless, we believe that it can still be of interest for the Petri net community, and beyond, by enriching the PNML ecosystem. As a matter of fact, there has been a total of 26 verication tools to participate to the MCC since its beginning [START_REF] Amparore | Presentation of the 9th edition of the model checking contest[END_REF], not all Petri tools. Many of these tools could benet from using mcc. Development on mcc started in 2017, as a pet project for studying the suitability of the Go programming language to develop formal verication tools.

Our assessment in this regard is very positive: performances are competitive with regards to C ++ , with good code productivity and mature software libraries;

building executables for multiple platforms and distributing code is easy; . . . Since then, work has progressed steadily in-between each edition of the MCC, with a focus on stability of the tool and on compliance with the PNML standard.

Three iterations later, mcc is now suciently mature to gain more exposure and provides a good showcase for an ecient PNML parser written in Go. But mcc is more than that. First, mcc was designed to lower the work needed by developers wanting to engage in the Model-Checking Contest. It also provides new features, such as the ability to display an interactive (read-only), graphical view of a PNML model; see Fig. 4. Finally, it provides a testbed for evaluating new unfolding algorithms (we show two of these ideas in Sect. 4).

In the future, we plan to enrich mcc by computing interesting properties of the models during unfolding. For example by computing invariants or by nding sets of places that can be clustered together. In that respect, the possibility to identify HLPN that can be expressed using a Petri net scripting language could potentially leads to new advances. For example to simplify the detection of symmetries, something that we have been working on recently in the context of Time Petri nets [START_REF] Bourdil | Symmetry reduction for time Petri net state classes[END_REF].

Figure 2

 2 Figure 2: TrainTable

Figure 3 :

 3 Figure 3: Resource Swap

Figure 4 :

 4 Figure 4: Result of option debug on model TrainTable, displayed in nd

 This is representative of many models, such as the celebrated Dining Philosophers example (known as Philosopher in the MCC).

	3	Architecture of MCC
	The mcc tool is a standalone Go program built from three main software com-ponents 2 (called packages in Go): pnml, hlnet, and corenet. Basically, the
	architecture of mcc is designed to resemble that of a compiler that translates

1 but cannot cross borders. (In our diagrams we use ++ for successor, > for greaterthan, and + for add.) All the behavior is concentrated on the condition associated with t 1 . Since the expression contains four variables; we potentially have |CD| 4 dierent ways to enable t 1 . TrainTable, is an example where colors are used to simulate complex relations between data values. Place StopTable is initialized with a list of pairs associating, to each (integer) speed in 0..5, the safety distance needed for a train to stop. Hence TrainTable tabulates a non-linear constraint between speed and distance. Place TrainState stores the current state of two dierent trains. Each time a train accelerate (Acc), or decelerate (Dec), the safety distance is updated.

TrainTable is a simplied version of the BART model. We can make this model more complex by storing the distance traveled instead of the safety distance (Traintable-Dist); or even more complex by storing both values (TrainTable-Stop+Dist).

Our last example, Swap, is typical of systems built from the composition of multiple copies of the same component and where interactions are limited to neighbors. The model obeys some interesting syntactical restrictions: it does not use conditions on the transitions and inscriptions on arcs are limited to two patterns, x or x--.

2 See the documentation at https://godoc.org/github.com/dalzilio/mcc.

Table 1 :

 1 Execution time (in s) when unfolding complex PNML instances in existing works

	Model	Places Trans.	MCC Tapaal Marcie GSPN
	GlobalResAllocation-07	133 291 067	1.7	3	14.4	22.3
	GlobalResAllocation-11	297	2.10 6	15.1	29.3	144.6	
	DrinkVendingMachine-16	192	10 6	15.5	10.7	52.8	108.1
	DrinkVendingMachine-24	288	8.10 6	97.1	95.9		
	PhilosophersDyn-50	2 850 255 150	1	2.1	11.1	15.7
	PhilosophersDyn-80	6 960	10 6	4.1	9.9	55.9	61.0
	Diusion-D050	2 500	8 109	14.5	0.6	4.1	
	Diusion-D100	10 000	31 209	243.3	8.6	31.3	
	TokenRing-100	10 201	10 6	4	8.2	33.5	49.3
	TokenRing-200	40 401	8.10 6	67.4	166.1		
	SafeBus-50	5 606 140 251	14.2	1.4	6.2	25.1
	SafeBus-80	13 766 550 801	89.5	7	20.6	133.1
	TrainTable-Dist	722	602	1.4	12.6	59.5	69.4
	TrainTable-Stop+Dist	728	602	2.1			
	BART-002	764	646	3.1			
	BART-060	15 032	19 380	3.2			
	SharedMemory-000200	40 801	80 400	0.3	1.7	2.6	5.1
	SharedMemory-001000	10 6	2.10 6	8.9		60.3	160.2
	SharedMemory-002000	4.10 6	8.10 6	55.3			
	FamilyReunion-L800	2.10 6	2.10 6	5.5		84.8	143.0
	FamilyReunion-L3000	28.10 6	27.10 6	89.5			
	Swap-P010000	20 000	20 000 0.1/0.6	0.4	0.9	5.0
	Swap-P100000	200 000 200 000 0.4/4.8	26.1	15.7	

 Other interesting examples are models SharedMemory and FamilyReunion. This suggest that we could further improve our tool by including some of the optimizations used in verifytpn that seems to be orthogonal to what we have implemented so far. We describe two of the optimizations performed by mcc below.Actually, sheer performance is not our main goal. We rather seek to return a result for all the colored instances used in the MCC in a sensible time. (Who needs to unfold a model too big to be analyzed anyways?) At present, there are 193 instances of Colored nets in the MCC repository, organized into 23 dierent classes, simply referred to as models. We can return a result for 184 of these instances, with the condition of the competition. Moreover, to the best of our knowledge, mcc is the only tool able to return results (for at least one instance) in all the models. But some instances, like DrinkVendingMachine-48, should stay out of reach for a long time, mostly due to memory space limitations.