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We consider the hovering control problem for a class of multi-rotor aerial platforms with generically oriented propellers, characterized by intrinsically coupled translational and rotational dynamics. In doing this, we first discuss some assumptions guaranteeing the rejection of generic disturbance torques while compensating for the gravity force. These assumptions are translated into a geometric condition usually satisfied by both standard models and more general configurations. Then, we propose a control strategy based on the identification of a zero-moment direction for the exerted force and a dynamic state feedback linearization based on this preferential direction, which locally asymptotically stabilizes the platform to a static hovering condition. Stability properties of the control law are rigorously proved through Lyapunov-based methods and reduction theorems for the stability of nested sets. Asymptotic zeroing of the error dynamics and convergence to the static hovering condition are then confirmed by simulation results on a star-shaped hexarotor model with tilted propellers.

Introduction

In recent years, technological advances in miniaturized sensors/actuators and optimized data processing have lead to extensive use of small autonomous flying vehicles within the academic, military, and commercial contexts [START_REF] Fuhrmann | Droning on: Explaining the proliferation of unmanned aerial vehicles[END_REF][START_REF] Shakhatreh | Unmanned aerial vehicles: A survey on civil applications and key research challenges[END_REF][START_REF] Tang | Autonomous flying', Annual Review of Control[END_REF]. Thanks to their high maneuverability and versatility, Unmanned Aerial Vehicles (UAVs) are rapidly increasing in popularity, thus becoming a mature technology in several application fields ranging from the classical visual sensing tasks (e.g., surveillance and aerial photography [START_REF] Kim | Designing UAV surveillance frameworks for smart city and extensive ocean with differential perspectives[END_REF][START_REF] Motlagh | UAVbased IoT platform: A crowd surveillance use case[END_REF])) to the recent environment explo-ration and physical interaction (e.g., search-and-rescue operations, grasping and manipulation [START_REF] Hayat | Multi-objective UAV path planning for search and rescue[END_REF][START_REF] Loianno | Localization, grasping, and transportation of magnetic objects by a team of MAVs in challenging desert like environments[END_REF], Ollero et al. 2018[START_REF] Ruggiero | Aerial manipulation: A literature review[END_REF][START_REF] Spurnỳ | Cooperative autonomous search, grasping, and delivering in a treasure hunt scenario by a team of unmanned aerial vehicles[END_REF]).

In most of these frameworks, the vehicle is required to stably hover at a fixed position and many control strategies exists for UAV, solving this hovering stabilization goal. These controllers are generally linear solutions based on proportional-derivative schemes or linear quadratic regulators, see, e.g., [START_REF] Alkhoori | PID-LQR controllers for quad-rotor hovering mode[END_REF], [START_REF] Liu | PID and LQR trajectory tracking control for an unmanned quadrotor helicopter: Experimental studies[END_REF], [START_REF] Sandiwan | Robust proportional-derivative control on SO(3) with disturbance compensation for quadrotor UAV[END_REF]. Hovering nonlinear controllers are instead not equally popular and mainly exploit feedback linearization [START_REF] Antonello | A dual quaternion feedback linearized approach for maneuver regulation of rigid bodies[END_REF][START_REF] Lotufo | Embedded model control for UAV quadrotor via feedback linearization[END_REF], sliding mode and backstepping techniques [START_REF] Abci | Robust altitude and attitude sliding mode controllers for quadrotors[END_REF][START_REF] Chen | Robust backstepping sliding-mode control and observer-based fault estimation for a quadrotor UAV[END_REF]) and/or geometric approaches [START_REF] Franchi | Full-pose tracking control for aerial robotic systems with laterally bounded input force[END_REF][START_REF] Invernizzi | Geometric tracking control of a quadcopter tiltrotor UAV[END_REF].

Although less used, the effectiveness of nonlinear hovering control schemes has been widely confirmed by experimental tests. For example, the performance of controllers based on nested saturations, backstepping and sliding modes has been experimentally evaluated in [START_REF] Carrillo | Hovering quad-rotor control: A comparison of nonlinear controllers using visual feedback[END_REF] to stabilize the position of a quadrotor w.r.t. a visual landmark on the ground. Similarly, in [START_REF] Choi | Nonlinear control of quadrotor for point tracking: Actual implementation and experimental tests[END_REF] a quadrotor platform has been used to validate the possibility of stably tracking a point through a nonlinear control strategy that exploits a backsteppinglike feedback linearization method. Likewise, the experimental results reported in [START_REF] Goodarzi | Global formulation of an extended Kalman filter on SE(3) for geometric control of a quadrotor UAV[END_REF] confirm the performance of a geometric nonlinear controller during the autonomous tracking of a Lissajous curve employing a small quadrotor.

An overview of feedback control laws for underactuated UAVs is given in [START_REF] Hua | Introduction to feedback control of underactuated VTOL vehicles: A review of basic control design ideas and principles[END_REF], where the authors claim that nonlinear controllers can also be endowed with provable global stability and convergence properties, under some suitable assumptions. In this spirit, Lyapunov theory has been exploited in [START_REF] Lee | Geometric tracking control of a quadrotor UAV on SE(3)[END_REF] to prove the convergence of the proposed (nonlinear) tracking controller assuming bounded initial errors. The corresponding solution exploits a geometric approach on the three-dimensional Special Euclidean manifold and ensures almost global exponential convergence to zero of the tracking error. A Lyapunov-based approach is used also in [START_REF] Franchi | Full-pose tracking control for aerial robotic systems with laterally bounded input force[END_REF] to verify the stability of a pose controller for the class of laterally-bounded force aerial vehicles, which includes both underactuated and fully actuated systems with saturation.

In this context, the contribution of our work can be summarized as follows. First, we account for a class of multi-rotor aerial platforms having more complex dynamics than the standard quadrotors. More specifically, we address the case where the propellers are in any number (possibly larger than four) and their spinning axes are generically oriented (including the non-parallel case). This entails the fact that the direction along which the control force is exerted is not necessarily orthogonal to the plane containing all the propellers centers1 and that the control moment is not completely independent of the control force, as in the typical frameworks, see, e.g., [START_REF] Lee | Geometric tracking control of a quadrotor UAV on SE(3)[END_REF]. For such generic platforms, we propose a nonlinear hovering control law that rests upon the identification of a so-called zero-moment direction. This concept, introduced in [START_REF] Michieletto | Fundamental actuation properties of multi-rotors: forcemoment decoupling and fail-safe robustness[END_REF], [START_REF] Michieletto | Control of statically hoverable multi-rotor aerial vehicles and application to rotor-failure robustness for hexarotors[END_REF], refers to a virtual direction along which the intensity of the control force can be freely assigned while retaining a zero control moment. Our controller exploits a dynamic feedback linearization scheme exploiting this preferential direction, which can be generically oriented (contrarily to the state-of-the-art multi-rotor controllers). Its implementation asymptotically stabilizes the platform to a given constant reference position, constraining its linear and angular velocities to be zero (static hover condition [START_REF] Michieletto | Fundamental actuation properties of multi-rotors: forcemoment decoupling and fail-safe robustness[END_REF]). The proposed control strategy requires some algebraic prerequisites on the control matrices that map the motors inputs to the vehicle control force and moment. These are fulfilled by the majority of quadrotor models and result to be non-restrictive so that the designed controller can be applied to both standard multirotor platforms, whose propellers' spinning axes are all parallel, and more general ones. The local stability and convergence properties of our control law are confirmed by the numerical simulations and are rigorously proved through a Lyapunov-based proof using reduction theorems for the stability of nested sets. This work generalizes and extends [START_REF] Michieletto | Nonlinear control of multi-rotor aerial vehicles based on the zero-moment direction[END_REF]. In particular, as compared to those preliminary results, we state a more appealing version of our basic assumptions, we extend our control goal including a restricted orientation stabilization feature, we provide proofs that were previously missing and we discuss new simulation tests better illustrating the benefits of our solution.

The rest of the paper is organized as follows. Since we use the unit quaternion representation of the attitude, in Section 2 some basic notions on the related mathematics are given. In Section 3 the dynamic model of a generic multi-rotor UAV is derived, exploiting the Newton-Euler approach. In Section 4 we state our main assumption on the allowable propellers configuration providing a set of necessary and sufficient conditions. Our control law is described in Section 5 and its stability properties are characterized in Section 6. The validity of our controller is illustrated through numerical simulations in Section 7. In Section 8 some conclusions are drawn and future research directions are discussed.

