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Abstract

We consider the hovering control problem for a class of multi-rotor aerial platforms with generically oriented propellers,
characterized by intrinsically coupled translational and rotational dynamics. In doing this, we first discuss some assumptions
guaranteeing the rejection of generic disturbance torques while compensating for the gravity force. These assumptions are
translated into a geometric condition usually satisfied by both standard models and more general configurations. Then, we
propose a control strategy based on the identification of a zero-moment direction for the exerted force and a dynamic state
feedback linearization based on this preferential direction, which locally asymptotically stabilizes the platform to a static
hovering condition. Stability properties of the control law are rigorously proved through Lyapunov-based methods and reduction
theorems for the stability of nested sets. Asymptotic zeroing of the error dynamics and convergence to the static hovering
condition are then confirmed by simulation results on a star-shaped hexarotor model with tilted propellers.

Key words: UAVs, nonlinear feedback control, asymptotic stabilization, Lyapunov methods, hovering.

1 Introduction

In recent years, technological advances in miniaturized
sensors/actuators and optimized data processing have
lead to extensive use of small autonomous flying ve-
hicles within the academic, military, and commercial
contexts (Fuhrmann & Horowitz 2017, Shakhatreh et al.
2019, Tang & Kumar 2018). Thanks to their high ma-
neuverability and versatility, Unmanned Aerial Vehicles
(UAVs) are rapidly increasing in popularity, thus be-
coming a mature technology in several application fields
ranging from the classical visual sensing tasks (e.g.,
surveillance and aerial photography (Kim et al. 2018,
Motlagh et al. 2017)) to the recent environment explo-
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ration and physical interaction (e.g., search-and-rescue
operations, grasping and manipulation (Hayat et al.
2017, Loianno et al. 2018, Ollero et al. 2018, Ruggiero
et al. 2018, Spurnỳ et al. 2019)).

In most of these frameworks, the vehicle is required
to stably hover at a fixed position and many control
strategies exists for UAV, solving this hovering stabi-
lization goal. These controllers are generally linear so-
lutions based on proportional-derivative schemes or lin-
ear quadratic regulators, see, e.g., Alkhoori et al. (2017),
Liu et al. (2016), Sandiwan et al. (2017). Hovering non-
linear controllers are instead not equally popular and
mainly exploit feedback linearization (Antonello et al.
2018, Lotufo et al. 2016), sliding mode and backstepping
techniques (Abci et al. 2017, Chen et al. 2016) and/or
geometric approaches (Franchi et al. 2018, Invernizzi &
Lovera 2017).

Although less used, the effectiveness of nonlinear hov-
ering control schemes has been widely confirmed by ex-
perimental tests. For example, the performance of con-
trollers based on nested saturations, backstepping and
sliding modes has been experimentally evaluated in Car-
rillo et al. (2012) to stabilize the position of a quadrotor
w.r.t. a visual landmark on the ground. Similarly, in Choi
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& Ahn (2015) a quadrotor platform has been used to val-
idate the possibility of stably tracking a point through a
nonlinear control strategy that exploits a backstepping-
like feedback linearization method. Likewise, the exper-
imental results reported in Goodarzi & Lee (2017) con-
firm the performance of a geometric nonlinear controller
during the autonomous tracking of a Lissajous curve em-
ploying a small quadrotor.

An overview of feedback control laws for underactuated
UAVs is given in Hua et al. (2013), where the authors
claim that nonlinear controllers can also be endowed
with provable global stability and convergence proper-
ties, under some suitable assumptions. In this spirit, Lya-
punov theory has been exploited in Lee et al. (2010) to
prove the convergence of the proposed (nonlinear) track-
ing controller assuming bounded initial errors. The cor-
responding solution exploits a geometric approach on
the three-dimensional Special Euclidean manifold and
ensures almost global exponential convergence to zero of
the tracking error. A Lyapunov-based approach is used
also in Franchi et al. (2018) to verify the stability of a
pose controller for the class of laterally-bounded force
aerial vehicles, which includes both underactuated and
fully actuated systems with saturation.

