
HAL Id: hal-02511930
https://laas.hal.science/hal-02511930

Submitted on 19 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Management of industrial communications slices:
Towards the Application Driven Networking concept
Slim Abdellatif, Pascal Berthou, Thierry Villemur, Armel Francklin Simo

Tegueu

To cite this version:
Slim Abdellatif, Pascal Berthou, Thierry Villemur, Armel Francklin Simo Tegueu. Management of
industrial communications slices: Towards the Application Driven Networking concept. Computer
Communications, 2020, 155, pp.104-116. �10.1016/j.comcom.2020.02.057�. �hal-02511930�

https://laas.hal.science/hal-02511930
https://hal.archives-ouvertes.fr

Management of Industrial Communications
Slices: Towards the Application Driven

Networking Concept
Slim Abdellatif1, Pascal Berthou1, Thierry Villemur1 and Francklin Simo2

1 LAAS-CNRS, Université de Toulouse, CNRS, INSA, UPS, UT2J, Toulouse, France
2 Viveris Technologies, F-31400 Toulouse, France

Abstract—To address the performance problems that many

business critical applications are experiencing, network vendors
and Network Service Providers (NSP) are reconsidering the
integration of some form of application awareness in the way their
networks forward user traffic. Their ultimate goal is to devise new
network service models that are dedicated and customized to
applications while efficiently using network resources. Even if this
approach is not new and has been already followed with a
mitigated success two decades ago, the emergence of software-
Defined networking and network virtualization coupled with DPI
(Deep Packet Inspection) pave the way for the investigation of new
approaches/solutions towards application aware/driven networks.
This is exactly the motivations of this work whose objective is to
propose an Application Driven Network (ADN) that provides
services to a specific type of applications, i.e. Dynamic Data
Distribution Service (DDS) based applications. Considered as one
of the leading connectivity standard for industrial IoT
communications, focusing on DDS allows a fine-grained
description of applications’ traffic and needs. With this
information as input, the proposed ADN is able to provision
network services that stick to application needs while using
network resources efficiently. This paper sketches the general
architecture of such ADN by describing its main components, their
requirements as well as their algorithms. This solution has been
implemented, prototyped and applied to a DDS based distributed
interactive simulation application.

Keywords—Application Driven Networking; Software Defined
networking; Data Distribution Service; Network Virtualization

I. INTRODUCTION
 Technologies like the Industrial Internet of Things (IIoT),

artificial intelligence, and cloud applications are the pillars of
the industry 4.0 [1]. In industries where the enterprise typically
relies on heavy machinery or other physical equipments the
ability to connect these assets and gather data from them can
lead to benefits like improved efficiency and predictive
maintenance. However, the networks could become the
Achilles’ heel of this new paradigm.

Despite all the advances on network Quality of Service
(QoS) provisioning that we witnessed during the last decades,
the performance of business critical applications on an
enterprise network is still an issue that concerns an increasing
number of organizations [2]. It reveals that most organizations
do not have any precise knowledge on the QoS requirements of
most of their critical applications. Indeed, some QoS parameters
are difficult to specify and quantify, especially for applications
that require strong dynamicity (i.e. data flows exchanged

between application processes and their associated QoS
requirements strongly vary over time). These dynamic changes
are one of the main reasons of the precise QoS definition
difficulty [2]. The industry is not exempt from this problem due
to the emergence of new complex services. A second reason is
that organizations and running applications have no precise
knowledge of the network performance. Therefore, starting
from user complaints and feedbacks, the QoS planning
adjustments made by organizations is based on network
resource over-provisioning. This strategy wastes network
resources: network bandwidth requirements on enterprise
networks are ever increasing at the cost of poorer average
network resource utilization.

Figure 1 could be a typical example of Industry 4.0 network
infrastructure [1]. Factory A & B are interconnected with a
cloud hosting business applications through a public transport
network. A virtual network composed of network links is
established based on a Service Level Agreement (SLA)
negotiated with the operator. Each link must then be
provisioned according to the resources required by the
application. How many resources should be affected to each
link to ensure the SLA and then the application performance?
Is it optimal? Will it fit with the application evolving
requirements? Could the reservation be automatized? These are
the issues that must be resolved by the IT community to build
intelligent, dynamic, high-performance networks.

Figure 1 - Industry 4.0 networks

One way to address these problems is to introduce some
form of application awareness into the forwarding behavior of
computer networks. The network is able to provide customized
data paths to applications, i.e. data paths that are assigned on a

Transport		
Network	

Factory	A							.	 Factory	B	

5G	

Factory	Cloud	
Applications	

reserved	link	

available	link	

per application basis (and not on a destination basis) with the
required characteristics (in terms of assigned network
resources) to meet application QoS needs. The network must
cope with changing needs. It derives the current application
needs, then computes and installs on the fly the required
network resources along the data path(s). The newly created
Application Driven/Aware Network (ADN) enables the
provision of network services with guaranteed dynamic QoS. It
reinforces the network utilization efficiency.

In fact, the association of the application requirements to the
network resource utilization is not new and has already been
addressed in the dense literature related to QoS provisioning
and policy based networking [3]. All these works were applied
to (and hence constrained by) existing computer networks
where forwarding is based on destination (potentially, with a
complementary priority tag). The advent of Software-Defined
Networking (SDN) paves the way for new approaches towards
application driven networks. Indeed, the flexible flow-based
forwarding brought by the SDN paradigm allows
unprecedented control on network forwarding behavior. On the
other hand, Deep Packet Inspection (DPI) can be used to
identify the applications and infer their short-term
requirements.

There have been some recent proposals on leveraging SDN,
and potentially DPI, to provide some form of application driven
networking that aim at providing customized services to
applications [3][4][5][6][7]. This paper proposes an ADN
architecture, which in contrast to previous works, relies on a
fine-grained description of applications’ traffic and needs.
These latter are obtained from the Data Distribution Service
(DDS) middleware on top of which the applications that we are
considering are built. With this architecture, it is possible to
provide services that exactly or closely match application
requirements. Coarse or overestimated needs can be avoided,
and very efficient network resources utilization can be
achieved.

This paper is organized as follows. Section II motivates and
positions our work. Section III introduces the necessary
prerequisites. Section IV relates a selection of domain work.
Section V describes the design principles of our proposal and
positions it with respect to existing works. Next, we present the
general architecture of our proposed ADN as well as some of
its main algorithms. Section VIII details the ADN prototype that
we implemented; it also describes the application of our ADN
approach to a distributed interactive simulation application.
Section IX presents the performance evaluation of our main
component. Finally, section X concludes the paper.

II. MOTIVATION, PROBLEMATICS AND POSITION OF OUR
WORK

As said in the introduction, despite all the advances on
network Quality of Service (QoS) provisioning, the
performance of business critical applications running on an
enterprise network is still an issue that concerns an increasing
number of organizations [2]. This is even more true when
talking about industrial automation domain and the concept of
Industry 4.0 that relies on Internet technologies to create a smart
production system. Beyond the traditional supervisory control
and data acquisition system (SCADA), industrial
communication solutions are heterogeneous and address new
challenges. They include fieldbuses, industrial Ethernet,

industrial Wireless, and local manufacturing clouds. In their 5G
use cases requirements the GSM Association has identified five
different application areas for Industry 4.0 vertical market [9].
The 3GPP technical specification [10] identifies more than forty
uses cases in these areas and provide for all of them the intended
service flow requirements. With the emergence of the video
transmission, augmented reality, clouds, or massive IoT,
requirements are so complex they cannot be planned as they
were using cyclic data transmissions. Both information
technology (IT) and telecom networks could not cope with the
automation-specific needs for deterministic (hard deadlines
boundaries and isochronous communications), low jitter,
reliable, available, and of course low costs [8]. This is
especially challenging when new application interactions and
application flexibility are introduced.

These days, a generic communication model that consists of
three layers of networks, middleware and application is
commonly implemented. Among them, the Data Distribution
Service (DDS) middleware [12] is particularly characterized
with a wide-ranging set of QoS parameters that makes it one of
the references for the industrial communication domain.
Applications running on top of DDS can dynamically express
their QoS and communication requirements through a specific
API. The middleware ensures data availability, guarantees real-
time response, manages complex dataflows and makes
deployment flexible as long as the network infrastructure can
support it. This is the main weakness of the current approaches
as the current deployed networks are static and must be
overprovisioned. The application has to adapt to the networking
performances that cannot be changed in time.