Preliminaries and Notation

In this work, the unit quaternion formalism is adopted to represent the UAV attitude, overcoming the singularities that characterize Euler angles and simplifying the equations w.r.t. the rotation matrices representation. To provide a mathematical background for the model and the controller described hereafter, the main properties of unit quaternions are recalled in this section. The reader is referred to [START_REF] Diebel | Representing attitude: Euler angles, unit quaternions, and rotation vectors[END_REF] and [START_REF] Kuipers | Quaternions and rotation sequences: A Primer with Applications to Orbits[END_REF] for further details.

A unit quaternion q is a hyper-complex number belonging to the unit hypersphere S 3 embedded in R 4 . This is usually represented as a four dimensional vector having unitary norm made up of a scalar part, η ∈ R, and a vector part, ∈ R 3 , so that q := η with q 2 = η 2 + 2 = 1. Each unit quaternion q corresponds to a unique rotation matrix belonging to the Special Orthogonal group SO(3

) := {R ∈ R 3×3 | R R = I 3 , det(R) = 1}. Formally, this is R(q) = I 3 + 2η[ ] × + 2[ ] 2 × = I 3 + 2η[ ] × + 2( - I 3 ), (1) 
where the operator [•] × denotes the map that associates any non-zero vector in R 3 to the related skewsymmetric matrix in the special orthogonal Lie algebra so(3). Thanks to (1), it can be verified that R(q) R(q) = R(q I ) = I 3 where q I := [1 0 0 0] is the identity (unit) quaternion.

The claimed relationship about the attitude representations is not bijective since each rotation matrix corresponds to two unit quaternions. To explain this fact, it is convenient to consider the following axis-angle representation for a unit quaternion, i.e.,

q = q(δ, n) := cos δ 2 sin δ 2 n , (2) 
where n ∈ S 2 is the rotation axis in R 3 and δ ∈ (-π, +π] is the rotation angle. Using this expression, it can be verified that a rotation around -n of an angle -δ is described by the same unit quaternion associated with a rotation by δ about n, namely R(q) = R(-q), the so-called double coverage property.

In quaternion-based algebra, compositions are performed through the quaternions product, denoted hereafter by the symbol •. Specifically, given q 1 , q 2 , it holds that R(q 1 )R(q 2 ) = R(q 3 ), where

q 3 := q 1 • q 2 = A(q 1 )q 2 = B(q 2 )q 1 , with (3) 
A(q) := η - ηI 3 + [ ] × , B(q) := η - ηI 3 -[ ] × . (4) 
According to (3), the inverse of a quaternion q may be chosen as q -1 = [η -] ∈ S 3 . Given two 3D coordinate systems F x and F y such that the unit quaternion q indicates the relative rotation from F x to F y , for any vector w x ∈ R 3 expressed in F x the corresponding vector w y ∈ R 3 in F y is computed as 0 w y = q • 0 w x • q -1 . The time derivative of a unit quaternion q is given by q

= 1 2 q • 0 ω ω ω = 1 2 A(q) 0 ω ω ω = 1 2 - ηI 3 + [ ] × ω ω ω, (5) 
denoting by ω ω ω ∈ R 3 the angular velocity of F x w.r.t. F y expressed in F x . Relation (5) should be replaced by

q = 1 2 0 ω ω ω • q = 1 2 B(q) 0 ω ω ω = 1 2 - ηI 3 -[ ] × ω ω ω , (6)
when the angular velocity is expressed in F y , namely ω ω ω = R(q)ω ω ω. mass and moment of inertia w.r.t. the body inertial parameters), each one spinning about a generically oriented axis. The relative axes orientations, jointly with the number n of rotors, determines if the UAV is an underactuated or a fully actuated system [START_REF] Ryll | 6D interaction control with aerial robots: The flying end-effector paradigm[END_REF]. This class of vehicles (also known as Generically Tilted Multi-Rotors) has been evaluated for the first time in [START_REF] Michieletto | Control of statically hoverable multi-rotor aerial vehicles and application to rotor-failure robustness for hexarotors[END_REF], nonetheless, we investigate here the derivation of the dynamic model by exploiting the unit quaternion formalism to represent the attitude of the platform.

F B z P j f j τ j z P i f i τ i τ c f c
As reported in Figure 1, we consider the body frame F B = {O B , (x B , y B , z B )} attached to the UAV so that its origin O B coincides with the center of mass (CoM) of the vehicle. The pose of the platform in the inertial world frame F W = {O W , (x W , y W , z W )} is, thus, described by pair (p, q) ∈ R 3 × S 3 where vector p ∈ R 3 denotes the position of O B in F W and the unit quaternion q ∈ S 3 represents the orientation of F B w.r.t. F W (i.e., it corresponds to the relative rotation from body to world frame, hence its inverse provides the coordinates in body frame of a vector expressed in the world frame). The orientation kinematics of the vehicle is governed by (5), where ω ω ω ∈ R 3 represents the angular velocity of

F B w.r.t. F W , expressed in F B , whereas the linear velocity of O B in F W is denoted by v = ṗ ∈ R 3 .
The i-th propeller, i ∈ {1 . . . n}, rotates with angular velocity ω ω ω i ∈ R 3 about its spinning axis, which passes through the rotor center O Pi . The position p i ∈ R 3 of O Pi and the direction of ω ω ω i are assumed to be constant in F B . The propeller angular velocity can thus be expressed as ω ω ω i := ω i z Pi where ω i ∈ R indicates the (controllable) rotor spinning rate and z Pi ∈ S 2 is a unit vector parallel to the rotor spinning axis. While rotating, each propeller exerts a thrust/lift force f i ∈ R 3 and a drag moment τ τ τ i ∈ R 3 , both oriented along the direction defined by z Pi and exerted at O Pi . According to the most commonly acknowledged model, these two quantities are related to the rotor rate ω i by way of

f i = σc fi |ω i |ω i z Pi and τ τ τ i = -c + τi |ω i |ω i z Pi , (7) 
where c fi , c + τi > 0 and σ ∈ {-1, 1} are constant parameters depending on the propeller shape. The propeller is of counterclockwise (CCW) type if σ = 1 and of clockwise (CW) type if σ = -1. The thrust of CCW propellers has the same direction as the angular velocity vector, whereas those are opposite for the CW case; the drag moment, instead, is always oppositely oriented w.r.t. ω ω ω i .

Introducing u i := σ|ω i |ω i ∈ R and c τi := -σc + τi ∈ R, relations (7) can be rewritten as

f i = c fi u i z Pi and τ τ τ i = c τi u i z Pi . ( 8 
)
The sum of all the propeller forces coincides with the control force f c ∈ R 3 exerted at the platform CoM, while the control moment τ τ τ c ∈ R 3 is the sum of the moment contributions due to both the thrust forces and the drag moments. These can be expressed in F B as

f c = n i=1 f i = n i=1 c fi z Pi u i , (9) 
τ τ τ c = n i=1 (p i ×f i + τ τ τ i ) = n i=1 (c fi p i ×z Pi + c τi z Pi )u i . ( 10 
)
Defining the control input vector u = [u 1 . . . u n ] ∈ R n , ( 9) and ( 10) can be written compactly as

f c = Fu and τ τ τ c = Mu, (11) 
where F, M ∈ R 3×n are the control force input matrix and the control moment input matrix, respectively. Note that, since c fi > 0 and c + τi > 0, none of the columns of both F and M is a zero vector, and therefore we have both 1 ≤ rk(F) ≤ 3 and 1 ≤ rk(M) ≤ 3 by construction.

