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Abstract—To address the performance problems that many 

business critical applications are experiencing, network vendors 
and Network Service Providers (NSP) are reconsidering the 
integration of some form of application awareness in the way their 
networks forward user traffic. Their ultimate goal is to devise new 
network service models that are dedicated and customized to 
applications while efficiently using network resources. Even if this 
approach is not new and has been already followed with a 
mitigated success two decades ago, the emergence of software-
Defined networking and network virtualization coupled with DPI 
(Deep Packet Inspection) pave the way for the investigation of new 
approaches/solutions towards application aware/driven networks. 
This is exactly the motivations of this work whose objective is to 
propose an Application Driven Network (ADN) that provides 
services to a specific type of applications, i.e. Dynamic Data 
Distribution Service (DDS) based applications. Considered as one 
of the leading connectivity standard for industrial IoT 
communications, focusing on DDS allows a fine-grained 
description of applications’ traffic and needs. With this 
information as input, the proposed ADN is able to provision 
network services that stick to application needs while using 
network resources efficiently. This paper sketches the general 
architecture of such ADN by describing its main components, their 
requirements as well as their algorithms. This solution has been 
implemented, prototyped and applied to a DDS based distributed 
interactive simulation application. 

Keywords—Application Driven Networking; Software Defined 
networking; Data Distribution Service; Network Virtualization 

I.  INTRODUCTION  
 Technologies like the Industrial Internet of Things (IIoT), 

artificial intelligence, and cloud applications are the pillars of 
the industry 4.0 [1]. In industries where the enterprise typically 
relies on heavy machinery or other physical equipments the 
ability to connect these assets and gather data from them can 
lead to benefits like improved efficiency and predictive 
maintenance. However, the networks could become the 
Achilles’ heel of this new paradigm.  

Despite all the advances on network Quality of Service 
(QoS) provisioning that we witnessed during the last decades, 
the performance of business critical applications on an 
enterprise network is still an issue that concerns an increasing 
number of organizations [2]. It reveals that most organizations 
do not have any precise knowledge on the QoS requirements of 
most of their critical applications. Indeed, some QoS parameters 
are difficult to specify and quantify, especially for applications 
that require strong dynamicity (i.e. data flows exchanged 

between application processes and their associated QoS 
requirements strongly vary over time). These dynamic changes 
are one of the main reasons of the precise QoS definition 
difficulty [2]. The industry is not exempt from this problem due 
to the emergence of new complex services. A second reason is 
that organizations and running applications have no precise 
knowledge of the network performance. Therefore, starting 
from user complaints and feedbacks, the QoS planning 
adjustments made by organizations is based on network 
resource over-provisioning. This strategy wastes network 
resources: network bandwidth requirements on enterprise 
networks are ever increasing at the cost of poorer average 
network resource utilization. 

Figure 1 could be a typical example of Industry 4.0 network 
infrastructure [1]. Factory A & B are interconnected with a 
cloud hosting business applications through a public transport 
network. A virtual network composed of network links is 
established based on a Service Level Agreement (SLA) 
negotiated with the operator. Each link must then be 
provisioned according to the resources required by the 
application.  How many resources should be affected to each 
link to ensure the SLA and then the application performance? 
Is it optimal? Will it fit with the application evolving 
requirements? Could the reservation be automatized? These are 
the issues that must be resolved by the IT community to build 
intelligent, dynamic, high-performance networks.   

 
Figure 1 - Industry 4.0 networks 

One way to address these problems is to introduce some 
form of application awareness into the forwarding behavior of 
computer networks. The network is able to provide customized 
data paths to applications, i.e. data paths that are assigned on a 
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per application basis (and not on a destination basis) with the 
required characteristics (in terms of assigned network 
resources) to meet application QoS needs. The network must 
cope with changing needs. It derives the current application 
needs, then computes and installs on the fly the required 
network resources along the data path(s). The newly created 
Application Driven/Aware Network (ADN) enables the 
provision of network services with guaranteed dynamic QoS. It 
reinforces the network utilization efficiency.  

In fact, the association of the application requirements to the 
network resource utilization is not new and has already been 
addressed in the dense literature related to QoS provisioning 
and policy based networking [3]. All these works were applied 
to (and hence constrained by) existing computer networks 
where forwarding is based on destination (potentially, with a 
complementary priority tag). The advent of Software-Defined 
Networking (SDN) paves the way for new approaches towards 
application driven networks. Indeed, the flexible flow-based 
forwarding brought by the SDN paradigm allows 
unprecedented control on network forwarding behavior. On the 
other hand, Deep Packet Inspection (DPI) can be used to 
identify the applications and infer their short-term 
requirements.  

There have been some recent proposals on leveraging SDN, 
and potentially DPI, to provide some form of application driven 
networking that aim at providing customized services to 
applications [3][4][5][6][7]. This paper proposes an ADN 
architecture, which in contrast to previous works, relies on a 
fine-grained description of applications’ traffic and needs. 
These latter are obtained from the Data Distribution Service 
(DDS) middleware on top of which the applications that we are 
considering are built. With this architecture, it is possible to 
provide services that exactly or closely match application 
requirements. Coarse or overestimated needs can be avoided, 
and very efficient network resources utilization can be 
achieved.  

This paper is organized as follows. Section II motivates and 
positions our work. Section III introduces the necessary 
prerequisites. Section IV relates a selection of domain work. 
Section V describes the design principles of our proposal and 
positions it with respect to existing works. Next, we present the 
general architecture of our proposed ADN as well as some of 
its main algorithms. Section VIII details the ADN prototype that 
we implemented; it also describes the application of our ADN 
approach to a distributed interactive simulation application. 
Section IX presents the performance evaluation of our main 
component. Finally, section X concludes the paper. 

 

II. MOTIVATION, PROBLEMATICS AND POSITION OF OUR 
WORK 

As said in the introduction, despite all the advances on 
network Quality of Service (QoS) provisioning, the 
performance of business critical applications running on an 
enterprise network is still an issue that concerns an increasing 
number of organizations [2]. This is even more true when 
talking about industrial automation domain and the concept of 
Industry 4.0 that relies on Internet technologies to create a smart 
production system. Beyond the traditional supervisory control 
and data acquisition system (SCADA), industrial 
communication solutions are heterogeneous and address new 
challenges. They include fieldbuses, industrial Ethernet, 

industrial Wireless, and local manufacturing clouds. In their 5G 
use cases requirements the GSM Association has identified five 
different application areas for Industry 4.0 vertical market [9]. 
The 3GPP technical specification [10] identifies more than forty 
uses cases in these areas and provide for all of them the intended 
service flow requirements. With the emergence of the video 
transmission, augmented reality, clouds, or massive IoT, 
requirements are so complex they cannot be planned as they 
were using cyclic data transmissions. Both information 
technology (IT) and telecom networks could not cope with the 
automation-specific needs for deterministic (hard deadlines 
boundaries and isochronous communications), low jitter, 
reliable, available, and of course low costs [8]. This is 
especially challenging when new application interactions and 
application flexibility are introduced.  

These days, a generic communication model that consists of 
three layers of networks, middleware and application is 
commonly implemented. Among them, the Data Distribution 
Service (DDS) middleware [12] is particularly characterized 
with a wide-ranging set of QoS parameters that makes it one of 
the references for the industrial communication domain. 
Applications running on top of DDS can dynamically express 
their QoS and communication requirements through a specific 
API. The middleware ensures data availability, guarantees real-
time response, manages complex dataflows and makes 
deployment flexible as long as the network infrastructure can 
support it. This is the main weakness of the current approaches 
as the current deployed networks are static and must be 
overprovisioned. The application has to adapt to the networking 
performances that cannot be changed in time. 