Things are changing as the 5G architecture is expected to
accommodate a wide range of use cases with advanced
requirements in terms of latency, bandwidth and resilience. The
concept of slice builds logical network structure on top of a
same physical infrastructure to fulfill vertical specific
requirements. This requires highly manageable infrastructure
components to be deployed and changed on demand at runtime
according to the applications needs. Thanks to the association
of Software Defined Network paradigm (SDN), where one of
the goals is to supply network flexibility, Monitor-Analyze-
Plan-Execute (MAPE) framework, that supplies autonomic
functionalities, and the power of a middleware like DDS, this
work proposes an architecture that will satisfy the constraints of
industrial communications while optimizing network resources.
Starting from the detailed description of the application
dynamics, the networking service will dynamically adapt at best
the networking resources with the application requirements.
This architecture should be considered as a key enabler for the
deployment of future industrial communication slices. In the 5G
framework, the slice implementation into the Radio Access
Network (RAN) is considered out of the scope. They consider
“RAN dependent” [11] the resources allocation/segregation
into the RAN and it is up to the operator to fix the way to
implement it. The same rule applies to local networks where our
architecture can be considered as a solution to implement the
slicing concept. It allows fine grains services definition that
allows the network to fulfill the application requirements while
optimizing the slice resources. However, even if we take into
account the concept of slice, we consider beyond this work the
definition of an interface compliant with the 5G framework.
Even if it remains possible.

III. SOME TECHNOLOGICAL PREREQUISITES

A. Data Distribution Service (DDS)
The Object Management Group (OMG) has specified the

DDS middleware to address the communication needs of real-
time and high performances distributed applications. DDS
implements the publish/subscribe paradigm. It is based on the
abstraction of a strongly typed Global Data Space (GDS,
denoted DDS domain in Figure 2) where applications push their
typed data into the GDS with “DataWriters” and interested
applications subscribe to these data and read them from the
GDS with “DataReaders”. Data types are explicitly named and
defined by the DDS topics. As explained in the following
example derived from the DDS tutorial, a temperature sensor
could be the DataWriter of a Topic defined by a
TempSensorType. Making a parallel with classes in object-
oriented programming languages, a Topic can be regarded as
defining a class whose instances are created for each unique
value of the topic.
enum TemperatureScale {CELSIUS,KELVIN,FAHRENHEIT};

struct TempSensorType {
 short id;
 float temp;
 float hum;
 TemperatureScale scale;
};

dds::topic::Topic<tutorial::TempSensorType>
 topic(dp, "TTempSensor");

In DDS, data publications and subscriptions are decoupled
in time. Publication intent, subscription and de-subscription
take place at any time in the application lifetime. If a
subscription matches a publication (concerns the same topic),
the DDS middleware is in charge of distributing the data to the
newly subscribed application. It relies on RTPS (Real-Time
Publish/Subscribe Protocol) as a generic and standardized data
transport protocol.

One of the strength of DDS is to provide applications with
a comprehensive set of QoS parameters (named QoS policies in
DDS) to express the performance (or QoS) requirements on the
distribution of the data that they produce or consume. These
requirements apply to the distribution of each type of data
(topic). They cover reliability aspects as well as the data
production or consumption rate, the transfer delay, etc.
Furthermore, some of them are modifiable on the fly. Based on
this principle, DPI is not required because all service flows
descriptions are provided by the application to the middleware.

Figure 2 - Data Distribution Service overview

For each topic, the resource producer and consumers have to
specify a set of QoS Policies (selected in Table 1) that the DDS
middleware will manage and monitor. The QoS Policies are

divided in 5 categories related mainly to the data availability
during the application, the data delivery across the DDS domain
and the real-time requirements. For instance, a real-time topic
could be set with a volatile durability, a fixed deadline of
several milliseconds and a latency budget that specifies the
maximum acceptable delay from the time the data is written
until the data is inserted in the receiver's application-cache. The
producer and the consumer will be informed by the middleware
in case of a temporal violation.

QoS Policy Policies Type
DURABILITY Data Availability

DURABILITY SERVICE
LIFESPAN
HISTORY

PRESENTATION Data Delivery
RELIABILITY
PARTITION

DESTINATION ORDER
OWNERSHIP

OWNERSHIP STRENGTH
DEADLINE Data Timeliness

LATENCY BUDGET
TRANSPORT PRIORITY

TIME BASED FILTER Resources
RESOURCE LIMITS

USER_DATA Configuration
TOPIC_DATA
GROUP_DATA

Table 1 – DDS QoS Policies

DDS middleware addresses the industrial communications
domain according to minimal configurations. Cyclic variables
and events can be spread to unicast, multicast or broadcast
domains. [13] has proposed a mapping between different
factory automation traffic types into DDS entities (Table 2). A
platform interconnecting Profibus and industrial Ethernet has
been prototyped. [14] also addresses the relevance of DDS for
massive communications for Industrial IoT Applications. DDS
could be seen as an extended, scalable, high performances data
bus. Thanks to the support of Object Management Group
(OMG), the world’s largest systems software standards
organization, DDS has a lot of application around the world.
Recently, DDS has been chosen as base middleware for the
ROS2 system widely used in robotics.

 Services
Acyclic
Events

Cyclic
Variables

Request
/No

Response

Request
/

Response
Deadline - Maximum

process
time

- -

Durability Persistent Volatile Volatile Volatile
History Keep N Keep last Keep Last Keep Last

Latency Budget Low Medium - -
Ownership Shared Shared Exclusive Exclusive
Reliability Reliable Best effort Reliable Reliable
Transport
Priority

Highest High Low Lowest

Table 2 - Factory automation traffic mapped to DDS policies
[13]

Security mechanisms have been added recently to the specification.
For instance, authentication in the discovery process ensures that
DomainParticipants validate each other’s identity, but also Access
Control permissions checking ensure that DomainParticipants have the
appropriate permissions to exist and match with each other.

B. SoftwareDefined Network (SDN) and OpenFlow

An important literature exists on Software Defined Network
(SDN) [15][16][17][18]. Only the principles are given in this
section. SDN is a networking paradigm where networking
control functions, localized before networking elements, are
grouped within central entities called SDN controllers. The
SDN controllers pilot remotely the networking elements that
transfer data. Figure 3 describes the principles of SDN
networks. In an SDN architecture, the transmission devices
only focus on data transmission, under the supervision of SDN
controllers.

Figure 3 – SDN architecture

The transmission rules associated to each dataflow are sent
to the transmission devices by the SDN controller through a
South Bound interface. Syntax rules are defined in accordance
with the interface specification. The South Bound interface the
most used and developed is OpenFlow, proposed and
standardized by the industrial consortium Open Networking
Foundation (ONF). OpenFlow functionalities support the
implementation of complex QoS specifications. They propose
a finer network monitoring. Their use reinforces independence
from network device providers.

The SDN controller can be compared as a Network
Operating System. It centralizes the view and the state of the
network, composed of distributed transmission devices. The
global view of the network can be shared with applications
through a North Bound interface. Applications are informed
when networking events and networking changes occur.
Moreover, they can transmit their networking requirements,
taken into account and managed by the SDN controller.

The SDN approach introduces network flexibility. SDN
networks are able to process the application requirement
changes and the operational environment changes.

IV. RELATED WORK
The network configuration according to the application

requirements principle has been boosted by the dynamic control
enabled by SDN concepts. This section reviews such
propositions by dividing it into two classes: datacenters and
precise frameworks. Datacenter/cloud solutions mainly use
SDN to program the network according predefined application
profiles. Frameworks mainly focus on solutions that infer the
application requirements in order to program the network.

A. Programmability in datacenters
Work presented in this section considers the application

deployment in datacenters, to speed up the availability of

applications. SDN and virtualization are the two technologies
used to reserve the underlying network services. These services
are embedded within virtual networks built either as overlays to
ease to the independence with the network infrastructure, or as
infrastructure elements to reinforce the control of virtual links.

The NSX virtualization platform [19] developed by
VMWare company creates software communication networks
that are integrated in the hypervisor layer, to be managed from
a single and automated control point. Virtualized NSX network
services include switches, security elements, routing
algorithms, firewalls, load balancing algorithms and virtual
private networks. The communication application profile is
static and explicitly supplied by the administrator. The network
service is a virtual network overlay with a flexible QoS defined
for dataflow aggregates.

The ACI (Application Centric Infrastructure) platform [20]
developed by Cisco company eases the deployment of
applications in datacenters. The deployment and the resources
required is specified by a group policy language. The network
service is a virtual network overlay managed through VXLAN
protocol and SDN principles. It integrates functionalities from
layer 2 to layer 7. As for NSX, the communication application
profile is static and explicitly supplied by the administrator. The
network service is a virtual network overlay with QoS defined
for dataflow aggregates.

The Netscaler controller [21] developed by Citrix company
improves the previous ACI platform. The network service
remains a virtual network overlay with QoS defined for
dataflow aggregates, but network virtualization is extended
with service composition functionalities as dynamic service
insertion and service chaining.