Using the Newton-Euler approach and neglecting second order effects (e.g., the propeller gyroscopic effects), the dynamics of the multi-rotor vehicle is approximated by the following set of equations

           ṗ = v q = 1 2 q • 0 ω ω ω m v = -mge 3 + R(q)Fu J ω ω ω = -ω ω ω × Jω ω ω + Mu (12) (13) (14) (15)
where m > 0 is the platform mass, g > 0 is the gravitational constant, and e i ∈ R 3 with i ∈ {1, 2, 3} is the i-th column of the identity matrix in R 3×3 . The positive definite constant matrix J ∈ R 3×3 is the vehicle inertia in F B . Model ( 12)-( 15) describes a nonlinear plant

ẋp = f p (x p , u), ( 16 
)
whose state is

x p := [p q v ω ω ω ] ∈ R 3 × S 3 × R 6 .
In this paper, we design a nonlinear control law to stabilize in static hovering conditions the multi-rotor platform ( 16) by solving the following problem.

Problem 1 Given the plant (16), corresponding to (12)-( 15), find a dynamic state feedback controller

ẋc = f c (x c , x p , p r ), u = h c (x c , x p , p r ) (17)
that, for any constant reference position p r ∈ R 3 , (locally) asymptotically stabilizes position p r and some hovering orientation. More precisely, the closed-loop system ( 16)-( 17) should be locally asymptotically stable to a suitable compact set where p = p r , and v and ω ω ω are both zero, while orientation q may be arbitrary but constant.

The arbitrariness of the orientation is fundamental for the feasibility of Problem 1, which is in general solvable only if certain steady-state attitudes are realized by the platform (static hoverability realizability Michieletto et al. ( 2018)). As compared to [START_REF] Michieletto | Nonlinear control of multi-rotor aerial vehicles based on the zero-moment direction[END_REF], in Section 4 we provide new and more insightful sufficient conditions on matrices F and M in (11) for solving Problem 1, which is a contribution of this extension. Then, Section 5, presents the dynamics of the proposed control scheme, represented in Figure 2. This controller architecture is a contribution of our preliminary work [START_REF] Michieletto | Nonlinear control of multi-rotor aerial vehicles based on the zero-moment direction[END_REF]. On the other hand, Section 6 provides additional contributions of this improved version: first we provide a rigorous proof of local asymptotic stability of the error dynamics, by exploiting a hierarchical structure and the reduction theorems presented in El-Hawwary & Maggiore (2013); then, we propose an extension of the proposed control law, accounting also for the restricted stabilization of a given constant orientation.

4 Zero-moment Preferential Direction

Main Assumption and Zero-moment Direction d *

In order to attain a constant position and orientation for the platform, the stabilizing controller must be able to simultaneously reject moment disturbances in any direction and counteract the gravity force. These requirements are satisfied under the next assumption on the control input matrices F and M introduced in (11) and on certain arbitrary bases of their kernels, namely

F ∈ R n×(n-rk(F)) such that Im( F) = ker(F), ( 18 
) M ∈ R n×(n-rk(M)) such that Im( M) = ker(M). (19)
We emphasize that the properties of F, M, F and M discussed below are geometric properties of the subspaces ker(F) and ker(M) and are satisfied (or not) independently of the specific choices of F and M satisfying ( 18)-( 19). We also highlight that a necessary condition for ep, ev stabilizer

f r translational mismatch f ∆ • f∆ stabilizer ν d * split ḟ ω ω ω d controller states (qd, f ) q d • f • • • (q∆, ω ω ω∆) stabilizer τ τ τ r feedforward action ω ω ω dd (s, K) distribution u multi-rotor dynamics ẋp = fp(xp, u) (p, v) + - (p r , 0) e p , e v • • (q, ω ω ω) • nonlinear feedback controller ẋc = fc(xc, xp, pr) u = hc(xc, xp, pr)
Fig. 2. Block diagram of the closed-loop system with the proposed dynamic control strategy.

Assumption 1 to hold is that the UAV has at least 4 propellers. The proof of this fact is nontrivial and is given in Corollary 1 in Section 4.2.

Assumption 1 With F as in (18), rk(M F) = 3.

Assumption 1 implies rk(M) = 3 (matrix M has full row rank), corresponding to the possibility of freely assigning the control moment τ τ τ c in (11). Moreover, the condition rk(F) ≥ 1 discussed after (11) ensures that there exists a zero moment direction generating a non-zero control force, as established below.2 

Proposition 1 Under Assumption 1, there exists ū ∈ ker(M) such that Fū = 1

In view of Proposition 1, whose proof is postponed to Section 4.2 to avoid breaking the flow of the exposition, Assumption 1 enables a sufficient level of decoupling between f c and τ τ τ c in (11), thus ensuring the existence of (at least) a direction where the intensity f c of the control force can be arbitrarily assigned with the control moment τ τ τ c equal to zero. Referring to the notation in [START_REF] Michieletto | Fundamental actuation properties of multi-rotors: forcemoment decoupling and fail-safe robustness[END_REF], Assumption 1 is fulfilled for uncoupled platforms (UC) having at least a decoupled force direction (D1). Based on the quantity ū introduced in Proposition 1, this zero-moment preferential direction is defined as

d * := Fū ∈ Im(F) ∩ S 2 . ( 20 
)
We emphasize that Assumption 1 is more intuitive than (although equivalent to) the convoluted algebraic property introduced in our preliminary work [START_REF] Michieletto | Nonlinear control of multi-rotor aerial vehicles based on the zero-moment direction[END_REF]. More specifically, we observe that Assumption 1 implies that M F is right-invertible, namely there exists a matrix X ∈ R (n-rk(F))×3 , whose dimensions depend on the rank of F, such that M FX = I 3 . This corresponds to the property assumed in Michieletto, Cenedese, Zaccarian & Franchi (2017) requiring the existence of a generalized right pseudo-inverse of M, as stated next.

Lemma 1 Assumption 1 holds if and only if there exists a matrix K ∈ R n×n such that MKM is invertible and

FM † K = 0, where M † K = KM (MKM ) -1 ∈ R n×3 is the generalized right pseudo-inverse of M.
Proof. (⇒) We assume that rk(M F) = 3. Then, selecting K := F( F) we obtain from the rank condition that

MKM = M F(M F) ∈ R 3×3 is invertible. Moreover FM † K = 0 because F F = 0. (⇐)
Proceeding ab absurdo, we assume that rk(M F) < 3 and that a matrix K exists satisfying the properties in the statement of the lemma; for that matrix we have

FM † K = 0, MM † K = I. ( 21 
)
Consider now any nonzero τ τ τ c / ∈ Im(M F) (its existence is guaranteed by the stated rank assumption) and denote u := M † K τ τ τ c . Then the left equation in (21) implies that u ∈ ker(F), i.e., there exists w ∈ R n such that u = Fw. Using the right equation in ( 21), through simple substitutions, we get τ τ τ c = MM † K τ τ τ c = Mu = M Fw, which clearly contradicts the assumption that τ τ τ c / ∈ Im(M F), leading to an absurd and completing the proof.

Proof of Proposition 1

The following lemma, of independent interest, holds true for any selection of the matrices in ( 18)-( 19) and is useful to the end of proving Proposition 1.

Lemma 2

The following are equivalent:

(i) rk(F M) ≥ 1; (ii) ∃ū ∈ ker(M) such that Fū = 1.
Proof. (i) ⇒ (ii). Since Im( M) = ker(M), one can always select a unit vector u ∈ ker(M) as a linear combination of the columns of M and the rank condition ensures that Fu = 0. Choosing ū = u / Fu completes the proof. (ii) ⇒ (i). Since ū ∈ ker(M) we may write ū = Ma for some a ∈ R n-rk(M) . Since 1 = Fū = F Ma , then it follows that rk(F M) ≥ 1.

We are now ready to prove Proposition 1.

Proof of Proposition 1. By virtue of Lemma 2 it is enough to prove that Assumption 1 implies rk(F M) ≥ 1, which is done next. Ab absurdo, we assume that rk(F M) = 0, i.e., the product F M corresponds to the null matrix. This implies ker(M) ⊆ ker(F), namely, ker(M) ∩ ker(F) = ker(M). We recall that for generic matrices A and B of suitable dimensions it holds that rk(AB

) = dim(Im(AB)) = rk(B) -dim(ker(A) ∩ Im(B)) (Zhang 2011). Since rk(M) = 3 from Assumption 1, it follows that rk(M F) = rk( F) -dim ker(M) ∩ Im( F) = dim (ker(F)) -dim (ker(M)) = n -rk(F) -(n -rk(M)) = 3 -rk(F).
Under Assumption 1, this gives rk(F) = 0, which contradicts the fact that F is non-zero by construction.