Things are changing as the 5G architecture is expected to 
accommodate a wide range of use cases with advanced 
requirements in terms of latency, bandwidth and resilience. The 
concept of slice builds logical network structure on top of a 
same physical infrastructure to fulfill vertical specific 
requirements. This requires highly manageable infrastructure 
components to be deployed and changed on demand at runtime 
according to the applications needs. Thanks to the association 
of Software Defined Network paradigm (SDN), where one of 
the goals is to supply network flexibility, Monitor-Analyze-
Plan-Execute (MAPE) framework, that supplies autonomic 
functionalities, and the power of a middleware like DDS, this 
work proposes an architecture that will satisfy the constraints of 
industrial communications while optimizing network resources. 
Starting from the detailed description of the application 
dynamics, the networking service will dynamically adapt at best 
the networking resources with the application requirements.  
This architecture should be considered as a key enabler for the 
deployment of future industrial communication slices. In the 5G 
framework, the slice implementation into the Radio Access 
Network (RAN) is considered out of the scope. They consider 
“RAN dependent” [11] the resources allocation/segregation 
into the RAN and it is up to the operator to fix the way to 
implement it. The same rule applies to local networks where our 
architecture can be considered as a solution to implement the 
slicing concept. It allows fine grains services definition that 
allows the network to fulfill the application requirements while 
optimizing the slice resources. However, even if we take into 
account the concept of slice, we consider beyond this work the 
definition of an interface compliant with the 5G framework. 
Even if it remains possible. 



 
III. SOME TECHNOLOGICAL PREREQUISITES 

A. Data Distribution Service (DDS) 
The Object Management Group (OMG) has specified the 

DDS middleware to address the communication needs of real-
time and high performances distributed applications. DDS 
implements the publish/subscribe paradigm. It is based on the 
abstraction of a strongly typed Global Data Space (GDS, 
denoted DDS domain in Figure 2) where applications push their 
typed data into the GDS with “DataWriters” and interested 
applications subscribe to these data and read them from the 
GDS with “DataReaders”. Data types are explicitly named and 
defined by the DDS topics. As explained in the following 
example derived from the DDS tutorial, a temperature sensor 
could be the DataWriter of a Topic defined by a 
TempSensorType. Making a parallel with classes in object-
oriented programming languages, a Topic can be regarded as 
defining a class whose instances are created for each unique 
value of the topic. 
enum TemperatureScale {CELSIUS,KELVIN,FAHRENHEIT}; 

struct TempSensorType { 
  short id; 
  float temp; 
  float hum; 
  TemperatureScale scale; 
}; 
 
dds::topic::Topic<tutorial::TempSensorType>   
  topic(dp, "TTempSensor"); 

In DDS, data publications and subscriptions are decoupled 
in time. Publication intent, subscription and de-subscription 
take place at any time in the application lifetime. If a 
subscription matches a publication (concerns the same topic), 
the DDS middleware is in charge of distributing the data to the 
newly subscribed application. It relies on RTPS (Real-Time 
Publish/Subscribe Protocol) as a generic and standardized data 
transport protocol.  

One of the strength of DDS is to provide applications with 
a comprehensive set of QoS parameters (named QoS policies in 
DDS) to express the performance (or QoS) requirements on the 
distribution of the data that they produce or consume. These 
requirements apply to the distribution of each type of data 
(topic). They cover reliability aspects as well as the data 
production or consumption rate, the transfer delay, etc. 
Furthermore, some of them are modifiable on the fly. Based on 
this principle, DPI is not required because all service flows 
descriptions are provided by the application to the middleware.   

 
Figure 2 - Data Distribution Service overview 

For each topic, the resource producer and consumers have to 
specify a set of QoS Policies (selected in Table 1) that the DDS 
middleware will manage and monitor. The QoS Policies are 

divided in 5 categories related mainly to the data availability 
during the application, the data delivery across the DDS domain 
and the real-time requirements. For instance, a real-time topic 
could be set with a volatile durability, a fixed deadline of 
several milliseconds and a latency budget that specifies the 
maximum acceptable delay from the time the data is written 
until the data is inserted in the receiver's application-cache. The 
producer and the consumer will be informed by the middleware 
in case of a temporal violation.  
 

QoS Policy Policies Type 
DURABILITY Data Availability 

DURABILITY SERVICE 
LIFESPAN 
HISTORY 

PRESENTATION Data Delivery 
RELIABILITY 
PARTITION 

DESTINATION ORDER 
OWNERSHIP 

OWNERSHIP STRENGTH 
DEADLINE Data Timeliness 

LATENCY BUDGET 
TRANSPORT PRIORITY 

TIME BASED FILTER Resources 
RESOURCE LIMITS 

USER_DATA Configuration 
TOPIC_DATA 
GROUP_DATA 

Table 1 – DDS QoS Policies 

DDS middleware addresses the industrial communications 
domain according to minimal configurations. Cyclic variables 
and events can be spread to unicast, multicast or broadcast 
domains. [13] has proposed a mapping between different 
factory automation traffic types into DDS entities (Table 2). A 
platform interconnecting Profibus and industrial Ethernet has 
been prototyped. [14] also addresses the relevance of DDS for 
massive communications for Industrial IoT Applications. DDS 
could be seen as an extended, scalable, high performances data 
bus. Thanks to the support of Object Management Group 
(OMG), the world’s largest systems software standards 
organization, DDS has a lot of application around the world. 
Recently, DDS has been chosen as base middleware for the 
ROS2 system widely used in robotics.            
 

 Services 
Acyclic  
Events 

Cyclic  
Variables 

Request 
/No 

Response 

Request 
/ 

Response 
Deadline - Maximum  

process 
time 

- - 

Durability Persistent Volatile Volatile Volatile 
History Keep N Keep last Keep Last Keep Last 

Latency Budget Low Medium - - 
Ownership Shared Shared Exclusive Exclusive 
Reliability Reliable Best effort Reliable Reliable 
Transport 
Priority 

Highest High Low Lowest 

Table 2 - Factory automation traffic mapped to DDS policies 
[13]    

Security mechanisms have been added recently to the specification. 
For instance, authentication in the discovery process ensures that 
DomainParticipants validate each other’s identity, but also Access 
Control permissions checking ensure that DomainParticipants have the 
appropriate permissions to exist and match with each other. 



 
B. SoftwareDefined Network (SDN) and OpenFlow 

An important literature exists on Software Defined Network 
(SDN) [15][16][17][18]. Only the principles are given in this 
section. SDN is a networking paradigm where networking 
control functions, localized before networking elements, are 
grouped within central entities called SDN controllers. The 
SDN controllers pilot remotely the networking elements that 
transfer data. Figure 3 describes the principles of SDN 
networks. In an SDN architecture, the transmission devices 
only focus on data transmission, under the supervision of SDN 
controllers. 

 
Figure 3 – SDN architecture 

The transmission rules associated to each dataflow are sent 
to the transmission devices by the SDN controller through a 
South Bound interface. Syntax rules are defined in accordance 
with the interface specification. The South Bound interface the 
most used and developed is OpenFlow, proposed and 
standardized by the industrial consortium Open Networking 
Foundation (ONF). OpenFlow functionalities support the 
implementation of complex QoS specifications. They propose 
a finer network monitoring. Their use reinforces independence 
from network device providers. 

The SDN controller can be compared as a Network 
Operating System. It centralizes the view and the state of the 
network, composed of distributed transmission devices. The 
global view of the network can be shared with applications 
through a North Bound interface. Applications are informed 
when networking events and networking changes occur. 
Moreover, they can transmit their networking requirements, 
taken into account and managed by the SDN controller. 

The SDN approach introduces network flexibility. SDN 
networks are able to process the application requirement 
changes and the operational environment changes. 

IV. RELATED WORK  
The network configuration according to the application 

requirements principle has been boosted by the dynamic control 
enabled by SDN concepts. This section reviews such 
propositions by dividing it into two classes: datacenters and 
precise frameworks. Datacenter/cloud solutions mainly use 
SDN to program the network according predefined application 
profiles. Frameworks mainly focus on solutions that infer the 
application requirements in order to program the network. 