The Enabling Application-Driven SDN in the Cloud
platform [22] developed by Oracle Solaris and Plurisbus
Network companies eases the application deployment and
authorizes applications controlling platform resources. Each
deployed application is able to control its own virtual private
local network (VLAN) through the definition of a Service Level
Agreement (SLA). A set of distributed systems linked by
Elastic Virtual Switches (EVS) is first defined. It is considered
by the Netvisor network hypervisor and realized by using SDN
rules. The communication application profile is inferred by the
network. The network service is a Virtual Local Area Network
that connects the machines where application components are
running.

The Application Driven Networking architecture [23]
developed by Huawei company, combines the principles of 5G,
SDN and Network Functions Virtualization to support the
communication requirements of very different applications as
video streaming, Internet exchanges, Machine to Machine
communications. The traffic profiles of these applications and
their associated QoS have very different characteristics in terms
of bandwidth, latency and reliability requirements. The system
infers the communication application requirements through
automatic learning technics and deploys dedicated network
slices. It includes its own data and control plane and can include
specific protocols and communication mechanisms. The QoS
guarantee is flexible and is defined at the level of dataflow
aggregates.

As they are specialized for datacenters, these solutions are
partially adapted to the applications under consideration in this
paper. Specific traffic characteristics of industrial applications,

scalability requirement and QoS guarantees are not considered.
These solutions favor coarse grain processing and little flow
introspections in order to optimize performance. The following
section presents finer solutions that allow better flow treatments
but at the expense of less scalability.

B. Precise frameworks
The next group of work mostly applies to campus networks.

ATLAS [24] is a framework that adds to SDN networks the
functionality of dynamically and automatically identifying the
communicating applications. It uses a supervised automatic
learning technic controlled by a set of software agents. By
collecting information about active network sockets, the agents
communicate with the network plan controller. By merging this
information with the network control politic, the controller
defines network processing rules to be applied. It applies a
differentiated processing for dataflow aggregates where QoS
requirements do not change during time.

The NEAT framework [25] adds the application aware
functionality to SDN networks. Each computer owns a local
NEAT agent. Each application registers to its local agent and
specifies its QoS requirement. Local agents interact with the
network through its control plan. The applications give
explicitly their communication profile to the network. The
network associates dataflows to pre-established and pre-
calculated data paths.

The MIDAS (MIDdleware Assurance Substrate) framework
[26] is another extension of the DDS middleware. At the
opposite of the previous work, MIDAS directly embeds the
network control in the middleware layer. The MIDAS agents
include all the network control functions and have the same
capabilities as SDN controllers. By using the Openflow
protocol, they can directly program all the communication and
networking devices to support dataflow communications. The
application communication profiles are inferred by the MIDAS
middleware. Then MIDAS selects the network data paths and
supplies a guaranteed and potentially dynamic QoS.

The OpenSIP framework [27] reinforces the network
awareness of SIP-based applications. It refines the QoS
requirements according to the Session Description Protocol
used by multimedia applications. All this information is sent
and centralized to a Deep Packet Inspection (DPI) program
running on the SDN controller. The network then infers the
application communication profiles. It associates the
application dataflows to the available network data paths.

H. Y. Choi et al. [28] have proposed to reinforce the network
awareness of Data Distribution Service (DDS)-based
applications. The communication profile is typically derived
from the explicit description of the application’s requirements
from the DDS service. As in the OpenSip framework, their
approach uses signalization traffic analysis. The Simple
Discovery Protocol (SDP) allows data producers to announce
their QoS offered and data consumers to declare their QoS
required. This information is sent and analyzed by an inspection
program running on the SDN controller. The network selects
the network data paths that satisfy the application dataflows
requirements with their corresponding priority level.

All these academic works suppose that the communications
and requirement needs of each application have to be known in
detail during their lifetime. Two main approaches can be
identified: In these first approaches (ATLAS, NEAT, and
MIDAS), the application that permanently knows its
communication requirements is able to control and program the
network. In the second approaches, the network is able to infer
the application communication profile and can choose and
apply the control rules required. Some assumes that this
information is explicitly provided to the network by the
applications or the users, while the network infers it with the
help of DPI, potentially coupled with traffic estimation
techniques for others.

As factory application developers are not aware of the
traffic characteristics, but know about real-time constraints, we
are convinced that a transparent solution is the right solution. In
fact, our proposition is close to the H. Y. Choi et al. [28] work.
It also relies on DDS to consider timeliness requirements, but
adds the data delivery dimension (Table 2) and their evolution.
Unicast and multicast are considered for the virtual networks
optimization, as traffic characteristics are completely dependent
on the number of data receivers.

C. Comparison

Table 3 is a synthetic view of the main characteristics of related
work. Three criteria have been retained to compare them. The
criterion of application communication profile can be static or
dynamic in time. It can be explicitly supplied or inferred by the
network. The network service criterion characterizes the
Quality of Service (QoS) taken into account by the network and
lists the communication elements manipulated by the network.
The last criterion lists the management model of each work.

Work Application
communication profile

Underlying network
service Management approach

Datacenters

NSX
Static
Explicitly supplied by
administrator

Virtual network overlay
Dataflow aggregates
Flexible QoS

—

ACI
Static
Explicitly supplied by
administrator

Virtual network overlay
Dataflow aggregates Group based policy

Netscale
Static
Explicitly supplied by
administrator

Virtual network overlay
Dataflow aggregates Group based policy

New services composition
functionalities

Enabling Application
Driven SDN Inferred by the network Virtual LAN Service level agreement

Application Driven
Networking Architecture Inferred by the network Dataflow aggregates

Flexible QoS
Machine learning
techniques

Frameworks

ATLAS Inferred by the network
Dataflow aggregates
Constant QoS
requirements

Supervised machine
learning techniques

NEAT Explicitly supplied by
applications

Dataflows
Association with
precalculated datapaths

Agents

MIDAS Inferred by the network Flexible QoS
Datapath selection Agents

OpenSIP Inferred by the network Dataflows
Datapath selection Deep packet inspection

Real-time DDS Inferred by the network
Dataflows
Datapath selection with
priority

Signalisation traffic
analysis with packet
inspection

ADN

Explicitly supplied by
applications
or
Inferred by the network

QoS requirements: rate
and latency
Unicast and multicast
dataflows
Automatic resource
reservation

Autonomic

Table 3 - Related work analysis and comparison

In summary, our architecture uses the network control
principle based on dataflows implemented in most approaches
and considers the dynamicity principles as the most advances
ones. Determinism and hard QoS constraints are guaranteed by
the nature of the defined algorithm. The considered data flows
(multicast) and the guaranteed QoS constraints (rate and
latency) are consistent with the prod/cons paradigm of the DDS
middleware.

V. KEY PRINCIPLES OF OUR PROPOSED ADN
ARCHITECTURE

Our main goal is to propose an Application Driven network
where the network will be able to supply a flexible and
personalized network service that can follow up and adapt to
application dynamic needs by reserving instantly and
automatically network resources.

One key principle is that the service provided to applications
is based on a fine-grained knowledge of instantaneous
applications’ flows and QoS needs. With the DDS middleware
this goes up to identifying the flows of data that are exchanged
between each DataWriter and its associated DataReaders.
Thanks to a precise knowledge of applications’ needs, the right
service (that meets exactly the needs) can be provisionned with
the optimal set of network resources. Network resource
utilization is improved at the cost of scalability.

Another principle is that the network service provided to
applications is expressed as a virtual network composed of a set
of logical (virtual) end-to-end links (from end host to end host).
Each virtual link is either point-to-point or point-to-multipoint

and is characterized by a bandwidth requirement and a
maximum transfer delay requirement. It assumes that an
SDN/OpenFlow enabled network infrastructure is dedicated to
the application. A pre-defined slice on network elements
exclusively dedicated works also.

As depicted in Figure 4, the network control application
“ADN service provisioning” is in charge of provisioning the
customized services described above. It is based on a low-level
northbound interface (i.e. OpenFlow like).

The last key principle is to build an autonomic “ADN
service provisioning” network function. More precisely, we
primarily target the self-configuring property and approach the
self-healing and self-optimizing properties.

Figure 4 - “ADN service provisioning” network function

User
Applications

Middleware

Network
Applications

SDN/openflow
Controller

Infrastructure

Application
Process

Application
Process

DDS middleware

Routing

Traffic Ing.

ADN service
provisioning

Floodlight, opendaylight, Ryu
NOS …

OpenFlow-enabled switches

Openflow southbound api

REST northbound api

DDS RTPS

DDS interface definition language

VI. GENERAL ARCHITECTURE OF THE PROPOSED ADN
This section introduces the functional components of the

network control function “ADN service provisioning” that
implements our ADN approach. Figure 5 depicts its functional
components. These latter are presented hereafter.