A relatively interesting corollary of Lemma 2 is a rank property for the overall input matrix [F M ] ∈ R 6×n which is not a priori assumed but is instead a consequence of Assumption 1.

Corollary 1 Assumption 1 holds only if (i) the UAV has n ≥ 4 propellers and (ii) the control input matrices satisfy rk([F M ] ) ≥ 4.

Proof. Since [F M ] has n columns, then (ii) ⇒ (i).

Hence we only need to prove that Assumption 1 implies item (ii). Assumption 1 implies rk([F M ] ) = rk(M) + rk(F -FM † M) ≥ 3 [START_REF] Tian | Rank equalities for block matrices and their Moore-Penrose inverses[END_REF]). Ab absurdo, suppose that rk([F M ] ) = 3, namely rk(F -FM † M) = 0. Then F -FM † M = 0, but this contradicts the statement of Proposition 1, thus concluding the proof.

Proposed Dynamic Controller

Based on Assumption 1 and its implications in Proposition 1, we propose here a dynamic controller where the control input u is selected as

u = M † K τ τ τ r + ūf, (22) 
so that the reference moment τ τ τ r ∈ R 3 and force intensity f ∈ R conveniently appear in expression (11). Indeed, by Proposition 1 using the zero-moment direction in (20), selection ( 22) implies,

f c = Fu = d * f, (23) τ τ τ c = Mu = τ τ τ r , (24) 
which clearly reveals a favorable decoupling in the wrench components. Taking advantage of this decoupling, we are interested in steering the platform toward a desired orientation q d ∈ S 3 such that the resulting force R(q d )f c acting on the translational dynamics ( 14) (in the direction of R(q d )d * because of ( 23)) coincides with a desired stabilizing action selected here as a simple PD + gravity compensation feedback function f r ∈ R 3 corresponding to

f r := mge 3 -k pp e p -k pd e v , (25) 
where e p = pp r ∈ R 3 and e v = v ∈ R 3 are the position error and the velocity error, respectively, while k pp , k pd ∈ R + are arbitrary (positive) scalar PD gains governing the proportional and derivative actions of the attitude transient. Rather than algebraically computing q d , an auxiliary state can be introduced in the controller, accounting for the evolution of q d in S 3 through the quaternion-based dynamics (5), namely

qd = 1 2 q d • 0 ω ω ω d , (26) 
where ω ω ω d ∈ R 3 is an additional virtual input to be selected so that the actual input to the translational dynamics ( 14) converges to the state feedback (25). In other words, ω ω ω d should drive to zero the following mismatch, motivated by ( 14) and ( 23),

f ∆ := R(q d )f c -f r = R(q d )d * f -f r . (27) 
We will ensure that f ∆ converges to zero by considering the variable f in ( 22) as an additional scalar state of the controller, and then imposing

ω ω ω d = 1 f [d * ] × R(q d ) ν ν ν, (28) ḟ 
= (R(q d )d * ) ν ν ν, (29) 
where

ν ν ν := k pd k pp m e p + k 2 pd m -k pp e v - k pd m +k ∆ f ∆ , (30) 
with k ∆ ∈ R + being an additional (positive) scalar gain. Note that equation ( 28) requires f = 0 (this is guaranteed by the stated assumptions and will be formally established in Fact 2 in Section 6.2).

The scheme is completed by an appropriate selection of τ τ τ r in ( 22) ensuring that the attitude q tracks the desired attitude q d . This task is easily realizable because of Assumption 1, which guarantees full-authority control action on the rotational dynamics. To simplify the exposition, we introduce the mismatch q ∆ ∈ S3 between the current and the desired orientation, namely

q ∆ := q -1 d •q = η d η + d -η d + η d -[ d ] × = η ∆ ∆ . (31) 
Then moment τ τ τ r in ( 22) entailing the convergence to zero of this mismatch can be selected as

τ τ τ r = -k ap ∆ -k ad ω ω ω ∆ + ω ω ω × Jω ω ω + Jω ω ω dd , (32) 
where ω ω ω ∆ = ω ω ωω ω ω d ∈ R 3 is the angular velocity mismatch and the PD gains k ap ∈ R + and k ad ∈ R + allow to tune the proportional and derivative actions of the attitude transient, respectively.

Note that a feedforward term appears in (32), compensating for the quadratic terms in ω ω ω emerging in (15), in addition to a correction term ω ω ω dd ∈ R 3 ensuring forward invariance of the set where q = q d and ω ω ω = ω ω ω d . The expression of this term is reported in (33) at the top of the page, and can be proved to be equal to ω ω ω d along the solutions (the proof is available in Appendix).

Equations ( 25)-( 38) may be gathered in the dynamics ẋc = f c (x c , x p , p r ) of controller ( 17), represented by the dashed blue block in Figure 2, whose state is x c = q d f ∈ S 3 × R and whose inputs are the plant state vector x p introduced at the end of Section 3, and the reference position p r ∈ R 3 .

Remark 1 The feedback interconnection between ( 16) and (17) provides a smooth vector field in the region where f = 0, evolving in a closed set comprising Cartesian products of Euclidean spaces and S 3 . Due to these regularity properties, the local asymptotic stability results reported in Section 6 enjoy a certain degree of robustness, whose details are reported in [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF](Ch. 7), ensuring a graceful performance degradation in the presence of unmodeled phenomena such as sensor noise and actuator dynamics. These useful properties are numerically illustrated in Section 7.

6 Stability Analysis

Reduction theorem and invariance principle

To suitably formalize and prove closed-loop stability, we summarize here some essential results and notation from El-Hawwary & [START_REF] El-Hawwary | Reduction theorems for stability of closed sets with application to backstepping control design[END_REF]. First, given a closed set S, an open neighborhood N (S) of S is an open set such that S ⊂ N (S). Given ε > 0, the ε ball around S is B ε (S) := {x | min y∈S yx < ε}. Then, denote by ϕ(t, x 0 ) the (unique) solution to the closed loop ( 16)-(17) starting at x(0) = (x p (0), x c (0)) = x 0 and evaluated at time t ∈ R ≥0 . The following are some basic stability definitions from El-Hawwary & Maggiore (2013), [START_REF] Maggiore | Reduction theorems for hybrid dynamical systems[END_REF].

Definition 1 (Set Stability and Attractivity) Given 3 a closed (not necessarily bounded) set Γ 1 , (i) Γ 1 is stable for (16)-( 17) if for each ε > 0 there exists a neighborhood N (Γ 1 ) of Γ 1 such that all solutions starting in N (Γ 1 ) never leave B ε (Γ 1 ); (ii) Γ 1 is (locally) attractive for ( 16)-( 17) if there exists a neighborhood N (Γ 1 ) such that all solutions starting in N (Γ 1 ) converge to Γ 1 and it is globally attractive if all solutions converge to Γ 1 ; (iii) Γ 1 is (locally, respectively, globally) asymptotically stable for ( 16)-( 17) if it is stable and (locally, respectively, globally) attractive for ( 16)-( 17); (iv) given a closed set Γ 2 ⊃ Γ 1 , set Γ 1 is stable, (locally or globally) attractive or (locally or globally) asymptotically stable relative to Γ 2 , if the properties (i), (ii), (iii) above hold with initial conditions restricted to the set Γ 2 .

Given a compact set Γ 1 and a closed set Γ 2 ⊃ Γ 1 , the set Γ 2 is locally asymptotically stable near Γ 1 for ( 16)-( 17) if there exists r > 0 such that all solutions starting in B r (Γ 1 ) converge to Γ 2 (local attractivity near Γ 1 ) and the following property holds: (local stability near Γ 1 ) for each ε > 0, there exists δ > 0 such that for any t > 0, all solutions starting from

x 0 ∈ B δ (Γ 1 ) satisfy (ϕ(t, x 0 ) ∈ B r (Γ 1 ), ∀t ≤ t) ⇒ ϕ( t, x 0 ) ∈ B ε (Γ 2 ).
The reader is referred to El-Hawwary & Maggiore (2013), [START_REF] Maggiore | Reduction theorems for hybrid dynamical systems[END_REF] for further details about Definition 1, nonetheless we recall here that (local) asymptotic stability of Γ 2 implies (local) asymptotic stability of Γ 2 near Γ 1 for any Γ 1 ⊂ Γ 2 . The following result is the reduction theorem used in our proof, which is a corollary of Thm. 4.7 in [START_REF] Maggiore | Reduction theorems for hybrid dynamical systems[END_REF].