A. Programmability in datacenters 
Work presented in this section considers the application 

deployment in datacenters, to speed up the availability of 

applications. SDN and virtualization are the two technologies 
used to reserve the underlying network services. These services 
are embedded within virtual networks built either as overlays to 
ease to the independence with the network infrastructure, or as 
infrastructure elements to reinforce the control of virtual links.  

The NSX virtualization platform [19] developed by 
VMWare company creates software communication networks 
that are integrated in the hypervisor layer, to be managed from 
a single and automated control point. Virtualized NSX network 
services include switches, security elements, routing 
algorithms, firewalls, load balancing algorithms and virtual 
private networks. The communication application profile is 
static and explicitly supplied by the administrator. The network 
service is a virtual network overlay with a flexible QoS defined 
for dataflow aggregates. 

The ACI (Application Centric Infrastructure) platform [20] 
developed by Cisco company eases the deployment of 
applications in datacenters. The deployment and the resources 
required is specified by a group policy language. The network 
service is a virtual network overlay managed through VXLAN 
protocol and SDN principles. It integrates functionalities from 
layer 2 to layer 7. As for NSX, the communication application 
profile is static and explicitly supplied by the administrator. The 
network service is a virtual network overlay with QoS defined 
for dataflow aggregates. 

The Netscaler controller [21] developed by Citrix company 
improves the previous ACI platform. The network service 
remains a virtual network overlay with QoS defined for 
dataflow aggregates, but network virtualization is extended 
with service composition functionalities as dynamic service 
insertion and service chaining. 

The Enabling Application-Driven SDN in the Cloud 
platform [22] developed by Oracle Solaris and Plurisbus 
Network companies eases the application deployment and 
authorizes applications controlling platform resources. Each 
deployed application is able to control its own virtual private 
local network (VLAN) through the definition of a Service Level 
Agreement (SLA). A set of distributed systems linked by 
Elastic Virtual Switches (EVS) is first defined. It is considered 
by the Netvisor network hypervisor and realized by using SDN 
rules. The communication application profile is inferred by the 
network. The network service is a Virtual Local Area Network 
that connects the machines where application components are 
running. 

The Application Driven Networking architecture [23] 
developed by Huawei company, combines the principles of 5G, 
SDN and Network Functions Virtualization to support the 
communication requirements of very different applications as 
video streaming, Internet exchanges, Machine to Machine 
communications. The traffic profiles of these applications and 
their associated QoS have very different characteristics in terms 
of bandwidth, latency and reliability requirements. The system 
infers the communication application requirements through 
automatic learning technics and deploys dedicated network 
slices. It includes its own data and control plane and can include 
specific protocols and communication mechanisms. The QoS 
guarantee is flexible and is defined at the level of dataflow 
aggregates. 

As they are specialized for datacenters, these solutions are 
partially adapted to the applications under consideration in this 
paper. Specific traffic characteristics of industrial applications, 



 
scalability requirement and QoS guarantees are not considered. 
These solutions favor coarse grain processing and little flow 
introspections in order to optimize performance. The following 
section presents finer solutions that allow better flow treatments 
but at the expense of less scalability. 

B. Precise frameworks  
The next group of work mostly applies to campus networks.  

ATLAS [24] is a framework that adds to SDN networks the 
functionality of dynamically and automatically identifying the 
communicating applications. It uses a supervised automatic 
learning technic controlled by a set of software agents. By 
collecting information about active network sockets, the agents 
communicate with the network plan controller. By merging this 
information with the network control politic, the controller 
defines network processing rules to be applied. It applies a 
differentiated processing for dataflow aggregates where QoS 
requirements do not change during time. 

The NEAT framework [25] adds the application aware 
functionality to SDN networks. Each computer owns a local 
NEAT agent. Each application registers to its local agent and 
specifies its QoS requirement. Local agents interact with the 
network through its control plan. The applications give 
explicitly their communication profile to the network. The 
network associates dataflows to pre-established and pre-
calculated data paths. 

The MIDAS (MIDdleware Assurance Substrate) framework 
[26] is another extension of the DDS middleware. At the 
opposite of the previous work, MIDAS directly embeds the 
network control in the middleware layer. The MIDAS agents 
include all the network control functions and have the same 
capabilities as SDN controllers. By using the Openflow 
protocol, they can directly program all the communication and 
networking devices to support dataflow communications. The 
application communication profiles are inferred by the MIDAS 
middleware. Then MIDAS selects the network data paths and 
supplies a guaranteed and potentially dynamic QoS. 

The OpenSIP framework [27] reinforces the network 
awareness of SIP-based applications. It refines the QoS 
requirements according to the Session Description Protocol 
used by multimedia applications. All this information is sent 
and centralized to a Deep Packet Inspection (DPI) program 
running on the SDN controller. The network then infers the 
application communication profiles. It associates the 
application dataflows to the available network data paths. 

H. Y. Choi et al. [28] have proposed to reinforce the network 
awareness of Data Distribution Service (DDS)-based 
applications. The communication profile is typically derived 
from the explicit description of the application’s requirements 
from the DDS service. As in the OpenSip framework, their 
approach uses signalization traffic analysis. The Simple 
Discovery Protocol (SDP) allows data producers to announce 
their QoS offered and data consumers to declare their QoS 
required. This information is sent and analyzed by an inspection 
program running on the SDN controller. The network selects 
the network data paths that satisfy the application dataflows 
requirements with their corresponding priority level. 

All these academic works suppose that the communications 
and requirement needs of each application have to be known in 
detail during their lifetime. Two main approaches can be 
identified: In these first approaches (ATLAS, NEAT, and 
MIDAS), the application that permanently knows its 
communication requirements is able to control and program the 
network. In the second approaches, the network is able to infer 
the application communication profile and can choose and 
apply the control rules required. Some assumes that this 
information is explicitly provided to the network by the 
applications or the users, while the network infers it with the 
help of DPI, potentially coupled with traffic estimation 
techniques for others.  

As factory application developers are not aware of the 
traffic characteristics, but know about real-time constraints, we 
are convinced that a transparent solution is the right solution. In 
fact, our proposition is close to the H. Y. Choi et al. [28] work. 
It also relies on DDS to consider timeliness requirements, but 
adds the data delivery dimension (Table 2) and their evolution. 
Unicast and multicast are considered for the virtual networks 
optimization, as traffic characteristics are completely dependent 
on the number of data receivers.   

C. Comparison 

Table 3 is a synthetic view of the main characteristics of related 
work. Three criteria have been retained to compare them. The 
criterion of application communication profile can be static or 
dynamic in time. It can be explicitly supplied or inferred by the 
network. The network service criterion characterizes the 
Quality of Service (QoS) taken into account by the network and 
lists the communication elements manipulated by the network. 
The last criterion lists the management model of each work. 

 

Work Application 
communication profile 

Underlying network 
service Management approach 

Datacenters 

NSX 
Static 
Explicitly supplied by 
administrator 

Virtual network overlay 
Dataflow aggregates 
Flexible QoS 

— 

ACI 
Static 
Explicitly supplied by 
administrator 

Virtual network overlay 
Dataflow aggregates Group based policy 

Netscale 
Static 
Explicitly supplied by 
administrator 

Virtual network overlay 
Dataflow aggregates Group based policy 



 
New services composition 
functionalities 

Enabling Application 
Driven SDN Inferred by the network Virtual LAN Service level agreement 

Application Driven 
Networking Architecture Inferred by the network Dataflow aggregates 

Flexible QoS 
Machine learning 
techniques 

Frameworks 

ATLAS Inferred by the network 
Dataflow aggregates 
Constant QoS 
requirements 

Supervised machine 
learning techniques 

NEAT Explicitly supplied by 
applications 

Dataflows 
Association with 
precalculated datapaths 

Agents 

MIDAS Inferred by the network Flexible QoS 
Datapath selection Agents 

OpenSIP Inferred by the network Dataflows 
Datapath selection Deep packet inspection 

Real-time DDS Inferred by the network 
Dataflows 
Datapath selection with 
priority 

Signalisation traffic 
analysis with packet 
inspection 

    

ADN 

Explicitly supplied by 
applications 
or 
Inferred by the network 

QoS requirements: rate 
and latency 
Unicast and multicast 
dataflows 
Automatic resource 
reservation 

Autonomic 

Table 3 - Related work analysis and comparison 

 

In summary, our architecture uses the network control 
principle based on dataflows implemented in most approaches 
and considers the dynamicity principles as the most advances 
ones. Determinism and hard QoS constraints are guaranteed by 
the nature of the defined algorithm. The considered data flows 
(multicast) and the guaranteed QoS constraints (rate and 
latency) are consistent with the prod/cons paradigm of the DDS 
middleware.   