Figure 5 - ADN’s functional components

A. Application requirements to Virtual Network Mapper
This component is in charge of mapping application needs

to the adequate network service. An application virtual network
(VNET) request is composed of a set of end-to-end point-to-
point and/or point-to-multipoint logical links, each one with a
bandwidth requirement and a maximum transfer delay
requirement. This virtual network is the output that the
component submits to the “VNET resource allocator”.
Obviously, this component is activated at the beginning of the
application but also upon a change in the application’s
communication profile (change in application’s traffic or QoS).
In this latter case an update request on the already provisioned
virtual network is submitted to the “VNET resource allocator”.

The data that are exchanged between DDS application
processes are typed (defined by the application’s topics).
Thanks to a “DDS DataWriter”, an application process
produces a data from a given topic. One or many application
processes that have subscribed to this topic can consume and
read that data with a “DDS DataReader”. So, a precise way to
describe the DDS application traffic profile is to reason at the
level of a topic. This is the level of detail that we consider for
ADN. Next, we denote the data flow belonging to a particular
topic as an elementary data flow.

One important function is to characterize all elementary

flows that are exchanged by the application: its source
“DataWriter” (each topic has one single publisher), its
destination(s) “DataReader(s)”, its bandwidth and maximum
transfer delay. This can be derived as follows:

● In a TCP/IP environment, with DDS, DDS DataReaders and

DataWriters are identified with Transport layer addresses:
a combination of IP addresses and a port numbers.
Transport layer addresses are used to identify the source
and the end(s) of elementary flows.

● The bandwidth of an elementary flow is derived from the
“Deadline” DDS QoS policy associated to the DataWriter.
For periodic production, it specifies the maximum delay

between two consecutive data productions and the data
size.

● The maximum transfer delay is derived from the
“LatencyBudget” DDS QoS policy associated to the
DataWriter, which specifies the maximum acceptable
delay from the time the data is written until the data is
inserted in the receiver's application-cache.

As DDS middleware does not offer any function that
centralized this information, it has been implemented: A first
subcomponent is in charge of capturing and following, on the
application DDS domain, the list of topics and their related
publishers, subscribers and QoS; Then, the “Elementary flows
characterization” subcomponent takes this list as input to derive
and characterize the list of elementary flows.

Mapping each elementary flow to an end-to-end virtual link
is the most accurate way to describe the network service
expected by the application. However, it clearly raises
scalability issues. One important aspect is the number of flow
table entries that are installed on OpenFlow (OF) switches to
support the service. Indeed, current flow-tables, which are often
based on fast TCAM memories (Ternary Content Addressable
Memory), have a size limited to a few thousands of entries. The
“Flow Aggregation” subcomponent copes with this problem. It
is in charge of computing the final set of flows that describes
the expected service by grouping, when feasible, some
elementary flows together. The aggregations have generally a
cost in term of network resource utilization. This important
subcomponent optimizes this tradeoff. In this work, we adopt a
simple and intuitive algorithm which groups elementary flows
that have the same source and destination end-points.

B. Virtual Network Resource Allocator
This component is at the heart of the proposed ADN. When a
virtual network request occurs, it computes the optimal set of
physical paths to use in order to support the virtual links with
their QoS characteristics. Many optimization criteria can be
considered. The ones retained in this work minimize network
resource utilization and minimize network elements’ load
disparities (which contribute to improve the admissibility of
subsequent virtual network requests). For the same purpose,
path splitting (multiple paths to support a virtual link) can be
enabled for some requests. A flow can be split into sub flows
supported by lower bandwidth links.
Two types of network resources are considered: classically, the
bandwidth of links but also the switching resources of nodes,
i.e. the number of OpenFlow flow-table entries, group-table
entries and meters.
The virtual network resource allocator takes as input the VNET
request (the set of virtual links (source and destination(s)) and
their bandwidth and delay requirements and then computes the
physical network data paths that support each Virtual link, with
the required link and switching resources, more precisely: the
bandwidth allocation of each virtual link on each physical link
as well as the number of flow table entries consumed by each
virtual link on each SDN switch. The algorithm is described in
section VII.B.

It is worth to note that this component also performs the
reallocation or de-allocation of resources in case of an update
or a cancellation request.

C. Virtual Network Deployer

The goal of this component is the effective deployment of
the virtual network on the OpenFlow network infrastructure. It
takes as input the data paths and the associated resources
computed by the “VNET Resource allocator”, it generates the
OpenFlow rules to apply on each OpenFlow switch, and it
submits them to the OpenFlow controller via the northbound
interface.

Without delving into the details of the algorithm, which is
described in section VII.A, the generated OpenFlow rules have
the following characteristics: the match field checks for IP
addresses and port numbers; They make use of group table
entries of type “All” and “Select” to respectively deploy point-
to-multipoint links and to apply path splitting. They make use
of OpenFlow meters at the source node of each virtual link to
enforce the traffic flowing along the link to the assigned
bandwidth.

D. Autonomic Manager
The goal of the “Autonomic manager” is to instill some of

the autonomic properties to the “ADN service provisioning”
network function. It manages the components described
previously by implementing the MAPE (Monitoring, Analysis,
Planning, Execution) loop (based on the frameself framework
[29]).

Without being exhaustive, some of the important identified
situations that the “Autonomic manager” has to react to are
described below. On a network topology change (detected from
its monitoring of the network), it decides whether network
resource re-allocations must be triggered (self-repairing).
Network topology changes are notified by the network
controller from the reception of states and statistics OpenFlow
related messages. All of them are stored in the knowledge
database. According to the available network resources and the
virtual network request, it tunes the resource allocation (e.g.
enable/disable path splitting) and/or the flow aggregation
algorithms. Similarly, after virtual network cancellations, it
decides to re-compute the allocated resources in order to better
distribute the load of network elements (self-optimizing). From
its network monitoring, it detects that the rate allocated to a
virtual link is not adequate and decides to enable the application
traffic estimation (self-configuring).

VII. MAINS ALGORITHMS
In this section, we present the internal algorithms of the

proposed “ADN service provisioning” network control
function, more precisely, those of the “Virtual Network
Deployer” and the “Virtual Network Resource Allocator”.

A. The “Virtual Network Deployer” algorithm
The “ADN service provisioning” function is implemented

on top of a low-level northbound interface. First, we briefly
present some prerequisites on the OpenFlow protocol before
detailing the algorithm. To simplify, the presented algorithm
does not address the deployment of point-to-multipoint link
with path splitting enabled.

1) Some prerequisites on Openflow
An OpenFlow switch embeds at least one flow table, a

group table and a meter table. The OpenFlow controller relies
on OpenFlow modification messages to fill these tables. Three
types of messages are distinguished by the OpenFlow protocol.
They are described hereafter.

OpenFlow Flow Modification Messages (ofp_flow_mod) are
used by the controller to insert, delete or update one flow entry
into a flow table of a switch. Each flow entry contains a match
field and a set of instructions that are triggered when a packet
matches the entry. These instructions result in changes to the
packet action set. There are multiple types of instructions,
among which, the "write-actions" and "meter", which are used
in the proposed algorithm. “Write-Actions” instruction gathers
a list of actions to add to the current “Action-Set” of the
matching packet. The Meter instruction guides the matching
packet to the specified meter.
OpenFlow Group Modification Messages (ofp_group_mod)
are sent by the controller to insert, delete or update a group entry
into the group table of a switch. Each group entry has a group
id; it is typically used by a flow table entry as a reference to the
group. A group entry has a list of action buckets. Depending on
the group type, the actions in one or more action buckets are
applied to packets sent to the group. Two types have been
retained in this work:
● “Select”: used for load sharing. Each bucket has a weight,

which is used to choose the bucket that applies to an
arriving packet.

● “All”: used to perform multicast or broadcast forwarding.
The packet is cloned for each bucket.

OpenFlow Meter Modification Messages (ofp_meter_mod)
are sent by the controller to insert, delete or update a meter entry
into the meter table of a switch. A meter entry is identified by a
meter id and is composed of one or more meter bands. Each
meter band specifies a target rate for that band and the way
packets are processed when that rate is exceeded: it is either
dropped (for a meter band of type “Drop”) or remarked (for a
meter band of type “DSCP remark”).

A last point concerns the order with which OpenFlow Flow
Modification Messages are sent to a switch. Any reference must
be set on a flow table entry, meter or group already created. This
implies that the processing of the OpenFlow meter (or group)
modification message at the switch must precede the OpenFlow
flow modification message. As described below, our algorithm
arranges the transmission of modification messages to respect
this constraint.