Proposition 2 Consider three closed sets Γ 1 ⊂ Γ 2 ⊂ Γ 3 with Γ 1 compact. If (i) Γ 1 is locally asymptotically stable for (16)-( 17) relative to Γ 2 and (ii) Γ 2 is locally asymptotically stable for (16)-( 17) near Γ 1 , relative to Γ 3 , then Γ 1 is locally asymptotically stable for (16)-( 17) relative to Γ 3 .

We also present below a formulation of the invariance principle corresponding to a corollary of Thm. 1

ω ω ω dd = 1 f [d * ] × R (q d ) (k 1 R(q)d * ξf + k 2 (e p , e v , f ∆ )e p + k 3 (e p , e v , f ∆ )e v + k 4 (e p , e v , f ∆ )f ∆ ) , where (33) 
k 1 = k 2 pd m 2 - k pp m , (34) 
k 2 (e p , e v , f ∆ ) = - k 2 pd k pp m 2 + k 2 pp m + κ(e p , e v , f ∆ ) k pd k pp m , (35) 
k 3 (e p , e v , f ∆ ) = - k 2 pd k pp m 2 + k 2 pp m + κ(e p , e v , f ∆ ) k pd k pp m , (36) 
k 4 (e p , e v , f ∆ ) = k 2 pd m 2 - k pp m + k pd k ∆ m + k 2 ∆ + κ(e p , e v , f ∆ ) k pd m + k ∆ , (37) 
κ(e p , e v , f ∆ ) = - 2 f d * R(q d ) k pd k pp m e p + k 2 pd m -k pp e v - k pd m + k ∆ f ∆ . ( 38 
)
in [START_REF] Seuret | A nonsmooth hybrid invariance principle applied to robust event-triggered design[END_REF] that will be useful in the proofs of Section 6.3. Proposition 3 Consider system ξ ξ ξ = f (ξ ξ ξ), ξ ξ ξ ∈ Ξ, where f is continuous and Ξ is a closed set, and a compact set A ⊂ Ξ. If there exists a scalar r > 0 and a continuously differentiable function V , positive definite w.r.t. A (namely zero in A and positive outside A), such that

V (ξ ξ ξ) := ∇V (ξ ξ ξ), f (ξ ξ ξ) ≤ 0, ∀ξ ξ ξ ∈ B r (A), (39) 
and such that no solution ϕ exists starting from ξ ξ ξ 0 ∈ B r (A) for which V (ϕ(t, ξ ξ ξ 0 )) = V (ξ ξ ξ 0 ) = 0, then A is locally asymptotically stable for ξ ξ ξ = f (ξ ξ ξ).

Proof. The proof is a direct consequence of [START_REF] Seuret | A nonsmooth hybrid invariance principle applied to robust event-triggered design[END_REF], Thm 1). Continuity of f and closedness of Ξ ensures that the dynamics satisfies the hybrid basic conditions of As. 6.5 in [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF] 

:= {ξ ξ ξ : V (ξ ξ ξ) ≤ µ} of V , with µ > 0, satisfying E µ ⊂ B r (A).

Error dynamics

We consider here the closed loop between plant dynamics ẋp = f p (x p , u), as defined at the end of Section 3 and controller dynamics ẋc = f c (x c , x p , p r ) through the expression of u in ( 22), introduced and discussed in Section 5. In particular, we select in this section suitable error coordinates enabling the stability proof carried out below in Section 6.3. We start by characterizing the dynamics of the orientation error variable q ∆ in (31) and of the associated angular velocity mismatch ω ω ω ∆ . As long as f = 0, so that ω d in ( 28) is well defined, we may write:

q∆ = 1 2 q ∆ • 0 ω ω ω ∆ , (40) 
J ω ω ω ∆ = -ω ω ω × Jω ω ω -J ω ω ω d + τ τ τ r = -k ap ∆ -k ad ω ω ω ∆ , (41) 
where we used (32) and the fact that ω ω ω d = ω ω ω dd , as proven in Appendix A. Moreover, to establish useful properties of the translational dynamics, we use the translational error vector e t := e p e v ∈ R 6 , introduced after (25), which well characterizes the deviation from the reference position p r and the reference linear velocity v r = 0 3 . Combining ( 14) with the definition of f ∆ given in (27) the dynamics of e t can be written as follows ėp = e v (42)

m ėv = -mge 3 + (R(q) -R(q d ))f c + f r + f ∆ . (43)
A last mismatch variable that needs to be characterized is the (scalar) controller state f . To this end, combining ( 14) with ( 23), we observe that the zero position error condition e p = 0 3 can only be reached if the state f , governed by (29), converges to mg. Nonetheless, instead of describing the error system in terms of the deviation fmg, we prefer to use the redundant set of coordinates f ∆ in ( 27) and the attitude q ∈ S 3 of the platform whose dynamics is described by ( 13). This choice of (error) variables is motivated by the following fact.

Fact 1 As long as f = 0, the dynamics of the forces mismatch f ∆ in (27) is given by

ḟ∆ = -k ∆ f ∆ . ( 44 
)
Proof. Using its definition in ( 27), the dynamics of the forces mismatch f ∆ in ( 27) is given by ḟ∆

= R(q d )d * ḟ + Ṙ(q d )d * f -ḟr (45) = ḟ∆,1 + ḟ∆,2 + ḟ∆,3 (46) 
with the following quantities being well defined because f = 0 and derived by using the selections of ω ω ω d , ḟ in ( 28), ( 29), the expression of f r in ( 25) and the relation

[[ 1 ] × 2 ] × = [ 1 ] × [ 2 ] × -[ 2 ] × [ 1 ] × = 2 1 -1 2 : ḟ∆,1 = R(q d )d * ḟ = (R(q d )d * ) (R(q d )d * ) ν ν ν (47) = R(q d )d * d * R(q d ) ν ν ν (48) ḟ∆,2 = Ṙ(q d )d * f = R(q d )[ω ω ω d ] × d * f (49) = -R(q d )[d * ] × [d * ] × R(q d ) ν ν ν (50) ḟ∆,3 = -ḟr = k pp ėp + k pd ėv (51) = k pp e v + k pd m (-k pp e p -k pd e v + f ∆ ) . ( 52 
)
Summing up the terms ( 48), ( 50) and ( 52), we get

ḟ∆ = ν ν ν - k pd k pp m e p - k 2 pd m -k pp e v + k pd m f ∆ , (53) 
and, finally, employing the definition of ν ν ν in (30), we obtain (44).

All the previously introduced error variables can be used to prove that the proposed control scheme solves Problem 1. To formalize this observation, rather than using coordinates (x p , x c ) = (p, q, v, ω ω ω, q d , f ) ∈ R 3 × S 3 × R 6 × S 3 × R, we consider the following equivalent coordinates for the error dynamics

z := (q ∆ , ω ω ω ∆ , f ∆ , e t , q) (54) ∈ Z := S 3 ×R 3 ×R 3 ×R 6 ×S 3 ⊆ R 20 .
The ensuing error dynamics ż = f z (z) is given by ( 40)-( 43), ( 44) and ( 13).

In the following, we restrict the attention to the next compact set (that results from the Cartesian product of compact sets)

Z 0 := z ∈ Z | q ∆ = q I , ω ω ω ∆ = 0, f ∆ = 0, e t = 0, R(q)d * = e 3 , ( 55 
)
capturing the requirements of Problem 1. In particular, if z approaches asymptotically Z 0 , then the desired position is asymptotically reached (e t = 0) with some constant orientation q ensuring that the selected zeromoment direction d * is correctly aligned with the steadystate action mge 3 , thus compensating for the gravity force. Before proceeding with the stability analysis, we establish a useful property of the compact set Z 0 .