V. KEY PRINCIPLES OF OUR PROPOSED ADN 
ARCHITECTURE 

Our main goal is to propose an Application Driven network 
where the network will be able to supply a flexible and 
personalized network service that can follow up and adapt to 
application dynamic needs by reserving instantly and 
automatically network resources. 

One key principle is that the service provided to applications 
is based on a fine-grained knowledge of instantaneous 
applications’ flows and QoS needs. With the DDS middleware 
this goes up to identifying the flows of data that are exchanged 
between each DataWriter and its associated DataReaders. 
Thanks to a precise knowledge of applications’ needs, the right 
service (that meets exactly the needs) can be provisionned with 
the optimal set of network resources. Network resource 
utilization is improved at the cost of scalability.  

Another principle is that the network service provided to 
applications is expressed as a virtual network composed of a set 
of logical (virtual) end-to-end links (from end host to end host). 
Each virtual link is either point-to-point or point-to-multipoint 

and is characterized by a bandwidth requirement and a 
maximum transfer delay requirement. It assumes that an 
SDN/OpenFlow enabled network infrastructure is dedicated to 
the application. A pre-defined slice on network elements 
exclusively dedicated works also. 

As depicted in Figure 4, the network control application 
“ADN service provisioning” is in charge of provisioning the 
customized services described above. It is based on a low-level 
northbound interface (i.e. OpenFlow like). 

The last key principle is to build an autonomic “ADN 
service provisioning” network function. More precisely, we 
primarily target the self-configuring property and approach the 
self-healing and self-optimizing properties.  

  
Figure 4 - “ADN service provisioning” network function 
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VI. GENERAL ARCHITECTURE OF THE PROPOSED ADN 
This section introduces the functional components of the 

network control function “ADN service provisioning” that 
implements our ADN approach. Figure 5 depicts its functional 
components. These latter are presented hereafter.  

 
Figure 5 - ADN’s functional components 

A. Application requirements to Virtual Network Mapper 
This component is in charge of mapping application needs 

to the adequate network service. An application virtual network 
(VNET) request is composed of a set of end-to-end point-to-
point and/or point-to-multipoint logical links, each one with a 
bandwidth requirement and a maximum transfer delay 
requirement. This virtual network is the output that the 
component submits to the “VNET resource allocator”. 
Obviously, this component is activated at the beginning of the 
application but also upon a change in the application’s 
communication profile (change in application’s traffic or QoS). 
In this latter case an update request on the already provisioned 
virtual network is submitted to the “VNET resource allocator”.  
 

The data that are exchanged between DDS application 
processes are typed (defined by the application’s topics). 
Thanks to a “DDS DataWriter”, an application process 
produces a data from a given topic. One or many application 
processes that have subscribed to this topic can consume and 
read that data with a “DDS DataReader”. So, a precise way to 
describe the DDS application traffic profile is to reason at the 
level of a topic. This is the level of detail that we consider for 
ADN. Next, we denote the data flow belonging to a particular 
topic as an elementary data flow.  

 
One important function is to characterize all elementary 

flows that are exchanged by the application: its source 
“DataWriter” (each topic has one single publisher), its 
destination(s) “DataReader(s)”, its bandwidth and maximum 
transfer delay. This can be derived as follows: 

 
● In a TCP/IP environment, with DDS, DDS DataReaders and 

DataWriters are identified with Transport layer addresses: 
a combination of IP addresses and a port numbers.  
Transport layer addresses are used to identify the source 
and the end(s) of elementary flows. 

● The bandwidth of an elementary flow is derived from the 
“Deadline” DDS QoS policy associated to the DataWriter. 
For periodic production, it specifies the maximum delay 

between two consecutive data productions and the data 
size.  

●  The maximum transfer delay is derived from the 
“LatencyBudget” DDS QoS policy associated to the 
DataWriter, which specifies the maximum acceptable 
delay from the time the data is written until the data is 
inserted in the receiver's application-cache. 

As DDS middleware does not offer any function that 
centralized this information, it has been implemented:  A first 
subcomponent is in charge of capturing and following, on the 
application DDS domain, the list of topics and their related 
publishers, subscribers and QoS; Then, the “Elementary flows 
characterization” subcomponent takes this list as input to derive 
and characterize the list of elementary flows. 

Mapping each elementary flow to an end-to-end virtual link 
is the most accurate way to describe the network service 
expected by the application. However, it clearly raises 
scalability issues. One important aspect is the number of flow 
table entries that are installed on OpenFlow (OF) switches to 
support the service. Indeed, current flow-tables, which are often 
based on fast TCAM memories (Ternary Content Addressable 
Memory), have a size limited to a few thousands of entries. The 
“Flow Aggregation” subcomponent copes with this problem. It 
is in charge of computing the final set of flows that describes 
the expected service by grouping, when feasible, some 
elementary flows together. The aggregations have generally a 
cost in term of network resource utilization. This important 
subcomponent optimizes this tradeoff. In this work, we adopt a 
simple and intuitive algorithm which groups elementary flows 
that have the same source and destination end-points. 

B. Virtual Network Resource Allocator 
This component is at the heart of the proposed ADN. When a 
virtual network request occurs, it computes the optimal set of 
physical paths to use in order to support the virtual links with 
their QoS characteristics. Many optimization criteria can be 
considered. The ones retained in this work minimize network 
resource utilization and minimize network elements’ load 
disparities (which contribute to improve the admissibility of 
subsequent virtual network requests). For the same purpose, 
path splitting (multiple paths to support a virtual link) can be 
enabled for some requests. A flow can be split into sub flows 
supported by lower bandwidth links.    
Two types of network resources are considered: classically, the 
bandwidth of links but also the switching resources of nodes, 
i.e. the number of OpenFlow flow-table entries, group-table 
entries and meters.  
The virtual network resource allocator takes as input the VNET 
request (the set of virtual links (source and destination(s)) and 
their bandwidth and delay requirements and then computes the 
physical network data paths that support each Virtual link, with 
the required link and switching resources, more precisely: the 
bandwidth allocation of each virtual link on each physical link 
as well as the number of flow table entries consumed by each 
virtual link on each SDN switch. The algorithm is described in 
section VII.B.  

It is worth to note that this component also performs the 
reallocation or de-allocation of resources in case of an update 
or a cancellation request. 



 
C. Virtual Network Deployer 

The goal of this component is the effective deployment of 
the virtual network on the OpenFlow network infrastructure. It 
takes as input the data paths and the associated resources 
computed by the “VNET Resource allocator”, it generates the 
OpenFlow rules to apply on each OpenFlow switch, and it 
submits them to the OpenFlow controller via the northbound 
interface.  

Without delving into the details of the algorithm, which is 
described in section VII.A, the generated OpenFlow rules have 
the following characteristics: the match field checks for IP 
addresses and port numbers; They make use of group table 
entries of type “All” and “Select” to respectively deploy point-
to-multipoint links and to apply path splitting. They make use 
of OpenFlow meters at the source node of each virtual link to 
enforce the traffic flowing along the link to the assigned 
bandwidth. 

D. Autonomic Manager 
The goal of the “Autonomic manager” is to instill some of 

the autonomic properties to the “ADN service provisioning” 
network function. It manages the components described 
previously by implementing the MAPE (Monitoring, Analysis, 
Planning, Execution) loop (based on the frameself framework 
[29]). 