2) The proposed algorithm
The goal of the algorithm is to build the list of OpenFlow

Modification Messages to deliver to each network node
involved in the support of the virtual links that compose the
Virtual Network. In fact, three lists of messages are computed
for each node: 1) the list of OF Meter Modification Messages,
2) the list of OF Group Modification Messages and 3) the list
of OF Flow Modification Messages. Once computed, the
algorithm instructs the controller to convey them to node in the
order specified above. Our algorithm uses (without being a
necessity) the bundle mechanism introduced in OF version 1.4,
for message grouping and ordering as well as, to store and pre-
validate them on each node before a global confirmation across
multiple nodes. The main steps of the algorithm are:

For each node i crossed by the virtual network [line 2], and
for each virtual link k [line 3]:

● If the node i is the source node of virtual link k, then it inserts
an OpenFlow meter into meterModMessageList and keeps

the meterID for later use (when building the flow
modification message of the flow table entry that refers to
the meter). [line 4 – line 8]

● If the virtual link k is split at node i, then it inserts a group
into groupModMessageList and it inserts a flow rule into
flowModMessageList with that group as action of “Write-
Actions” instruction. If the node i is the source of virtual
link k, a meter instruction is also added [line 20 – line 34].
If k is not split at node i, then it inserts a flow into
flowModMessageList with a simple output port action in
the “Write-Actions” instruction, and eventually, a meter
instruction if the node is the source of virtual link k [line
10 – line 19].

● It transmits successively the meterModMessageList,
groupModMessageList, flowModMessageList to node i’s
bundle. This latter is configured with the ordered flag set,
to request that the messages of the bundle are processed in
the order of arrivals. [line 37-End].

VNET Deployer Algorithm : (V, E, K)

Input :
V : is the set of nodes (Openflow Switches). Each node i processes and forwards data to another node j

via a port noted pij
E : is the set of links. The link between the nodes i and j is noted (i,j).
K: is the set of virtual links. Each virtual link k is characterized by: a source node sk element of V, a

bandwith bk, and a set of destination nodes Tk part of V except sk
𝑓: is a 4-dimensional dictionary of integer noted 	𝑓#$(i,j), representing bandwidth allocated at link (i,j)

to packets of virtual link k, that are flowing from the source node sk to the destination note
t.

F: is a 3-dimensional dictionary of integer noted 𝑓#(i,j), representing bandwidth allocated at link (i,j) to
packets of virtual link k.

V’: is the set of nodes crossed by at least one virtual link.

Var : match : ofp_match; group_mod : ofp_group_mod; nextHops a set of nodes;
flowModMessageList : ofp_flow_mod[]; groupModMessageList : ofp_group_mod[];
meterModMessageList : ofp_meter_mod[]; groupID, meterID, bundleID : integer;

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

begin
for each i in V’ do
 for each unicast link k in K
 if(i = sk) then
 meterID←get_meter_id(i,k)
 insert_into (meterModMessageList, {id =meterID, bands [0] ={rate = bk,
type = drop}})
 end if
 nextHops←computeNextHops(i, k,V’, E, f)
 if (|nextHops| = 1) then
 for each j in nextHops do
 if(i = sk) then
 insert_into (flowModMessageList, { match=create_match(),
 instructions ={meter: meterID, write-actions: output.port=Pij})
 else
 insert_into (flowModMessageList, { match=create_match(),
 instructions ={write-actions: output.port =Pij}})
 end if
 end for
 else
 groupID←get_group_id(i,k)
 group_mod.id ←groupID; group_mod.type←select
 for each j in nextHops do
 group_mod.buckets[j] ← {weight =𝑓#(i,j), actions ={ouput.port=Pij} }
 end for
 insert_into (groupModList, group_mod)
 if (i = sk) then
 insert_into (flowModMessageList, {match=create_match(),
 instructions = {meter: meterID, write-actions: group.id=groupID}})
 else
 insert_into (flowModMessageList, match =create_match(),
 instructions ={write-actions: group.id =groupID}})
 end if
 end if
 end for

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

 bundleID← get_bundle_id(i)
 OFPBCT_OPEN_REQUEST {id =bundleID, flags =ordered}
 for each msg in meterModMessageList do
 OFPT_BUNDLE_ADD_MESSAGE {id = bundleID, message = msg}
 end for
 for each msg in groupModMessageList do
 OFPT_BUNDLE_ADD_MESSAGE {id = bundleID, message = msg}
 end for
 for each message in flowModMessageList do
 OFPT_BUNDLE_ADD_MESSAGE {id =bundleID, message = msg}
 end for
 reset (meterModMessageList); reset (groupModMessageList); reset
 (flowModMessageList)
end for
for each i in V’ do
 OFPBCT_CLOSE_REQUEST {id = get_bundle_id(i)}
 OFPBCT_COMMIT_REQUEST {id =get_bundle_id(i)}
end for
end

B. VNET Resource Allocator
This section describes the Integer Linear Programming

(ILP) formulation proposed to solve the resource allocations for
the virtual network. Virtual network Requests arrive and are
processed in sequence with no information on future requests.
For each request, the output is the set of routes (with the
bandwidth allocations at each supporting physical link and the
number of flow table, meter table and group table entries at each
crossed node) that support each of the virtual links composing
the request. This algorithm extends our previous work [30] by
considering meter tables and group tables (in addition to the
flow tables) as network resources to assign. For meter tables,
things are quite simple since OpenFlow meters are only
activated on the source nodes of the virtual links. The algorithm
simply checks that meter table entries are still available at
source nodes. Actually, switch memories (TCAM) are very
small and can only support a small number of rules, either in
terms of flows, meters or groups numbers. If so, the algorithm
assigns a meter table entry on each of these nodes and proceeds
with the other resources as described below. If not, the request
cannot be honored. Our algorithm is the first that takes into
consideration all of these constraints (noted l, n, u hereafter).

1) Physical Network Model
The physical network is modelled by a bidirectional graph 𝐺 =
(𝑉,𝐸) where 𝑉(|𝑉|) is the set of physical nodes (SDN
switches) and 𝐸(|𝐸|, 𝐸 ⊆ 𝑉	 × 𝑉) the set of physical links
which operate in full-duplex mode. To each node 𝑖 ∈ 𝑉, is
associated a switching capacity 𝑈2, which is the maximum
number of entries (i.e. size limit) of its flow table. The current
size of node 𝑖 flow table is denoted by 𝑈23. Similarly, 𝑁2 and 𝑁23
denote respectively the maximum and the current size of the
group table of switch i. Each Link (𝑖, 𝑗), 𝑖, 𝑗	 ∈ 𝑉 is weighted by
its bandwidth 𝐵27	and its propagation delay 𝐷27	. Links are
assumed to have the same characteristics in both directions, i.e.
𝐵27	 = 	𝐵72	and	𝐷27	 = 	𝐷72. The bandwidth that is currently
assigned at link (𝑖, 𝑗),	by already admitted virtual links is
denoted by 𝐵273 .

2) Virtual Network Requests Model
A virtual network request is composed of a set of 𝐾 virtual
links. Each virtual link 𝑘 is characterised by:
● a source node 𝑠# ∈ 𝑉, and a set of destination nodes 𝑇# ⊆

𝑉 − {𝑠#} (when |𝑇#| = 1, the virtual link is point-to-point,
otherwise it is point-to-multipoint);

● a bandwidth requirement of 𝑏# ∈ 𝑁, a maximum transfer

delay of 𝑑# ∈ 𝑁 and a maximum packet size of 𝑝#.

3) Resource-related assignment variables
Basic assignment variables are related to a specific destination
of a virtual link. In our model, we distinguish the following
variables:
● 𝑓#$(𝑖, 𝑗) is an integer variable that represents the bandwidth

allocated at link (𝑖, 𝑗) to the packets of virtual link	𝑘 that
are flowing from the source node 𝑠# to a destination node
𝑡. More generally, 𝑓#(𝑖, 𝑗) refers to the amount of
bandwidth used on link (𝑖, 𝑗) by the virtual link 𝑘. It is set
to the maximum of 𝑓#$(𝑖, 𝑗)for all 𝑘 ∈ 𝐾.

● 𝑙#(𝑖)	is an integer variable that specifies the number of
entries that are installed in node 𝑖 flow table to support
virtual link 𝑘 with the assumption that all entries consume
the same amount of resources regardless of the complexity
of the match operation and the related instructions to
perform. A flow table entry is added if at least one of node
𝑖 port is supporting traffic from 𝑘 (equations 1).

∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑉:									0 ≤ 𝑙#(𝑖) ≤ 1																									(1. 𝑎)	

	𝑎𝑛𝑑			∀𝑗 ∈ 𝑉,∀(𝑗, 𝑖) ∈ 𝐸 ∶	
𝑔#(𝑗, 𝑖) ≤ 𝑙#(𝑖)																					(1. 𝑏)	

𝑙#(𝑖) ≤ O
7∈P	(7,2)∈Q	

𝑔#(𝑗, 𝑖)																		(1. 𝑐)	

where		𝑔#(𝑗, 𝑖) is an intermediate boolean variable that
indicates if some bandwidth from link (𝑗, 𝑖) is assigned to
virtual link 𝑘 or not. It is derived from another set of more
focused intermediate variables 𝑔#$ (𝑗, 𝑖)	that reflects whether
the flow of packets of virtual link 𝑘 destined to 𝑡 is
supported by the physical link (𝑗, 𝑖)	(i.e.𝑔#$ (𝑗, 𝑖) =
0		𝑖𝑓	𝑓#$(𝑗, 𝑖) = 0		 and 𝑔#$ (𝑗, 𝑖) = 1	otherwise).

● 𝑛#(𝑖) is an integer variable that specifies the number of
group table entries assigned to k at node 𝑖. As described in
section VI.A, a group table entry is added when splitting or
when duplicating packets (for point-to-multipoint links).

● 𝑓STU is the maximum link utilization (when considering all
network links) after request acceptance.

● 𝑢STU: is the maximum flow table utilization (when
considering all network nodes) after request acceptance.

All the above presented variables (except the two last)
define the data paths that support the VNET to embed, with
the required link/bandwidth resources and switching
resources (flow/meter/Group table entries). 𝑓STU
(respectively 	𝑢STU) which are minimized in the objective
function are respectively exploited to limit the load
disparity between network links (resp. nodes).

4) Problem Constraints
The constraints on bandwidth allocations are described in
equations 2 to 8. Equation 2 reflects the linearization of the Max
operator applied to variables 𝑓#$(𝑖, 𝑗) to get 𝑓#(𝑖, 𝑗). Equations 3
and 4 have a similar purpose and focus respectively on 𝑓STU and

𝑢STU, which are minimized by the objective function (as
explained below).

∀𝑘 ∈ 𝐾,∀(𝑖, 𝑗) ∈ 𝐸, ∀𝑡 ∈ 𝑇#:				𝑓#$(𝑖, 𝑗)	 ≤ 	𝑓#(𝑖, 𝑗)					(2)	

∀(𝑖, 𝑗) ∈ 𝐸:				
1
𝐵27

∗ 	Y𝐵273 +O
#∈[

𝑓#(𝑖, 𝑗)\ ≤ 𝑓STU									(3)	

∀𝑖 ∈ 𝑉:			
1
𝑈2
∗ 	Y𝑈23	 +O

#∈[

𝑙#(𝑖)\ ≤ 𝑢STU																				(4)	

Equation 5 ensures that the bandwidth assigned to each virtual
link 𝑘 at link (𝑖, 𝑗) does not exceed the remaining bandwidth.
Equation 6 is the usual flow conservation constraints.

∀(𝑖, 𝑗) ∈ 𝐸:			O
#∈[

𝑓#(𝑖, 𝑗) ≤ 	𝐵27 −	𝐵273 																											(5)	

	∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇#, ∀𝑖	 ∈ 𝑉 ∶																																																									

O
#∈[

(𝑓#$(𝑖, 𝑗)	 −	𝑓#$(𝑗, 𝑖)) 	= {		𝑏#									𝑖𝑓	𝑖

= 𝑠#																		−𝑏#								𝑖𝑓	𝑖
= 𝑡																					0										𝑒𝑙𝑠𝑒																											(6)	

Equation 7 is a channeling constraint between integer and
boolean variables: 𝑓#(𝑖, 𝑗) and 𝑔#(𝑖, 𝑗). It also constrains the
virtual link k’s bandwidth assignment at a physical link to the
requested bandwidth	𝑏#. Equation 8 constrains the bandwidth
that is assigned to the flow of packets destined to a specific
virtual link’s end-point. The inequality on the right side ensures
that the bandwidth requirement of the virtual link is never
exceeded. The inequality on the left side directs path-splitting
and avoids the multiplication of splits with low bandwidth
allocations. Indeed, if active, path splitting is feasible only if the
bandwidth allocated to the splits respects a minimum threshold
𝑏#S2b. In practice, 𝑏#S2b is a ratio of 𝑏#, 𝑏#S2b = 𝑃𝑆eT$2f ∗ 𝑏#,
with 𝑃𝑆eT$2f ∈ [1, 0].

∀𝑘 ∈ 𝐾, ∀(𝑖, 𝑗) ∈ 𝐸 ∶		

𝑔#(𝑖, 𝑗) ≤ 𝑓#(𝑖, 𝑗)	𝑎𝑛𝑑	𝑓#(𝑖, 𝑗) ≤ 𝑏#	 ∗ 	𝑔#(𝑖, 𝑗)													(7)	

∀𝑘 ∈ 𝐾,∀(𝑖, 𝑗) ∈ 𝐸 ∶	
𝑏#S2b ∗	𝑔#$ (𝑖, 𝑗)	 ≤ 𝑓#$(𝑖, 𝑗)		𝑎𝑛𝑑		𝑓#$(𝑖, 𝑗)	 ≤ 	 𝑏#	 ∗ 𝑔#$ (𝑖, 𝑗)			(8)	
The constraints related to switching resource allocations are
described in equations 9 and 10. Equation 9 simply ensures that
with the addition of flow table entries needed by the virtual
links composing the request, the size of network nodes’ flow
tables remains below their maximum size.

∀𝑖 ∈ 𝑉:	O
#∈[

𝑙#(𝑖) ≤ 	𝑈2	 − 𝑈23																																		(9)			

Equations 10 constrain the allocations of group table entries.
Equation 10.b applies when no group entries are needed for the
virtual link k at node 𝑖 (it neither traverses 𝑖 nor requires a flow
split or packet duplication). Equation 10.c applies when a group

entry is needed. Finally, equation 10.d simply ensures that the
addition of group entries that are needed by the virtual links
respect the maximum size of all the group tables.

		∀𝑘 ∈ 𝐾,∀𝑖 ∈ 𝑉 ∶ 	0 ≤ 𝑛#(𝑖) ≤ 1																										(10. 𝑎)	

					∀𝑘 ∈ 𝐾, ∀(𝑖, 𝑗) ∈ 𝐸:																																																																

𝑛#(𝑖) ≤ 	Y O
#∈[(2,7)∈Q	

𝑔#(𝑖, 𝑗)\ − 𝑔#(𝑖, 𝑗)										(10. 𝑏)	

		∀𝑘 ∈ 𝐾, ∀	(𝑖, 𝑗l), (𝑖, 𝑗m) ∈ 𝐸, 𝑗l ≠ 𝑗m ∶																																	

𝑛#(𝑖) ≥ 𝑔#(𝑖, 𝑗l) + 𝑔#(𝑖, 𝑗m) − 1																(10. 𝑐)	

		∀𝑖 ∈ 𝑉 ∶ 				O
#∈[

𝑛#(𝑖) 		≤ 𝑁2 − 𝑁23																	(10. 𝑑)	

5) Objective function

The objective function aims at minimizing link and node
resource consumption but also at distributing the consumed
resources among nodes and links in order to reduce the creation
of bottlenecks. Both contribute to improve the admissibility of
forthcoming requests. As shown in expression 11, it consists of
four components, each weighted with a parameter that controls
the impact of the component on the resolution process. The first
two ones concern bandwidth allocations and the last two ones
concern flow table entries allocations.

Minimize	

𝛼l ∗
1
|𝐸| ∗ 	

O
(2,7)∈Q

⎝

⎜
⎛ 1
𝐵27

∗	Y𝐵273 +	O
#∈[

𝑓#(𝑖, 𝑗)\

⎠

⎟
⎞
	

+	𝛼m ∗ 	𝑓STU (11)	

+	𝛽l ∗	
1
|𝑉| ∗ 	

O
2∈P

⎝

⎜
⎛ 1
𝑈2
∗ 	Y𝑈23 +	O

#∈[

𝑙#(𝑖)\

⎠

⎟
⎞
	

+	𝛽m ∗ 	𝑢STU	

VIII. IMPLEMENTATION AND TESTS OF FEASABILITY
This section describes the proof-of-concept implementation

of the proposed ADN.

Figure 6 - Testbed environment

A. Considered Platform
Figure 6 depicts the OpenFlow network infrastructure that

supports our ADN implementation. It consists of five Linux
devices running OFSoftSwitch13 [18] software switch. They
are interconnected using GRE Tunnel over Ethernet physical
links. These links own the following performances: 100Mbps
of bandwidth and 10µs of propagation delay, except the link
between S1 and S2, which has 1Gbps of bandwidth. The
Floodlight SDN controller platform [17] is used as the
OpenFlow controller. One of the interesting features of
Floodlight V.1.0 and OFSoftSwitch13 is their full support for
OF 1.3. Meters and groups of type "all" and "select". Moreover,
an experimental support for OF 1.4 is possible, including
bundles with atomic modification features. Also, Floodlight
provides common network functionalities such as topology
discovery. The “RTIConnextDDS” DDS implementation is
used.