Fact 2 There exists a scalar r > 0 such that the controller state f is (uniformly) bounded away from zero in the set B r (Z 0 ).

Proof. Since in Z 0 we have e t = 0 and f ∆ = 0, then from ( 27) it follows that d * f = mgR (q d )e 3 . Taking norms on both sides and due to the property of rotation matrices, it holds that |f | = mg > 0 in Z 0 . Continuity of f and compactness of Z 0 then implies the existence of r > 0 such that |f | > mg 2 in B r (Z 0 ). To prove this, assume by a contradiction that such an r > 0 does not exist. Then there exists a sequence of points arbitrarily close to Z 0 where |f | ≤ mg 2 and from these points we can extract a converging subsequence whose limit belongs to Z 0 and satisfies (by continuity) |f | ≤ mg 2 , which contradicts f = mg, thus completing the proof.

Proof of asymptotic stability

In this section we apply the reduction approach summarized in Section 6.1 to prove the following main result.

Theorem 1 Consider the closed-loop system in Figure 2 between plant (16) and controller (17). The compact set Z 0 in (55) is locally asymptotically stable for the corresponding dynamics. In particular, controller (17) is a solution to Problem 1.

The reduction-based proof is carried out by focusing on increasingly large nested sets, each of them characterized by a desirable behavior of certain components of the error dynamics state z in (54). These sets satisfy the inclusion Z 0 = Z q ⊂ Z f ⊂ Z a ⊂ Z with Z 0 and Z defined in ( 55) and ( 54), respectively, Z a being the subset of Z where the attitude mismatch (q ∆ , ω ω ω ∆ ) is null and Z f being the subset of Z a where the virtual input f r in ( 25) is the actual input of the translational dynamics (12), namely the force mismatch f ∆ is null. More precisely,

Z a := {z ∈ Z | q ∆ = q I , ω ω ω ∆ = 0} , (56) Z f := {z ∈ Z a | f ∆ = 0} , (57) Z q := z ∈ Z f | e t = 0 . ( 58 
)
We first establish that Z 0 coincides with Z q . Then we exploit the reduction approach of Proposition 2 to hierarchically enlarge the set of allowable initial conditions in a sequence of nested lemmas.

Lemma 3 Set Z 0 in (55) and set Z q in (58) coincide.

Proof. It is immediate to see that any point in Z 0 also belongs to Z q . Consider now any point in Z q . Since q ∆ = q I , then q d = q. Together with f ∆ = 0 and e t = 0, this implies from ( 25) and ( 27) that R(q)d * f = f r = mge 3 , namely |f | = mg and R(q)d * = e 3 thus proving that the point is also in Z 0 .

Lemma 4 Set Z 0 is locally asymptotically stable relative to Z f for the error dynamics.

Proof. By virtue of Lemma 3 we may equivalently prove local asymptotic stability of Z q . To this end, consider dynamics ( 42)-( 43) for initial conditions in Z f . Such dynamics corresponds to the situation of input f r acting directly on the translational component of the plant ( 14), which provides the following autonomous system:

ėp = e v , m ėv = -k pp e p -k pd e v . ( 59 
)
Consider the Lyapunov function candidate

V p := 1 2 me v e v + 1 2 k pp e p e p , (60) 
which is clearly positive definite (w.r.t. the origin) and whose derivative along (59) corresponds to

Vp = me v ėv + k pp e p ėp = e v (-k pp e p -k pd e v ) + k pp e p e v = -k pd e v 2 ,
which is negative semi-definite. Due to the left equation in ( 59), no solution (either from the zero one) can evolve with e v identically zero, therefore no solution keeps V p constant and nonzero, and local asymptotic stability of the origin for dynamics (59) follows from Proposition 3 applied with A = {0}. Since (59) coincides with the error dynamics ż = f z (z) restricted to Z f , and with the origin coinciding with Z q , the proof is completed.

Lemma 5 Set Z 0 is locally asymptotically stable, relative to Z a , for the error dynamics.

Proof. We prove the result by applying Proposition 2 with Γ 1 = Z 0 , Γ 2 = Z f and Γ 3 = Z a . In particular, hypothesis (i) of Proposition 2 is proven by Lemma 4. Hypothesis (ii) is proven next by showing that Z f is locally asymptotically stable for ( 16)-( 17) near Z 0 , relative to Z a . To this end, consider the derivative of f ∆ , along dynamics ( 42)-( 43) restricted to Z a (so that, using q ∆ = q I , we may use q = q d ) and close to Z 0 (so that, according to Fact 2 f is bounded away from zero).

From Fact 1, this corresponds to ḟ∆ = -k ∆ f ∆ in (44).

Then positivity of k ∆ establishes exponential stability of Z f near Z 0 for the dynamics restricted to Z a , using the Lyapunov function

V ∆ := f ∆ f ∆ .
Lemma 6 Set Z 0 is locally asymptotically stable, relative to Z, for the error dynamics, i.e., Theorem 1 holds.

Proof. Theorem 1 holds under the main statement of the lemma because Z is the overall state for the error dynamics. Therefore local asymptotic stability relative to Z coincides with local asymptotic stability. We prove the main statement of the lemma by applying Proposition 2 with Γ 1 = Z 0 , Γ 2 = Z a and Γ 3 = Z. In particular, hypothesis (i) of Proposition 2 is proven by Lemma 5. The proof is completed next by showing hypothesis (ii), namely that Z a is locally asymptotically stable for ( 16)-( 17) near Z 0 , relative to Z. To this end, we focus the attention on the states q ∆ and ω ω ω ∆ whose evolution near Z 0 (where f is bounded away from zero as established in Fact 2) is autonomous and has been computed in ( 40)-(41). To establish asymptotic stability of Z a it is enough to focus on the compact set A := {(q ∆ , ω ω ω ∆ ) ∈ S 3 × R 3 : q ∆ = q I , ω ω ω ∆ = 0} for ( 40)-( 41).

In particular, we apply Proposition 3 by defining the Lyapunov function candidate

V a := 2k ap (1 -η ∆ ) + 1 2 ω ω ω ∆ Jω ω ω ∆ , (61) 
which is positive definite w.r.t. A, due to the fact that |η ∆ | ≤ 1 because q ∆ ∈ S 3 by the definition of Z. The derivative of V a along ( 40), ( 41) turns out to be

Va = -2k ap η∆ + ω ω ω ∆ J ω ω ω ∆ (62) = k ap ω ω ω ∆ ∆ + ω ω ω ∆ (-k ap ∆ -k ad ω ω ω ∆ ) (63) = -k ad ω ω ω ∆ 2 . ( 64 
)
From standard Lyapunov-based attitude control (see, e.g., [START_REF] Mayhew | Robust global asymptotic attitude stabilization of a rigid body by quaternion-based hybrid feedback[END_REF]) the only solution to ( 40)-( 41) associated to a constant and nonzero V a is the constant solution starting at (q ∆ (0), ω ω ω ∆ (0)) = (-q I , 0), which is an equilibrium associated to a value of V a (-q I , 0) = 4k ap > 0. By continuity of V a there exists a small enough neighborhood satisfying the hypotheses of Proposition 3 and the proof is completed.

Remark 2 Our main result establishes local stability results rather than global ones. Two main obstructions motivate our local results. The first one arises from the fact that topological obstructions prevent a continuous feedback from inducing global robust stability properties in the attitude stabilization problem solved in Lemma 6 (where robustness is of the type commented in Remark 1). Alternative attitude stabilization solutions may be obtained following the hybrid approach proposed in [START_REF] Mayhew | Robust global asymptotic attitude stabilization of a rigid body by quaternion-based hybrid feedback[END_REF], among others. The second obstruction is related to the fact that, due to (28), our control law is not locally bounded when approaching the points in the state space where the controller state f is zero. While this is a well known and typical problem in UAV control, overcoming this limitation is less straightforward and could be addressed by following the hybrid approach in the recent work of [START_REF] Casau | Hybrid stabilization of linear systems with reverse polytopic input constraints[END_REF]. We emphasize here that both of the above limitations do not prevent large operating regions for our stabilizer: the attitude stabilization proof of Lemma 6 shows almost global results and the condition f = 0 is far from the typical operating conditions, due to the gravity action. The size of the operating region is well illustrated by the simulations carried out in Section 7 with large initial errors.