Without being exhaustive, some of the important identified 
situations that the “Autonomic manager” has to react to are 
described below. On a network topology change (detected from 
its monitoring of the network), it decides whether network 
resource re-allocations must be triggered (self-repairing). 
Network topology changes are notified by the network 
controller from the reception of states and statistics OpenFlow 
related messages. All of them are stored in the knowledge 
database.  According to the available network resources and the 
virtual network request, it tunes the resource allocation (e.g. 
enable/disable path splitting) and/or the flow aggregation 
algorithms. Similarly, after virtual network cancellations, it 
decides to re-compute the allocated resources in order to better 
distribute the load of network elements (self-optimizing). From 
its network monitoring, it detects that the rate allocated to a 
virtual link is not adequate and decides to enable the application 
traffic estimation (self-configuring).  

VII. MAINS ALGORITHMS 
In this section, we present the internal algorithms of the 

proposed “ADN service provisioning” network control 
function, more precisely, those of the “Virtual Network 
Deployer” and the “Virtual Network Resource Allocator”. 

A. The “Virtual Network Deployer” algorithm 
The “ADN service provisioning” function is implemented 

on top of a low-level northbound interface. First, we briefly 
present some prerequisites on the OpenFlow protocol before 
detailing the algorithm. To simplify, the presented algorithm 
does not address the deployment of point-to-multipoint link 
with path splitting enabled.  

1) Some prerequisites on Openflow 
An OpenFlow switch embeds at least one flow table, a 

group table and a meter table. The OpenFlow controller relies 
on OpenFlow modification messages to fill these tables. Three 
types of messages are distinguished by the OpenFlow protocol. 
They are described hereafter. 

OpenFlow Flow Modification Messages (ofp_flow_mod) are 
used by the controller to insert, delete or update one flow entry 
into a flow table of a switch. Each flow entry contains a match 
field and a set of instructions that are triggered when a packet 
matches the entry. These instructions result in changes to the 
packet action set. There are multiple types of instructions, 
among which, the "write-actions" and "meter", which are used 
in the proposed algorithm. “Write-Actions” instruction gathers 
a list of actions to add to the current “Action-Set” of the 
matching packet. The Meter instruction guides the matching 
packet to the specified meter.  
OpenFlow Group Modification Messages (ofp_group_mod) 
are sent by the controller to insert, delete or update a group entry 
into the group table of a switch. Each group entry has a group 
id; it is typically used by a flow table entry as a reference to the 
group. A group entry has a list of action buckets. Depending on 
the group type, the actions in one or more action buckets are 
applied to packets sent to the group. Two types have been 
retained in this work:  
● “Select”: used for load sharing. Each bucket has a weight, 

which is used to choose the bucket that applies to an 
arriving packet.  

● “All”: used to perform multicast or broadcast forwarding. 
The packet is cloned for each bucket. 

OpenFlow Meter Modification Messages (ofp_meter_mod) 
are sent by the controller to insert, delete or update a meter entry 
into the meter table of a switch. A meter entry is identified by a 
meter id and is composed of one or more meter bands. Each 
meter band specifies a target rate for that band and the way 
packets are processed when that rate is exceeded: it is either 
dropped (for a meter band of type “Drop”) or remarked (for a 
meter band of type “DSCP remark”). 
 
A last point concerns the order with which OpenFlow Flow 
Modification Messages are sent to a switch. Any reference must 
be set on a flow table entry, meter or group already created. This 
implies that the processing of the OpenFlow meter (or group) 
modification message at the switch must precede the OpenFlow 
flow modification message. As described below, our algorithm 
arranges the transmission of modification messages to respect 
this constraint. 
 

2) The proposed algorithm 
The goal of the algorithm is to build the list of OpenFlow 

Modification Messages to deliver to each network node 
involved in the support of the virtual links that compose the 
Virtual Network. In fact, three lists of messages are computed 
for each node: 1) the list of OF Meter Modification Messages, 
2) the list of OF Group Modification Messages and 3) the list 
of OF Flow Modification Messages. Once computed, the 
algorithm instructs the controller to convey them to node in the 
order specified above. Our algorithm uses (without being a 
necessity) the bundle mechanism introduced in OF version 1.4, 
for message grouping and ordering as well as, to store and pre-
validate them on each node before a global confirmation across 
multiple nodes. The main steps of the algorithm are:  

For each node i crossed by the virtual network [line 2], and 
for each virtual link k [line 3]: 

● If the node i is the source node of virtual link k, then it inserts 
an OpenFlow meter into meterModMessageList and keeps 



 
the meterID for later use (when building the flow 
modification message of the flow table entry that refers to 
the meter). [line 4 – line 8]  

● If the virtual link k is split at node i, then it inserts a group 
into groupModMessageList and it inserts a flow rule into 
flowModMessageList with that group as action of  “Write-
Actions” instruction. If the node i is the source of virtual 
link k, a meter instruction is also added [line 20 – line 34]. 
If k is not split at node i, then it inserts a flow into 
flowModMessageList with a simple output port action in 
the “Write-Actions” instruction, and eventually, a meter 
instruction if the node is the source of virtual link k [line 
10 – line 19]. 

● It transmits successively the meterModMessageList, 
groupModMessageList, flowModMessageList to node i’s 
bundle. This latter is configured with the ordered flag set, 
to request that the messages of the bundle are processed in 
the order of arrivals. [line 37-End]. 

 
VNET Deployer Algorithm : (V, E, K) 

Input : 
V : is the set of nodes (Openflow Switches). Each node i processes and forwards data to another node j 

via a port noted pij 
E : is the set of links. The link between the nodes i and j is noted (i,j).  
K: is the set of virtual links. Each virtual link k is characterized by: a source node sk element of V, a 

bandwith bk, and a set of destination nodes Tk part of V except sk 
𝑓: is a 4-dimensional dictionary of integer noted 	𝑓#$(i,j), representing bandwidth allocated at link (i,j) 

to packets of virtual link k, that are flowing from the source  node sk to the destination note 
t. 

F: is a 3-dimensional dictionary of integer noted 𝑓#(i,j), representing bandwidth allocated at link (i,j) to 
packets of virtual link k. 

V’: is the set of nodes crossed by at least one virtual link. 

Var : match : ofp_match; group_mod : ofp_group_mod; nextHops a set of nodes; 
flowModMessageList : ofp_flow_mod[];  groupModMessageList : ofp_group_mod[]; 
meterModMessageList : ofp_meter_mod[]; groupID, meterID, bundleID : integer; 
 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
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begin 
for each i in V’ do 
 for each unicast link k in K 
 if(i = sk) then  
 meterID←get_meter_id(i,k) 
 insert_into (meterModMessageList, {id =meterID, bands [0] ={rate = bk, 
type = drop}})  
 end if 
 nextHops←computeNextHops(i, k,V’, E, f)  
 if (|nextHops| = 1) then 
 for each j in nextHops do  
  if(i = sk) then  
 insert_into (flowModMessageList, { match=create_match(), 
 instructions ={meter: meterID, write-actions: output.port=Pij}) 
 else 
 insert_into (flowModMessageList, { match=create_match(), 
 instructions ={write-actions: output.port =Pij}}) 
 end if 
 end for 
 else 
 groupID←get_group_id(i,k) 
 group_mod.id ←groupID; group_mod.type←select 
 for each j in nextHops do  
 group_mod.buckets[j] ← {weight =𝑓#(i,j), actions ={ouput.port=Pij} } 
 end for 
 insert_into (groupModList, group_mod) 
 if (i = sk) then  
 insert_into (flowModMessageList, {match=create_match(), 
 instructions = {meter: meterID, write-actions: group.id=groupID}}) 
 else 
  insert_into (flowModMessageList, match =create_match(), 
  instructions ={write-actions: group.id =groupID}}) 
 end if 
 end if 
 end for 