B. Implementation
The following components have been implemented. The

“Application requirements to VNET Mapper”, which
implements all the subcomponents previously described. It
continuously captures, for a given application, its active topics
and their associated publishers and subscribers (with their
location) as well as their QoS demands. Then, it establishes the
list of elementary flows, and finally performs flow aggregation
based on basic strategies. The “Virtual Network Resource
allocator” implements the algorithm presented in section VII.B
using concert technologies C++ as the modeling layer and IBM
CPLEX 12.6 as solver. The “Virtual Network Deployer”
implements the algorithm of section VII.A as an application
module that interfaces with the Floodlight Java-based API.

Figure 7 – DDS view of the considered application

C. Considered DDS Application
A demonstrative application with stringent and dynamic

requirements has been chosen. We consider a distributed
interactive simulation for vehicle driver training that involves
two networked driving simulators (called simulator A and B)
that evolve in a shared virtual world. Each simulator needs to
get state information (position, speed, etc.) from nearby
simulators. The closer are the simulator, the more frequent state
information must be exchanged and the more stringent the
required delay to get these states is. Movement of driving
simulators (in the virtual world) brings dynamicity in the data
flows that are delivered/consumed by each simulator and on the
QoS requirements related to the delivery of these data flows.
Figure 7 describes the application from the DDS perspective
with the topics related to the simulators’ state information, the
DDS QoS policies, etc.

This application was chosen as representative of the new
requirements that can be found in the use of augmented reality,
smart monitoring, in a framework compatible with Industrial

Ethernet solutions. The manipulated data are cyclic, with
variable frequencies and generate high flow rates with stringent
delay requirements.

D. Illustrative results
We consider the scenario presented in Figure 8, where

“Simulator B” starts moving at t0 towards the static “Simulator
A”. We assume that at time t1, the QoS requirements related to
the distribution of simulators’ state information must be
changed to a larger bandwidth and a stricter transfer delay. We
focus below on how our proposed ADN provisions and then
adjusts the network service that it provides to the application, to
respond to the new requirements.

Figure 8 Considered application scenario

Figure 9 shows the application requirements that were captured
by the “Application Requirements to VNET Mapper” from time
t0 to t1 (exclusive). The DataWriter and DataReaders of the two
topics (simulator A and simulator B) are identified as well as
their DDS related QoS. Figure 10 also shows the derived
elementary flows: one from node S1 to S5 and another from
node S5 to S1 with the same QoS requirements (d=20ms,
bw=8Mbps). These two flows form the virtual network to
provision for the application. The result of the resource
allocations on the OpenFlow network at time t0 is presented in
Figure 10. They were obtained with 𝛼l = 	𝛽l = 	1; 𝛼m = 𝛽m =
2 and with path splitting enabled (𝑃𝑆eT$2f = 0.3). This means
that minimizing link load disparity is the preferred optimization
criterion. The 8 Mbps requirements to S5 are reserved on the
S1-S2 link, then the request is splitted on a 4 Mpbs reservation
through S3, and 4 Mpbs through S4.

The mobility of the simulators (in the virtual world) brings
dynamicity in the data flows that are delivered/consumed by
each simulator and on their associated QoS. When simulators
get closer, requirements are tighter. Figure 11 describes the new
application requirements captured at time t1, the computed
update of the characteristics of the virtual links. 2Mbps more
are required on both directions. The previous virtual links are
updated consequently. Finally, Figure 12 describes the
corresponding resource allocations starting from time t1.

Figure 9 – Output of the “Application Requirements to VNET
Mapper” at time t0

Figure 10 – Output of the “VNET Resource Allocator” at time t0

Figure 11 - Output of the “Application Requirements to VNET

Mapper” at time t1

Figure 12 - Output of the “VNET Resource Allocator” at time t1

In the next section, a performance evaluation with more

complex scenarios is presented.

IX. PERFORMANCE ANALYSIS
For better highlighting our algorithm performances, we extend
the former scenario to groups of DDS simulators supported by
more networking devices like future large-scale factory
networks will be. In this case, the topology of a real campus
network (Figure 13) with 31 nodes and 55 links (with 100Mbps
and 1Gbps) is considered as the new SDN substrate. The
network has been extended by adding MiniNet emulated
openflow nodes and virtual links.

Figure 13 - campus network

CORE

DISTRIBUTION

ACCESS

10Gbps

1Gbps

100Mbps

Evaluations of the resource allocation algorithm were realized
to assess its general performance and benefits in comparison to
some Shortest Path (SP) heuristics. The results presented below
were based on the hierarchical campus network topology cited
above with the flow table and group table sizes respectively set
to 2000 and 512 entries. VNET requests are assumed to arrive
according to a Poisson process with an arrival rate range from
4 to 10 requests per 100 Unit of Time (UT). Each VNET request
is composed of a number of virtual links that is randomly
chosen between 1 and 4. Each virtual link has a number of
destinations that is randomly chosen between 1 and 4 and has a
bandwidth requirement randomly chosen between 1 and 3
Mbps. Once a VNET request is accepted it lasts till the end of
the experiment, which is set to 10000 UT. Path Splitting (PS) is
activated with a 𝑃𝑆eT$2f set to 0.3. The simulation setups have
been chosen to stress the network while conforming to the
switch specifications (i.e. flow table size <2000 OF rules).
The considered SP heuristic is defined as follows. A cost
function assigns a cost to each physical link that is inversely
proportional to its current available capacity. For each couple
of end-points that belongs to a virtual link, the physical path
with the minimum cost is chosen. If the bandwidth available for
the chosen path is below the bandwidth required by the virtual
link, the corresponding request is rejected.
The algorithm performances have been measured according to
three criteria: the request acceptance rate, the use of link and
nodes rates, the convergence duration. The last two criteria, that
to our opinion are the most important ones to characterize the
usability of our proposal, have been compared with the shortest
path heuristics.

The following performance metrics are computed during
simulation for performance analysis purposes:
 Acceptance rate: the percentage of successful virtual
links requests out of all the requests that arrived during the
simulation time;
 Convergence duration: the time needed by our
algorithm to compute the optimal allocations associated to a
virtual links request. The average convergence time and the
maximum convergence time are computed over the number of
successful requests;
 Link utilization: the percentage of assigned bandwidth
at a given link. Minimal and Maximal values are also given.

The following subsections presents a synthesis of the main
results obtained. A more in-depth performance analysis with
more parameters and values has been presented in [31].

A. ADN resource allocation algorithm performances
Figure 14 presents the link use rate of the ADN algorithm. Our
experiments show that the average link utilization is between
60 and 80% at some backbone links, we observe, at the end of
the experiments, that more than 95% of their capacity has been
allocated. This maximal use of some links strongly influences
the request acceptance rate. To avoid its important decrease, the
path splitting ratio chosen can be increased.

Figure 14 – Link use rate

Figure 15 presents the node use rate of the ADN algorithm. The
load required to compute the ADN algorithm remains at a low
level: less than 20% of the node capacity is required.

Figure 15 – Node use rate

Figure 16 presents the convergence duration of the ADN
algorithm to compute the optimal allocations associated to a
VNET request. For our algorithm, the convergence duration
remains at acceptable levels: on average below 60ms and a
longest convergence duration of 550ms.

Figure 16 – Convergence duration

A. ADN resource allocation algorithm and shortest path
heuristics comparison

Figure 17 describes the requests acceptance rate as a function
of the request arrival rate. Under this high load, it clearly shows
that our algorithm achieves an acceptance rate significantly
greater than the heuristic.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,04 0,05 0,06 0,07 0,08 0,09 0,1

Li
nk

 U
se

 R
at

e

Request Arrival Rate

Minimum

Maximum

Average

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2

0,04 0,05 0,06 0,07 0,08 0,09 0,1

N
od

e
Us

e
Ra

te

Request Arrival Rate

Minimum

Maximum

Average

0

100

200

300

400

500

600

0,04 0,05 0,06 0,07 0,08 0,09 0,1

Co
nv

er
ge

nc
e

Du
ra

tio
n

(m
s)

Request Arrival Rate

Minimum

Maximum

Average

Figure 17 – Requests Acceptance Rate

Figure 18 presents the average duration needed by our
algorithm and the SP heuristic to compute the optimal
allocations associated to a VNET request. As SP heuristic is
faster than the ADN algorithm, the results obtained balance the
advantage obtained by a better acceptance rate. Our algorithm
requires more time to obtain better results. However, to our
opinion, these durations remain acceptable (less than 60ms on
average).