Remark 3 (Restricted Orientation Stabilization) It is possible to extend the proposed solution with an additional requirement of restricted stabilization of a given reference orientation q r ∈ S 3 , where 'restricted' refers to the fact that such an orientation should be tracked with a lower hierarchical priority as compared to the translational error stabilization. This extended goal is achieved by first introducing the attitude error q ∆ ∈ S 3 defined as

q ∆ := q -1 r • q d = η r η d + r d -η d r + η r d -[ r ] × d = η ∆ ∆ , (65) 
and then replacing the expression of ω ω ω d in (28) using an additional term:

ω ω ω d = 1 f [d * ] × R(q d ) ν ν ν + ω ω ω d , with (66) 
ω ω ω d = -k q d * d * ∆ , (67) 
where k q ∈ R + is a proportional gain. The projection d * d * in (67) ensures that [ω ω ω d ] × d * = 0, so that the equalities in (49) remain unchanged and Fact 1 remains valid. As a consequence, the proofs in Lemmas 3-6 are valid and Theorem 1 holds with (28) replaced by ( 67).

The appealing feature of using (66) instead of ( 28) is understood by looking at the Lyapunov-like function V ∆ = 2(1 + η ∆ ), which is lower bounded. Since solutions converge to Z 0 , where ν ν ν = 0 and ω ω ω d = ω ω ω d , using ( 26), ( 65), (66), restricting the attention to this set, we get

V ∆ = 2 η ∆ = ( ∆ ) ω ω ω d = -k q ( ∆ ) d * d * ∆ = -k q d * ∆ 2 ,
which, from lower boundedness of V ∆ , implies that d * ∆ converges to zero, namely the projection of the orientation error ∆ in the direction of d * is zero. This extension is well illustrated by our simuations of Section 7.

Simulation Results

The effectiveness of the proposed controller for solving Problem 1 is here validated by numerical simulations on the multi-rotor platform introduced in Ryll et al. the i-th motor-propeller combination, x Pi , y Pi ∈ S 2 determine its spinning plane, while z Pi ∈ S 2 identifies its spinning axis. As shown in Figure 3, O P1 . . . O P6 lie on the same plane where they are equally spaced on a circle, i.e., the considered multi-rotor is a star-shaped hexarotor. Formally, for i ∈ {1 . . . 6}, the position p i ∈ R 3 of O Pi in F B is given by

p i = q(γ i , e 3 ) • [0 0 0] • q(γ i , e 3 ) -1 , (68) 
where, adopting (2), q(γ i , e 3 ) ∈ S 3 is the unit quaternion associated to the rotation by γ i = (i -1)π/3 about e 3 , according to the axis-angle representation given in Section 2, and > 0 is the distance between O Pi and O B . Moreover, we assume that the orientation of each F Pi w.r.t. F B can be represented by the unit quaternion q i ∈ S 3 such that

q i = q(γ i , e 3 ) • q(β i , e 2 ) • q(α i , e 1 ), (69) 
where q(β i , e 2 ), q(α i , e 1 ) ∈ S 3 agree with the axisangle representation and the constant tilt angles α i , β i ∈ (-π 2 , π 2 ] uniquely define the direction of z Pi in F B . Indeed, the frame F Pi is obtained from F B by first rotating by α i about x-axis and then by β i around the resulting y-axis. In particular, these angles are chosen so that α i = -α i+1 and α i = π 6 for i = 1, 3, 5, while β i = π 18 for i = 1 . . . 6. Since the tilting is fixed, all angles α i and β i , i = 1, . . . , 6, are constant during the flight.

The described hexarotor, whose physical and aerodynamic parameters are summarized in Table 1, satisfies Assumption 1, and the associated matrix K in ( 22) is not simply the identity matrix. In particular, K can be chosen as the product between an orthogonal basis of the null space of F and its transpose (i.e., K = F( F) as in the proof of Lemma 1). The performed simulations use dynamics ( 12)-( 15) augmented with several unmodeled real-world effects, which should be well handled by the control scheme because of the robustness properties emphasized in Remark 1.

• The position and orientation feedback and their derivatives are affected by time delay t f = 0.012 s and Gaussian noise corrupts the measurements according to Table 2. The actual position and orientation are fed back with a lower sampling frequency of 100 Hz while the controller runs at 500 Hz. These properties are reflecting a typical motion capture system and an inertial measurement unit (IMU).

• The electronic speed controller (ESC) driving the motors is modeled by quantizing the desired input u via a 10 bit discretization in the feasible motor speed, thus resulting in a step size of ≈ 0.12 Hz. Additionally, the motor-propeller combination is modeled as a first order transfer function G(s) = (1 + 0.005s) -1 . The resulting signal is corrupted by a rotational velocity dependent Gaussian noise (see Table 2). This combination reproduces quite accurately the dynamic behavior of a common ESC motor-propeller combination, such as BL-Ctrl-2.0, by MikroKopter, Robbe ROXXY 2827-35 and a 10 inch rotor blade [START_REF] Franchi | Adaptive closed-loop speed control of BLDC motors with applications to multi-rotor aerial vehicles[END_REF].

To well illustrate the proposed control scheme, in the following we report the results of a simulation composed of three phases. The first phase ([0, 10]s) corresponds to the take off maneuver during which the platform is required to lift up from the ground starting from its initial position (the origin of the world frame). During the second phase ([10, 20]s), the control goal is to steer the vehicle to a new reference position without imposing any reference orientation. Finally, in the third phase ([20, 30]s), the platform stabilizes a specific orientation (according to the developments of Remark 3), while maintaining the achieved position.

To accomplish the described tasks sequence, two different preferential directions are imposed: in the first phase we select d * = e 3 since a vertical force is needed for the take off maneuver, in both the second and third phase, instead, the preferential direction is chosen so that the vehicle is required to hover with a tilting of π 18 w.r.t. the x-axis of the world frame (identified by the unit vector x W ∈ S 2 in Figure 3). This last scenario might occur, for instance, in environmental inspection applications wherein the employed aerial vehicle is equipped with a rigidly attached end effector [START_REF] Ollero | The AEROARMS project: Aerial robots with advanced manipulation capabilities for inspection and maintenance[END_REF]. The gains of the controller are chosen as k pp = 12, k pd = 8, k ap = 5, k ad = 2.5, k ∆ = 1.3 and k q = 0 for the first two phases, k q = 1 in the third one. These values induce desirable transients on the equivalent PD-like error dynamics. Furthermore, note that ω ω ω d accounts for the additional term ω ω ω d in (67) only when k q = 0, i.e., only during the third phase when a specific reference orientation is imposed.

The simulation results are depicted in Figure 4. The first and second plots report the position and orientation of the hexarotor, respectively, compared to their reference values. We emphasize that q r coincides with q d during phases 1 and 2, when a reference orientation is not imposed. The trend of the error variables q ∆ , ω ω ω ∆ , e p and e v is depicted in the subsequent four plots. The seventh plot reports the controller state f , compared to its equilibrium value mg (dashed). Finally, the last plot shows the control inputs commanded to the propellers. Note that we use the roll-pitch-yaw (RPY) angles (φ • , θ • , ψ • ) to represent the attitude to give a better insight of the vehicle attitude, however the internal computations are all carried out with unit quaternions.