In this context, the contribution of our work can be
summarized as follows. First, we account for a class of
multi-rotor aerial platforms having more complex dy-
namics than the standard quadrotors. More specifically,
we address the case where the propellers are in any
number (possibly larger than four) and their spinning
axes are generically oriented (including the non-parallel
case). This entails the fact that the direction along which
the control force is exerted is not necessarily orthogonal
to the plane containing all the propellers centers 1 and
that the control moment is not completely independent
of the control force, as in the typical frameworks, see,
e.g., Lee et al. (2010). For such generic platforms, we
propose a nonlinear hovering control law that rests upon
the identification of a so-called zero-moment direction.
This concept, introduced in Michieletto et al. (2018),
Michieletto, Ryll & Franchi (2017), refers to a virtual di-
rection along which the intensity of the control force can
be freely assigned while retaining a zero control moment.
Our controller exploits a dynamic feedback linearization
scheme exploiting this preferential direction, which can
be generically oriented (contrarily to the state-of-the-art
multi-rotor controllers). Its implementation asymptoti-
cally stabilizes the platform to a given constant refer-
ence position, constraining its linear and angular veloci-
ties to be zero (static hover condition (Michieletto et al.
2018)). The proposed control strategy requires some al-
gebraic prerequisites on the control matrices that map

1 This is strictly valid for standard star-shaped or H-shaped
configurations, while for the Y-shaped case and other ones
this idea can be easily generalized.

the motors inputs to the vehicle control force and mo-
ment. These are fulfilled by the majority of quadrotor
models and result to be non-restrictive so that the de-
signed controller can be applied to both standard multi-
rotor platforms, whose propellers’ spinning axes are all
parallel, and more general ones. The local stability and
convergence properties of our control law are confirmed
by the numerical simulations and are rigorously proved
through a Lyapunov-based proof using reduction theo-
rems for the stability of nested sets. This work gener-
alizes and extends Michieletto, Cenedese, Zaccarian &
Franchi (2017). In particular, as compared to those pre-
liminary results, we state a more appealing version of
our basic assumptions, we extend our control goal in-
cluding a restricted orientation stabilization feature, we
provide proofs that were previously missing and we dis-
cuss new simulation tests better illustrating the benefits
of our solution.

The rest of the paper is organized as follows. Since we
use the unit quaternion representation of the attitude, in
Section 2 some basic notions on the related mathematics
are given. In Section 3 the dynamic model of a generic
multi-rotor UAV is derived, exploiting the Newton-Euler
approach. In Section 4 we state our main assumption
on the allowable propellers configuration providing a set
of necessary and sufficient conditions. Our control law
is described in Section 5 and its stability properties are
characterized in Section 6. The validity of our controller
is illustrated through numerical simulations in Section 7.
In Section 8 some conclusions are drawn and future re-
search directions are discussed.

2 Preliminaries and Notation

In this work, the unit quaternion formalism is adopted
to represent the UAV attitude, overcoming the singular-
ities that characterize Euler angles and simplifying the
equations w.r.t. the rotation matrices representation. To
provide a mathematical background for the model and
the controller described hereafter, the main properties of
unit quaternions are recalled in this section. The reader
is referred to Diebel (2006) and Kuipers (2002) for fur-
ther details.

A unit quaternion q is a hyper-complex number belong-
ing to the unit hypersphere S3 embedded in R4. This
is usually represented as a four dimensional vector hav-
ing unitary norm made up of a scalar part, η ∈ R,

and a vector part, εεε ∈ R3, so that q :=
[
η εεε>

]>
with

‖q‖2 = η2 + ‖εεε‖2 = 1. Each unit quaternion q corre-
sponds to a unique rotation matrix belonging to the Spe-
cial Orthogonal group SO(3) := {R ∈ R3×3 | R>R =
I3, det(R) = 1}. Formally, this is

R(q) = I3 + 2η[εεε]× + 2[εεε]2×

= I3 + 2η[εεε]× + 2(εεεεεε> − εεε>εεεI3), (1)
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where the operator [·]× denotes the map that asso-
ciates any non-zero vector in R3 to the related skew-
symmetric matrix in the special orthogonal Lie al-
gebra so(3). Thanks to (1), it can be verified that

R(q)>R(q) = R(qI) = I3 where qI := [1 0 0 0]
>

is the
identity (unit) quaternion.