37 
38 
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40 
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45 
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54 

 bundleID← get_bundle_id(i)  
 OFPBCT_OPEN_REQUEST {id =bundleID, flags =ordered} 
 for each msg in meterModMessageList do  
 OFPT_BUNDLE_ADD_MESSAGE {id = bundleID, message = msg} 
 end for 
 for each msg in groupModMessageList do  
 OFPT_BUNDLE_ADD_MESSAGE {id = bundleID, message = msg} 
 end for 
 for each message in flowModMessageList do  
 OFPT_BUNDLE_ADD_MESSAGE {id =bundleID, message = msg} 
 end for 
 reset (meterModMessageList); reset (groupModMessageList); reset 
 (flowModMessageList) 
end for 
for each i in V’ do  
 OFPBCT_CLOSE_REQUEST {id = get_bundle_id(i)} 
 OFPBCT_COMMIT_REQUEST {id =get_bundle_id(i)} 
end for 
end 

B. VNET Resource Allocator 
This section describes the Integer Linear Programming 

(ILP) formulation proposed to solve the resource allocations for 
the virtual network. Virtual network Requests arrive and are 
processed in sequence with no information on future requests. 
For each request, the output is the set of routes (with the 
bandwidth allocations at each supporting physical link and the 
number of flow table, meter table and group table entries at each 
crossed node) that support each of the virtual links composing 
the request. This algorithm extends our previous work [30] by 
considering meter tables and group tables (in addition to the 
flow tables) as network resources to assign. For meter tables, 
things are quite simple since OpenFlow meters are only 
activated on the source nodes of the virtual links. The algorithm 
simply checks that meter table entries are still available at 
source nodes. Actually, switch memories (TCAM) are very 
small and can only support a small number of rules, either in 
terms of flows, meters or groups numbers. If so, the algorithm 
assigns a meter table entry on each of these nodes and proceeds 
with the other resources as described below. If not, the request 
cannot be honored. Our algorithm is the first that takes into 
consideration all of these constraints (noted l, n, u hereafter). 

1) Physical Network Model 
The physical network is modelled by a bidirectional graph 𝐺 =
(𝑉,𝐸) where 𝑉(|𝑉|) is the set of physical nodes (SDN 
switches) and 𝐸(|𝐸|, 𝐸 ⊆ 𝑉	 × 𝑉) the set of physical links 
which operate in full-duplex mode. To each node 𝑖 ∈ 𝑉, is 
associated a switching capacity 𝑈2, which is the maximum 
number of entries (i.e. size limit) of its flow table. The current 
size of node 𝑖 flow table is denoted by 𝑈23. Similarly, 𝑁2 and 𝑁23 
denote respectively the maximum and the current size of the 
group table of switch i. Each Link (𝑖, 𝑗), 𝑖, 𝑗	 ∈ 𝑉 is weighted by 
its bandwidth 𝐵27	and its propagation delay 𝐷27	. Links are 
assumed to have the same characteristics in both directions, i.e. 
𝐵27	 = 	𝐵72	and	𝐷27	 = 	𝐷72. The bandwidth that is currently 
assigned at link (𝑖, 𝑗),	by already admitted virtual links is 
denoted by 𝐵273 . 
 

2) Virtual Network Requests Model 
A virtual network request is composed of a set of 𝐾 virtual 
links. Each virtual link 𝑘 is characterised by: 
● a source node 𝑠# ∈ 𝑉, and a set of destination nodes 𝑇# ⊆

𝑉 − {𝑠#} (when |𝑇#| = 1, the virtual link is point-to-point, 
otherwise it is point-to-multipoint); 



 
● a bandwidth requirement of 𝑏# ∈ 𝑁, a maximum transfer 

delay of 𝑑# ∈ 𝑁 and a maximum packet size of 𝑝#. 

3) Resource-related assignment variables 
Basic assignment variables are related to a specific destination 
of a virtual link. In our model, we distinguish the following 
variables: 
● 𝑓#$(𝑖, 𝑗) is an integer variable that represents the bandwidth 

allocated at link (𝑖, 𝑗) to the packets of virtual link	𝑘 that 
are flowing from the source node 𝑠# to a destination node 
𝑡. More generally, 𝑓#(𝑖, 𝑗) refers to the amount of 
bandwidth used on link (𝑖, 𝑗) by the virtual link 𝑘. It is set 
to the maximum of 𝑓#$(𝑖, 𝑗)for all 𝑘 ∈ 𝐾. 

● 𝑙#(𝑖)	is an integer variable that specifies the number of 
entries that are installed in node 𝑖 flow table to support 
virtual link 𝑘 with the assumption that all entries consume 
the same amount of resources regardless of the complexity 
of the match operation and the related instructions to 
perform. A flow table entry is added if at least one of node 
𝑖 port is supporting traffic from 𝑘 (equations 1). 

 
∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑉:									0 ≤ 𝑙#(𝑖) ≤ 1																									(1. 𝑎)	

	𝑎𝑛𝑑			∀𝑗 ∈ 𝑉,∀(𝑗, 𝑖) ∈ 𝐸 ∶	
𝑔#(𝑗, 𝑖) ≤ 𝑙#(𝑖)																					(	1. 𝑏)	

𝑙#(𝑖) ≤ O
7∈P	(7,2)∈Q	

𝑔#(𝑗, 𝑖)																		(	1. 𝑐)	

where		𝑔#(𝑗, 𝑖) is an intermediate boolean variable that 
indicates if some bandwidth from link (𝑗, 𝑖) is assigned to 
virtual link 𝑘 or not. It is derived from another set of more 
focused intermediate variables 𝑔#$ (𝑗, 𝑖)	that reflects whether 
the flow of packets of virtual link 𝑘 destined to 𝑡 is 
supported by the physical link (𝑗, 𝑖)	(i.e.𝑔#$ (𝑗, 𝑖) =
0		𝑖𝑓	𝑓#$(𝑗, 𝑖) = 0		 and 𝑔#$ (𝑗, 𝑖) = 1	otherwise). 

● 𝑛#(𝑖) is an integer variable that specifies the number of 
group table entries assigned to k at node 𝑖. As described in 
section VI.A, a group table entry is added when splitting or 
when duplicating packets (for point-to-multipoint links). 

● 𝑓STU is the maximum link utilization (when considering all 
network links) after request acceptance. 

● 𝑢STU: is the maximum flow table utilization (when 
considering all network nodes) after request acceptance. 

All the above presented variables (except the two last) 
define the data paths that support the VNET to embed, with 
the required link/bandwidth resources and switching 
resources (flow/meter/Group table entries). 𝑓STU 
(respectively 	𝑢STU) which are minimized in the objective 
function are respectively exploited to limit the load 
disparity between network links (resp. nodes). 

 

4) Problem Constraints 
The constraints on bandwidth allocations are described in 
equations 2 to 8. Equation 2 reflects the linearization of the Max 
operator applied to variables 𝑓#$(𝑖, 𝑗) to get 𝑓#(𝑖, 𝑗). Equations 3 
and 4 have a similar purpose and focus respectively on 𝑓STU and 

𝑢STU, which are minimized by the objective function (as 
explained below). 
 

∀𝑘 ∈ 𝐾,∀(𝑖, 𝑗) ∈ 𝐸, ∀𝑡 ∈ 𝑇#:				𝑓#$(𝑖, 𝑗)	 ≤ 	𝑓#(𝑖, 𝑗)					(2)	
 

∀(𝑖, 𝑗) ∈ 𝐸:				
1
𝐵27

∗ 	Y𝐵273 +O
#∈[

𝑓#(𝑖, 𝑗)\ ≤ 𝑓STU									(3)	

∀𝑖 ∈ 𝑉:			
1
𝑈2
∗ 	Y𝑈23	 +O

#∈[

𝑙#(𝑖)\ ≤ 𝑢STU																				(4)	

 
Equation 5 ensures that the bandwidth assigned to each virtual 
link 𝑘 at link (𝑖, 𝑗) does not exceed the remaining bandwidth. 
Equation 6 is the usual flow conservation constraints. 
 