During the take-off (first) phase, the hexarotor smoothly reaches the reference position in roughly 5 s, while maintaining a constant orientation. Note that take-off happens after almost 1 s from the beginning of the simulation because the controller state f (seventh plot) is initialized at 1 2 mg, and the equilibrium value mg needs to be reached to counteract the gravity force, thereby enabling take-off. In general it is advisable to initialize the controller state to q d (0) = q(0) and f (0) = mg, to minimize the transients, but we deliberately select large initial errors in our simulations to validate the closed-loop performance with non-ideal controller initializations. In the second phase, the selected zero-moment direction d * induces a rotation of the platform whose roll angle φ quickly sets to π 18 , as shown in the second plot. At the same time, the vehicle is required to track a new position by moving on the (xy)-plane of the world frame. The position error e p (shown in the fifth plot) converges to zero in roughly 5 s, similar to the first phase, since the controller gains are unchanged. From the third plot we also observe that the position and attitude errors converge with comparable transient time scales, a feature that is not allowed in two-loops control schemes requiring time-scale separation between position and attitude transients. Finally, one can notice that the second phase of the conducted simulation is also marked by a different distribution of the propellers command inputs. The two propellers whose CoMs lie on the rotation axis, namely rotors 1 and 4 in Figure 3, are, indeed, required to decrease their spinning rates. Nonetheless, at the steadystate, all the spinning rates belong to [60,110]Hz, which represents a feasible range of values from a technological point of view. Finally, in the third phase, the proposed controller, extended as in Remark 3, guarantees the stabilization of the vehicle to the given reference ori- entation (φ r , θ r , ψ r ) = π 18 , 0, π 4 , which coincides with a rotation about the preferential direction and justifies the fact that q ∆ = q -1 r • q converges to zero. Remarkably, this maneuver does not modify the steady-state propeller inputs. In our last simulation we illustrate the comments in Remark 2 by using the same position reference as in phase 2 of the previous simulation, but starting from large initial attitude errors, which also cause large position transients, due to the cascaded structure of the error dynamics. Figure 5 reports the RPY angles associated to the orientation error q ∆ , the position error e p , the controller state f and the spinning rate ω i of the platform propellers for multiple selections of the initial attitude. In particular, the initial angles (φ 0 , θ 0 , ψ 0 ) associated to q 0 = q(0) are chosen with ψ 0 = 0 and (φ 0 , θ 0 ) assuming multiple values (reported in the legend) in the set π 3 , 0, π 3 × -π 3 , 0, π 3 . In all of the considered cases both the position and orientation error converge to zero in less than 10 s with smooth transients. The large overshoots reveal that, as anticipated in Remark 2, the region of attraction associated to our local asymptotic stability proofs of Section 6 is rather large. In addition, we observe that the rotor commands are in the feasible spinning rate range in all the cases.

Conclusions

We addressed the hovering control task for a generic class of multi-rotor aerial vehicles (MAV) whose propellers are arbitrary in number and position/orientation. Adopting the quaternion attitude representation, we designed a state feedback nonlinear controller to stabilize the MAV at a reference position with an arbitrary but constant orientation. The proposed solution relies on some nonrestrictive assumptions on the control input matrices F and M that ensure the existence of a preferential direction in the feasible force space, along which the control force and the control moment are decoupled. Stability and asymptotic convergence of the tracking error have been rigorously proven through a cascaded-like proof exploiting nested sets and reduction theorems. The theoretical findings are confirmed by the numerical simulation results, supporting the test of the control scheme on a real platform in the near future.

A Proof of the identity ω ω ω d = ω ω ω dd

The identity ω ω ω d = ω ω ω dd stated in Section 5 is proven below using

[[ 1 ] × 2 ] × = [ 1 ] × [ 2 ] × -[ 2 ] × [ 1 ] × = 2 1 -1 2 .
The derivative of ω ω ω d in (28) results from the sum of three components, namely ω

ω ω d = ω ω ω d,1 + ω ω ω d,2 + ω ω ω d,3 with ω ω ω d,1 = - 1 f 2 [d * ] × R d ν ν ν ḟ (29) = - 1 f 2 [d * ] × R d ν ν νd * R d ν ν ν = - d * R d ν ν ν f 2 [d * ] × R d ν ν ν ω ω ω d,2 = 1 f [d * ] × Ṙ d ν ν ν = - 1 f [d * ] × [ω ω ω d ] × R d ν ν ν (28) = - 1 f 2 [d * ] × [d * ] × R d ν ν ν × R d ν ν ν = - d * R d ν ν ν f 2 [d * ] × R d ν ν ν
where R d stands for R (q d ). Thus, we get by introducing the gain κ(e p , e v , f ∆ ) ∈ R that, exploiting (30), results as in (38). The derivation of ω ω ω d,3 is instead reported in (A.3)-(A.7) where R d = R(q d ) and R = R(q) to simplify the notation.

Using (A.2) and (A.7), and setting k 1 , k 2 (e p , e v , f ∆ ), k 3 (e p , e v , f ∆ ) and k 4 (e p , e v , f ∆ ) as in ( 34)-( 37 

Fig. 1 .

 1 Fig. 1. Sample Generically Tilted Multi-Rotor having n = 6 CCW (gray) and CW (white) propellers, characterized by all parallel spinning axes.

  (2019) characterized by n = 6 tilted propellers with fixed tilting angles, all sharing the same geometric and aerodynamics features (i.e., w.r.t. (8), c fi = c f and c τi = c τ , i = 1 . . . 6). This is depicted in Figure3.To accurately describe the platform, we consider a local frame F Pi = {O Pi , (x Pi , y Pi , z Pi )} for each rotor i ∈ {1 . . . 6}. The origin O Pi coincides with the CoM of

Fig. 3 .

 3 Fig. 3. Star-shaped hexarotor with tilted propellers described in Section 7 -red/blue discs correspond to CW/CCW rotors.

  diag{[0.075 0.075 0.15]}kgm 2

  10 -4 m 1.4 × 10 -3 m/s 1.2 × 10 -3 2.7 × 10 -3 rad/s

Fig. 4 .

 4 Fig. 4. The three phases in Section 7: take off in [0, 10]s, hovering in [10, 20]s and orientation stabilization in [20, 30]s.

Fig. 5 .

 5 Fig. 5. Second phase of the simulation of Figure 4 with different attitude initial conditions.

ω

  ω ω d,1 + ω ω ω d,2 = -2 f 2 d * R d ν ν ν [d * ] × R d ν ν ν, p , e v , f ∆ )[d * ] × R d ν ν ν, (A.2)

Table 1

 1 Physical and aerodynamic parameters of the hexarotor.

Table 2

 2 Standard deviation of the modeled sensor noise added to the corresponding physical quantities.

  ), it is straightforward to verify that ω ω ω d = ω ω ω dd .

	ω ω ω d,3 =	1 ξf	[d * ]×R d ν ν ν	(30) =	1 ξf	[d * ]×R (q d )	k pd kpp m	ėp +	k 2 pd m	-kpp ėv -	k pd m	+ k∆ ḟ∆	(A.3)
	(43) =	1 ξf	[d * ]×R d	k pd kpp m	ev -	k pd m	+ k∆ ḟ∆ +	k 2 pd m 2 -	kpp m	(-mge3 + (R -R d d * ξf + fr + f∆)	(A.4)
	=	1 ξf	[d * ]×R d	k pd kpp m	ev -	k pd m	+ k∆ ḟ∆ +	k 2 pd m 2 -	kpp m	(-mge3 + Rd * ξf + fr + f∆)	(A.5)
	(25) =	1 ξf	[d * ]×R d	k pd kpp m	ev -	k pd m	+ k∆ ḟ∆ +	k 2 pd m 2 -	kpp m	(Rd * ξf -kppep -k pd ev + f∆)	(A.6)
	(44) =	1 ξf	[d * ]×R d	k pd kpp m	ev +	k pd m	+ k∆ k∆f∆ +	k 2 pd m 2 -	kpp m	(Rd * ξf -kppep -k pd ev + f∆)	(A.7)
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This is strictly valid for standard star-shaped or H-shaped configurations, while for the Y-shaped case and other ones this idea can be easily generalized.
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Differently from[START_REF] Michieletto | Fundamental actuation properties of multi-rotors: forcemoment decoupling and fail-safe robustness[END_REF], no constraint is imposed here on the positivity of the control input vector.

Note that in El-Hawwary &[START_REF] El-Hawwary | Reduction theorems for stability of closed sets with application to backstepping control design[END_REF] forward invariance of Γ1 is assumed. However, as noted in the generalizations discussed in[START_REF] Maggiore | Reduction theorems for hybrid dynamical systems[END_REF], this assumption is not necessary. Moreover, the definition of stability near a set is slightly different from the one given in El-Hawwary & Maggiore (2013) and coincides with the (equivalent) formulation in[START_REF] Maggiore | Reduction theorems for hybrid dynamical systems[END_REF].Preprint version final version at https://www.journals.elsevier.com/automatica/ Accepted for Automatica, 2020
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