The claimed relationship about the attitude representa-
tions is not bijective since each rotation matrix corre-
sponds to two unit quaternions. To explain this fact, it
is convenient to consider the following axis-angle repre-
sentation for a unit quaternion, i.e.,

q = q(δ,n) :=
[
cos
(
δ
2

)
sin
(
δ
2

)
n>
]>
, (2)

where n ∈ S2 is the rotation axis in R3 and δ ∈ (−π,+π]
is the rotation angle. Using this expression, it can be
verified that a rotation around −n of an angle −δ is
described by the same unit quaternion associated with
a rotation by δ about n, namely R(q) = R(−q), the
so-called double coverage property.

In quaternion-based algebra, compositions are per-
formed through the quaternions product, denoted here-
after by the symbol ◦. Specifically, given q1,q2, it holds
that R(q1)R(q2) = R(q3), where

q3 := q1 ◦ q2 = A(q1)q2 = B(q2)q1, with (3)

A(q) :=

[
η −εεε>
εεε ηI3 + [εεε]×

]
, B(q) :=

[
η −εεε>
εεε ηI3 − [εεε]×

]
. (4)

According to (3), the inverse of a quaternion q may be
chosen as q−1 = [η − εεε>]> ∈ S3. Given two 3D coor-
dinate systems Fx and Fy such that the unit quater-
nion q indicates the relative rotation from Fx to Fy,
for any vector wx ∈ R3 expressed in Fx the correspond-

ing vector wy ∈ R3 in Fy is computed as
[
0 w>y

]>
=

q◦ [0 w>x
]> ◦q−1. The time derivative of a unit quater-

nion q is given by

q̇ =
1

2
q ◦

[
0
ωωω

]
=

1

2
A(q)

[
0
ωωω

]
=

1

2

[
−εεε>

ηI3 + [εεε]×

]
ωωω, (5)

denoting by ωωω ∈ R3 the angular velocity of Fx w.r.t. Fy

expressed in Fx. Relation (5) should be replaced by

q̇ =
1

2

[
0
ωωω′

]
◦ q =

1

2
B(q)

[
0
ωωω′

]
=

1

2

[
−εεε>

ηI3 − [εεε]×

]
ωωω′, (6)

when the angular velocity is expressed in Fy, namely
ωωω′ = R(q)ωωω.

3 Dynamic Model and Problem Statement

Consider a generic aerial multi-rotor platform, composed
by a rigid body and n ≥ 4 propellers (with negligible

zW

yWxW

world frame
FW

zB

yB

xB

body frame
FB

zPj

fj
τ j

zPi

fi

τ i

τ c

fc

Fig. 1. Sample Generically Tilted Multi-Rotor having n = 6
CCW (gray) and CW (white) propellers, characterized by
all parallel spinning axes.

mass and moment of inertia w.r.t. the body inertial pa-
rameters), each one spinning about a generically ori-
ented axis. The relative axes orientations, jointly with
the number n of rotors, determines if the UAV is an
underactuated or a fully actuated system (Ryll et al.
2019). This class of vehicles (also known as Generically
Tilted Multi-Rotors) has been evaluated for the first time
in Michieletto, Ryll & Franchi (2017), nonetheless, we
investigate here the derivation of the dynamic model by
exploiting the unit quaternion formalism to represent
the attitude of the platform.

As reported in Figure 1, we consider the body frame
FB = {OB , (xB ,yB , zB)} attached to the UAV so that
its origin OB coincides with the center of mass (CoM)
of the vehicle. The pose of the platform in the inertial
world frame FW = {OW , (xW ,yW , zW )} is, thus, de-
scribed by pair (p,q) ∈ R3 × S3 where vector p ∈ R3

denotes the position of OB in FW and the unit quater-
nion q ∈ S3 represents the orientation of FB w.r.t. FW

(i.e., it corresponds to the relative rotation from body
to world frame, hence its inverse provides the coordi-
nates in body frame of a vector expressed in the world
frame). The orientation kinematics of the vehicle is gov-
erned by (5), where ωωω ∈ R3 represents the angular ve-
locity of FB w.r.t. FW , expressed in FB , whereas the
linear velocity of OB in FW is denoted by v = ṗ ∈ R3.