∀(𝑖, 𝑗) ∈ 𝐸:			O
#∈[

𝑓#(𝑖, 𝑗) ≤ 	𝐵27 −	𝐵273 																											(5)	

	∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇#, ∀𝑖	 ∈ 𝑉 ∶																																																									

O
#∈[

(𝑓#$(𝑖, 𝑗)	 −	𝑓#$(𝑗, 𝑖)	) 	= {		𝑏#									𝑖𝑓	𝑖

= 𝑠#																		−𝑏#								𝑖𝑓	𝑖
= 𝑡																					0										𝑒𝑙𝑠𝑒																											(6)	

Equation 7 is a channeling constraint between integer and 
boolean variables: 𝑓#(𝑖, 𝑗) and 𝑔#(𝑖, 𝑗). It also constrains the 
virtual link k’s bandwidth assignment at a physical link to the 
requested bandwidth	𝑏#. Equation 8 constrains the bandwidth 
that is assigned to the flow of packets destined to a specific 
virtual link’s end-point. The inequality on the right side ensures 
that the bandwidth requirement of the virtual link is never 
exceeded. The inequality on the left side directs path-splitting 
and avoids the multiplication of splits with low bandwidth 
allocations. Indeed, if active, path splitting is feasible only if the 
bandwidth allocated to the splits respects a minimum threshold 
𝑏#S2b. In practice, 𝑏#S2b is a ratio of 𝑏#, 𝑏#S2b = 𝑃𝑆eT$2f ∗ 𝑏#, 
with 𝑃𝑆eT$2f ∈ [1, 0]. 
 

∀𝑘 ∈ 𝐾, ∀(𝑖, 𝑗) ∈ 𝐸 ∶		
 
𝑔#(𝑖, 𝑗) ≤ 𝑓#(𝑖, 𝑗)	𝑎𝑛𝑑	𝑓#(𝑖, 𝑗) ≤ 𝑏#	 ∗ 	𝑔#(𝑖, 𝑗)													(7)	

 

∀𝑘 ∈ 𝐾,∀(𝑖, 𝑗) ∈ 𝐸 ∶	
𝑏#S2b ∗	𝑔#$ (𝑖, 𝑗)	 ≤ 𝑓#$(𝑖, 𝑗)		𝑎𝑛𝑑		𝑓#$(𝑖, 𝑗)	 ≤ 	 𝑏#	 ∗ 𝑔#$ (𝑖, 𝑗)			(8)	
The constraints related to switching resource allocations are 
described in equations 9 and 10. Equation 9 simply ensures that 
with the addition of flow table entries needed by the virtual 
links composing the request, the size of network nodes’ flow 
tables remains below their maximum size. 

 

∀𝑖 ∈ 𝑉:	O
#∈[

𝑙#(𝑖) ≤ 	𝑈2	 − 𝑈23																																		(9)			

Equations 10 constrain the allocations of group table entries. 
Equation 10.b applies when no group entries are needed for the 
virtual link k at node 𝑖 (it neither traverses 𝑖 nor requires a flow 
split or packet duplication). Equation 10.c applies when a group 



 
entry is needed. Finally, equation 10.d simply ensures that the 
addition of group entries that are needed by the virtual links 
respect the maximum size of all the group tables. 
 

		∀𝑘 ∈ 𝐾,∀𝑖 ∈ 𝑉 ∶ 	0 ≤ 𝑛#(𝑖) ≤ 1																										(10. 𝑎)	
 
					∀𝑘 ∈ 𝐾, ∀(𝑖, 𝑗) ∈ 𝐸:																																																																

𝑛#(𝑖) ≤ 	Y O
#∈[	(2,7)∈Q	

𝑔#(𝑖, 𝑗)\ − 𝑔#(𝑖, 𝑗)										(10. 𝑏)	

 
		∀𝑘 ∈ 𝐾, ∀	(𝑖, 𝑗l), (𝑖, 𝑗m) ∈ 𝐸, 𝑗l ≠ 𝑗m ∶																																	

 
𝑛#(𝑖) ≥ 𝑔#(𝑖, 𝑗l) + 𝑔#(𝑖, 𝑗m) − 1																(10. 𝑐)	

 

		∀𝑖 ∈ 𝑉 ∶ 				O
#∈[

𝑛#(𝑖) 		≤ 𝑁2 − 𝑁23																	(10. 𝑑)	

 
5) Objective function 

The objective function aims at minimizing link and node 
resource consumption but also at distributing the consumed 
resources among nodes and links in order to reduce the creation 
of bottlenecks. Both contribute to improve the admissibility of 
forthcoming requests. As shown in expression 11, it consists of 
four components, each weighted with a parameter that controls 
the impact of the component on the resolution process. The first 
two ones concern bandwidth allocations and the last two ones 
concern flow table entries allocations.  
 
Minimize	

𝛼l ∗
1
|𝐸| ∗ 	

O
(2,7)∈Q

⎝

⎜
⎛ 1
𝐵27

∗	Y𝐵273 +	O
#∈[

𝑓#(𝑖, 𝑗)\

⎠

⎟
⎞
	

+	𝛼m ∗ 	𝑓STU           (11)	

+	𝛽l ∗	
1
|𝑉| ∗ 	

O
2∈P

⎝

⎜
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𝑈2
∗ 	Y𝑈23 +	O

#∈[

𝑙#(𝑖)\

⎠

⎟
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+	𝛽m ∗ 	𝑢STU	
 

VIII. IMPLEMENTATION AND TESTS OF FEASABILITY 
This section describes the proof-of-concept implementation 

of the proposed ADN. 

 
Figure 6 - Testbed environment 

 

A. Considered Platform 
Figure 6 depicts the OpenFlow network infrastructure that 

supports our ADN implementation. It consists of five Linux 
devices running OFSoftSwitch13 [18] software switch. They 
are interconnected using GRE Tunnel over Ethernet physical 
links. These links own the following performances: 100Mbps 
of bandwidth and 10µs of propagation delay, except the link 
between S1 and S2, which has 1Gbps of bandwidth. The 
Floodlight SDN controller platform [17] is used as the 
OpenFlow controller. One of the interesting features of 
Floodlight V.1.0 and OFSoftSwitch13 is their full support for 
OF 1.3. Meters and groups of type "all" and "select". Moreover, 
an experimental support for OF 1.4 is possible, including 
bundles with atomic modification features. Also, Floodlight 
provides common network functionalities such as topology 
discovery. The “RTIConnextDDS” DDS implementation is 
used.  

B. Implementation 
The following components have been implemented. The 

“Application requirements to VNET Mapper”, which 
implements all the subcomponents previously described. It 
continuously captures, for a given application, its active topics 
and their associated publishers and subscribers (with their 
location) as well as their QoS demands. Then, it establishes the 
list of elementary flows, and finally performs flow aggregation 
based on basic strategies. The “Virtual Network Resource 
allocator” implements the algorithm presented in section VII.B 
using concert technologies C++ as the modeling layer and IBM 
CPLEX 12.6 as solver. The “Virtual Network Deployer” 
implements the algorithm of section VII.A as an application 
module that interfaces with the Floodlight Java-based API.  

 

 
 

Figure 7 – DDS view of the considered application 

C. Considered DDS Application 
A demonstrative application with stringent and dynamic 

requirements has been chosen. We consider a distributed 
interactive simulation for vehicle driver training that involves 
two networked driving simulators (called simulator A and B) 
that evolve in a shared virtual world. Each simulator needs to 
get state information (position, speed, etc.) from nearby 
simulators. The closer are the simulator, the more frequent state 
information must be exchanged and the more stringent the 
required delay to get these states is. Movement of driving 
simulators (in the virtual world) brings dynamicity in the data 
flows that are delivered/consumed by each simulator and on the 
QoS requirements related to the delivery of these data flows. 
Figure 7 describes the application from the DDS perspective 
with the topics related to the simulators’ state information, the 
DDS QoS policies, etc. 