Figure 18 – Convergence duration

X. CONCLUSION AND FUTURE WORK
This work proposes a SDN Based Application Driven Network
that is able to provide QoS enabled data-paths on an application
flow basis. This allows providing tailored network services to
applications while using efficiently network resources (even
when application requirements are dynamic). This detailed
consideration of applications communication profile has a cost
in terms of scalability. Clearly, the intention is not to apply the
proposed ADN to any application and in any context. It rather
targets real-time or business critical applications in a private
infrastructure, industry or campus networks, where scalability
is not the primary concern. The proposed ADN was
implemented and applied to prove its feasibility. The DDS/SDN
based approach makes it a turnkey solution and only a little
effort is required to configure it. A server with the ADN
software is added to the network and each openflow switch has
to refer it as controller. The server has to subscribe to all of the
DDS topics.
Perspectives of this work mainly concern the extension to
multidomain networks. Several works have started on this topic
as ONF TAPI [32] or IETF ALTO [33]. Our architecture should
rely on such descriptions to negotiate multidomain virtual links.

ACKNOWLEDGMENT

This work has been partially funded by the French National
Research Agency (ANR), the French Defense Agency (DGA)
under the project ANR DGA ADN (ANR-13-ASTR-0024).

REFERENCES
[1] V. Alcácer and V. Cruz-Machado, Scanning the Industry 4.0: A Literature

Review on Technologies for Manufacturing Systems, Engineering
Science and Technology International Journal, Elsevier, Vol. 22, Issue 3,
pages 899-919, June 2019.

[2] W. He and L. D. Xu. Integration of Distributed Enterprise Applications:
A Survey. IEEE Transactions on Industrial Informatics, vol. 10, No 1, pp.
35–42, Feb. 2014.

[3] J. Follows and D. Straeten, Application-Driven Networking: Concepts
and Architecture for Policy-Based Systems , IBM Red book, dec.1999.

[4] A. Georgi, R. G. Budich, Y. Meeres, R. Sperber, and H. Hérenger, An
integrated SDN architecture for application driven networking,
International Journal on Advances in Systems and Measurements, vol. 7,
pp. 103–114, 2014.

[5] T. Zinner, M. Jarschel, A. Blenk, F. Wamser and W. Kellerer. Dynamic
application-aware resource management using Software-Defined
Networking: Implementation prospects and challenges. IEEE/IFIP
Network Operations and Management Symposium (NOMS), Krakow,
Poland, 5-9 may 2014.

[6] H. Mekky, F. Hao, S. Mukherjee, Z. L. Zhang and T.V. Lakshman.
Application-aware data plane processing in SDN. Proceedings of the
ACM: third workshop on Hot topics in software defined networking
(HotSDN '14), Chicago, USA, Aug. 22 2014, pages 13-18.

[7] M. Savi and D. Siracusa. Application-aware service provisioning and
restoration in SDN-based multi-layer transport networks. Optical
Switching and Networking, Volume 30, Nov. 2018, Pages 71-84,
Elsevier.

[8] M. Wollschlaeger, T. Sauter and J. Jasperneite, The Future of Industrial
Communication: Automation Networks in the Era of the Internet of
Things and Industry 4.0 in IEEE Industrial Electronics Magazine, vol. 11,
no. 1, pp. 17-27, March 2017.

[9] GSMA 2018. Network Slicing – Use Cases Requirements.
https://www.gsma.com/futurenetworks/wp-
content/uploads/2018/07/Network-Slicing-Use-Case-Requirements-
fixed.pdf/ accessed Jan. 2020.

[10] 3GPP TS 22.804: Study on Communication for Automation in Vertical
Domains

[11] 3GPP TS 38.300: NextGen Radio Access Network (NG-RAN); Overall
description; Stage 2

[12] Object Management Group, Data-Distributed Service for Real-Time
Systems, OMG, version 1.4. Sept. 2014.

[13] I. Calvo, F. Pérez, O. G. de Albeniz and I. Etxeberria-Agiriano, "Towards
a OMG DDS communication backbone for factory automation
applications," ETFA2011, Toulouse, 2011, pp. 1-4.

[14] R. S. Auliva, R. Sheu, D. Liang and W. Wang, IIoT Testbed: A DDS-
Based Emulation Tool for Industrial IoT Applications, 2018 International
Conference on System Science and Engineering (ICSSE), New Taipei,
2018, pp. 1-4.

[15] D. S. Rana, S. A. Dhondiyal and S. K. Chamoli, Software Defined
Networking (SDN) Challenges, issues and Solution, International Journal
of Computer Sciences and Engineering, Vol 7, Issue 1, pages 884-889,
January 2019.

[16] Open Networking Foundation, OpenFlow Notification Framework, ONF
TS 014, Version 1.0, October 2013,

[17] B. S. Networks, Floodlight openflow controller,. Version 1.0,. 2013,
[Online]. Available: http://www.projectfloodlight.org/floodlight/

[18] CPqD, OFSoftSwitch 13, [Online]. Available:
http://cpqd.github.io/ofsoftswitch13

[19] VMware® NSX Network Virtualization Design Guide. Available at
https://www.vmware.com/products/nsx.html, accessed Dec. 2019.

[20] Cisco. Application Centric Infrastructure (ACI). Available at
https://www.cisco.com/c/en_uk/solutions/data-center-
virtualization/application-centric-infrastructure/index.html, accessed
Dec. 2019.

[21] Citrix NetScaler. Available at https://en.wikipedia.org/wiki/NetScaler,
accessed Dec. 2019.

[22] Oracle Solaris 11 and Pluribus Networks - Enabling Application-Driven
SDN in the Cloud’. Available at
https://blogs.oracle.com/openomics/oracle-solaris-11-and-pluribus-
application-awareness-in-the-cloud-v2’, accessed Dec. 2019.

[23] Y. Wang, D. Lin, C. Li, J. Zhang, P. Liu, C. Hu and G. Zhang. Application
Driven Network : Providing On-Demand Services for Applications. ACM
SIGCOMM Conference, SIGCOMM ’16, pages 617–618, New York,
NY, USA, 2016.

[24] Z. Ayyub Qazi, J. Lee, T. Jin, G. Bellala, M. Arndt and G. Noubir.
Application-awareness in SDN. SIGCOMM Comput. Commun. Rev.,
vol. 43, no. 4, pages 487–488, August 2013.

[25] R. Santos, Z. Bozakov, S. Mangiante, A. Brunstrom and A. Kassler. A
NEAT framework for application-awareness in SDN environments. IEEE
Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN), nov. 2017.

[26] A. L. King, S. Chen and I. Lee. The MIDdleware Assurance Substrate :
Enabling Strong Real-Time Guarantees in Open Systems with OpenFlow.
IEEE 17th International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing, pages 133–140, June 2014.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,04 0,05 0,06 0,07 0,08 0,09 0,1

Re
qu

es
t A

cc
ep

ta
nc

e
Ra

te

Request Arrival Rate

ADN Algori thm

Shortest Path Heuristic

0

10

20

30

40

50

60

70

0,04 0,05 0,06 0,07 0,08 0,09 0,1Av
er

ag
e

Co
nv

er
ge

nc
e

Du
ra

tio
n

 (m
s)

Request Arrival Rate

ADN Algori thm

 Shortest Path Heuristic

[27] A. R. Montazerolghaem, M. H. Y. Moghaddam and A. Leon-Garcia.

OpenSIP : Toward Software-Defined SIP Networking. IEEE Trans.
Network and Service Management vol. 15 no. 1, pages 184-199, 2018.

[28] H. Y. Choi, A. L. King and I. Lee. Making DDS really real-time with
Open-Flow. International Conference on Embedded Software
(EMSOFT), pages 1–10, Oct 2016.

[29] M. Ben Alaya and T. Monteil, FRAMESELF: A Generic Context-Aware
Autonomic Framework for Self-Management of Distributed Systems, in
IEEE 21st International Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE), 2012.

[30] M. Capelle, S. Abdellatif, M.J. Huguet and P. Berthou, Online Virtual
Links Resource Allocation in Software-Defined Networks, IFIP
Networking 2015, Toulouse, France, 20 – 22 May 2015.

[31] A. F. Simo Tegeu. Towards networks guided by and for highly dynamic
applications. PhD thesis, University of Toulouse, July 2018.

[32] V. Lopez, R. Vilalta, V. Uceda, A. Mayoral, R. Casellas, R. Martínez, R.
Muñoz and J. P. Fernandez Palacios. Transport API: A solution for SDN
in carriers networks, 42nd European Conference on Optical
Communication (ECOC), September 2016.

[33] D. A. Lachos Perez, C. Esteve Rothenberg and R. Szabo , Broker-assisted
Multi-domain Network Service Orchestration, IEEE Wireless
Communications and Networking Conference (WCNC), April 2018.