This application was chosen as representative of the new 
requirements that can be found in the use of augmented reality, 
smart monitoring, in a framework compatible with Industrial 



 
Ethernet solutions. The manipulated data are cyclic, with 
variable frequencies and generate high flow rates with stringent 
delay requirements.  

D. Illustrative results 
We consider the scenario presented in Figure 8, where 

“Simulator B” starts moving at t0 towards the static “Simulator 
A”. We assume that at time t1, the QoS requirements related to 
the distribution of simulators’ state information must be 
changed to a larger bandwidth and a stricter transfer delay. We 
focus below on how our proposed ADN provisions and then 
adjusts the network service that it provides to the application, to 
respond to the new requirements.  

 
 

Figure 8 Considered application scenario 
 
Figure 9 shows the application requirements that were captured 
by the “Application Requirements to VNET Mapper” from time 
t0 to t1 (exclusive). The DataWriter and DataReaders of the two 
topics (simulator A and simulator B) are identified as well as 
their DDS related QoS. Figure 10 also shows the derived 
elementary flows: one from node S1 to S5 and another from 
node S5 to S1 with the same QoS requirements (d=20ms, 
bw=8Mbps). These two flows form the virtual network to 
provision for the application. The result of the resource 
allocations on the OpenFlow network at time t0 is presented in 
Figure 10. They were obtained with 𝛼l = 	𝛽l = 	1; 𝛼m = 𝛽m =
2 and with path splitting enabled (𝑃𝑆eT$2f = 0.3). This means 
that minimizing link load disparity is the preferred optimization 
criterion. The 8 Mbps requirements to S5 are reserved on the 
S1-S2 link, then the request is splitted on a 4 Mpbs reservation 
through S3, and 4 Mpbs through S4.  
 
The mobility of the simulators (in the virtual world) brings 
dynamicity in the data flows that are delivered/consumed by 
each simulator and on their associated QoS. When simulators 
get closer, requirements are tighter. Figure 11 describes the new 
application requirements captured at time t1, the computed 
update of the characteristics of the virtual links. 2Mbps more 
are required on both directions. The previous virtual links are 
updated consequently. Finally, Figure 12 describes the 
corresponding resource allocations starting from time t1.  

  

 
 
Figure 9 – Output of the “Application Requirements to VNET 
Mapper” at time t0 

 
Figure 10 – Output of the “VNET Resource Allocator” at time t0 

 

 
Figure 11 - Output of the “Application Requirements to VNET 

Mapper” at time t1 

 
Figure 12 - Output of the “VNET Resource Allocator” at time t1 

 
In the next section, a performance evaluation with more 

complex scenarios is presented. 
 

IX. PERFORMANCE ANALYSIS 
For better highlighting our algorithm performances, we extend 
the former scenario to groups of DDS simulators supported by 
more networking devices like future large-scale factory 
networks will be. In this case, the topology of a real campus 
network (Figure 13) with 31 nodes and 55 links (with 100Mbps 
and 1Gbps) is considered as the new SDN substrate. The 
network has been extended by adding MiniNet emulated 
openflow nodes and virtual links.  
 

  
Figure 13 - campus network 
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Evaluations of the resource allocation algorithm were realized 
to assess its general performance and benefits in comparison to 
some Shortest Path (SP) heuristics. The results presented below 
were based on the hierarchical campus network topology cited 
above with the flow table and group table sizes respectively set 
to 2000 and 512 entries. VNET requests are assumed to arrive 
according to a Poisson process with an arrival rate range from 
4 to 10 requests per 100 Unit of Time (UT). Each VNET request 
is composed of a number of virtual links that is randomly 
chosen between 1 and 4. Each virtual link has a number of 
destinations that is randomly chosen between 1 and 4 and has a 
bandwidth requirement randomly chosen between 1 and 3 
Mbps. Once a VNET request is accepted it lasts till the end of 
the experiment, which is set to 10000 UT. Path Splitting (PS) is 
activated with a 𝑃𝑆eT$2f set to 0.3. The simulation setups have 
been chosen to stress the network while conforming to the 
switch specifications (i.e. flow table size <2000 OF rules).  
The considered SP heuristic is defined as follows. A cost 
function assigns a cost to each physical link that is inversely 
proportional to its current available capacity. For each couple 
of end-points that belongs to a virtual link, the physical path 
with the minimum cost is chosen. If the bandwidth available for 
the chosen path is below the bandwidth required by the virtual 
link, the corresponding request is rejected. 
The algorithm performances have been measured according to 
three criteria: the request acceptance rate, the use of link and 
nodes rates, the convergence duration. The last two criteria, that 
to our opinion are the most important ones to characterize the 
usability of our proposal, have been compared with the shortest 
path heuristics. 
 
The following performance metrics are computed during 
simulation for performance analysis purposes:  
 Acceptance rate: the percentage of successful virtual 
links requests out of all the requests that arrived during the 
simulation time; 
 Convergence duration: the time needed by our 
algorithm to compute the optimal allocations associated to a 
virtual links request. The average convergence time and the 
maximum convergence time are computed over the number of 
successful requests;  
 Link utilization: the percentage of assigned bandwidth 
at a given link. Minimal and Maximal values are also given. 
 
The following subsections presents a synthesis of the main 
results obtained. A more in-depth performance analysis with 
more parameters and values has been presented in [31]. 
 

A. ADN resource allocation algorithm performances 
Figure 14 presents the link use rate of the ADN algorithm. Our 
experiments show that the average link utilization is between 
60 and 80% at some backbone links, we observe, at the end of 
the experiments, that more than 95% of their capacity has been 
allocated. This maximal use of some links strongly influences 
the request acceptance rate. To avoid its important decrease, the 
path splitting ratio chosen can be increased. 
 

 
Figure 14 – Link use rate 

Figure 15 presents the node use rate of the ADN algorithm. The 
load required to compute the ADN algorithm remains at a low 
level: less than 20% of the node capacity is required. 

 
Figure 15 – Node use rate 

Figure 16 presents the convergence duration of the ADN 
algorithm to compute the optimal allocations associated to a 
VNET request. For our algorithm, the convergence duration 
remains at acceptable levels: on average below 60ms and a 
longest convergence duration of 550ms. 

 
Figure 16 – Convergence duration 

A. ADN resource allocation algorithm and shortest path 
heuristics comparison 

Figure 17 describes the requests acceptance rate as a function 
of the request arrival rate. Under this high load, it clearly shows 
that our algorithm achieves an acceptance rate significantly 
greater than the heuristic. 
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Figure 17 – Requests Acceptance Rate 

Figure 18 presents the average duration needed by our 
algorithm and the SP heuristic to compute the optimal 
allocations associated to a VNET request. As SP heuristic is 
faster than the ADN algorithm, the results obtained balance the 
advantage obtained by a better acceptance rate. Our algorithm 
requires more time to obtain better results. However, to our 
opinion, these durations remain acceptable (less than 60ms on 
average). 

 
Figure 18 – Convergence duration 

X. CONCLUSION AND FUTURE WORK 
This work proposes a SDN Based Application Driven Network 
that is able to provide QoS enabled data-paths on an application 
flow basis. This allows providing tailored network services to 
applications while using efficiently network resources (even 
when application requirements are dynamic). This detailed 
consideration of applications communication profile has a cost 
in terms of scalability. Clearly, the intention is not to apply the 
proposed ADN to any application and in any context. It rather 
targets real-time or business critical applications in a private 
infrastructure, industry or campus networks, where scalability 
is not the primary concern. The proposed ADN was 
implemented and applied to prove its feasibility. The DDS/SDN 
based approach makes it a turnkey solution and only a little 
effort is required to configure it. A server with the ADN 
software is added to the network and each openflow switch has 
to refer it as controller. The server has to subscribe to all of the 
DDS topics.  
Perspectives of this work mainly concern the extension to 
multidomain networks. Several works have started on this topic 
as ONF TAPI [32] or IETF ALTO [33]. Our architecture should 
rely on such descriptions to negotiate multidomain virtual links.   
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