The i-th propeller, i ∈ {1 . . . n}, rotates with angular
velocity ωωωi ∈ R3 about its spinning axis, which passes
through the rotor center OPi . The position pi ∈ R3 of
OPi and the direction of ωωωi are assumed to be constant
in FB . The propeller angular velocity can thus be ex-
pressed as ωωωi := ωizPi where ωi ∈ R indicates the (con-
trollable) rotor spinning rate and zPi ∈ S2 is a unit vec-
tor parallel to the rotor spinning axis. While rotating,
each propeller exerts a thrust/lift force fi ∈ R3 and a
drag moment τττ i ∈ R3, both oriented along the direc-
tion defined by zPi

and exerted at OPi
. According to the

most commonly acknowledged model, these two quanti-
ties are related to the rotor rate ωi by way of

fi = σcfi |ωi|ωizPi
and τττ i = −c+τi |ωi|ωizPi

, (7)
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where cfi , c
+
τi > 0 and σ ∈ {−1, 1} are constant parame-

ters depending on the propeller shape. The propeller is of
counterclockwise (CCW) type if σ = 1 and of clockwise
(CW) type if σ = −1. The thrust of CCW propellers
has the same direction as the angular velocity vector,
whereas those are opposite for the CW case; the drag
moment, instead, is always oppositely oriented w.r.t. ωωωi.

Introducing ui := σ|ωi|ωi ∈ R and cτi := −σc+τi ∈ R,
relations (7) can be rewritten as

fi = cfiuizPi and τττ i = cτiuizPi . (8)

The sum of all the propeller forces coincides with the
control force fc ∈ R3 exerted at the platform CoM, while
the control moment τττ c ∈ R3 is the sum of the moment
contributions due to both the thrust forces and the drag
moments. These can be expressed in FB as

fc=
n∑
i=1

fi =
n∑
i=1

cfizPiui, (9)

τττ c=
n∑
i=1

(pi×fi + τττ i)=
n∑
i=1

(cfipi×zPi
+ cτizPi

)ui. (10)

Defining the control input vector u = [u1 . . . un]
> ∈ Rn,

(9) and (10) can be written compactly as

fc = Fu and τττ c = Mu, (11)

where F,M ∈ R3×n are the control force input matrix
and the control moment input matrix, respectively. Note
that, since cfi > 0 and c+τi > 0, none of the columns of
both F and M is a zero vector, and therefore we have
both 1 ≤ rk(F) ≤ 3 and 1 ≤ rk(M) ≤ 3 by construction.

Using the Newton-Euler approach and neglecting second
order effects (e.g., the propeller gyroscopic effects), the
dynamics of the multi-rotor vehicle is approximated by
the following set of equations


ṗ = v

q̇ =
1

2
q ◦

[
0
ωωω

]
mv̇ = −mge3 + R(q)Fu

Jω̇ωω = −ωωω × Jωωω + Mu

(12)

(13)

(14)

(15)

where m > 0 is the platform mass, g > 0 is the gravi-
tational constant, and ei ∈ R3 with i ∈ {1, 2, 3} is the
i-th column of the identity matrix in R3×3. The positive
definite constant matrix J ∈ R3×3 is the vehicle inertia
in FB . Model (12)-(15) describes a nonlinear plant

ẋp = fp(xp,u), (16)

whose state is xp := [p>q>v>ωωω>]> ∈ R3 × S3 × R6.

In this paper, we design a nonlinear control law to sta-
bilize in static hovering conditions the multi-rotor plat-
form (16) by solving the following problem.

Problem 1 Given the plant (16), corresponding to (12)-
(15), find a dynamic state feedback controller

ẋc = fc(xc,xp,pr), u = hc(xc,xp,pr) (17)

that, for any constant reference position pr∈R3, (locally)
asymptotically stabilizes position pr and some hovering
orientation. More precisely, the closed-loop system (16)-
(17) should be locally asymptotically stable to a suitable
compact set where p = pr, and v and ωωω are both zero,
while orientation q may be arbitrary but constant.

The arbitrariness of the orientation is fundamental for
the feasibility of Problem 1, which is in general solv-
able only if certain steady-state attitudes are realized by
the platform (static hoverability realizability Michieletto
et al. (2018)). As compared to Michieletto, Cenedese,
Zaccarian & Franchi (2017), in Section 4 we provide new
and more insightful sufficient conditions on matrices F
and M in (11) for solving Problem 1, which is a contri-
bution of this extension. Then, Section 5, presents the
dynamics of the proposed control scheme, represented in
Figure 2. This controller architecture is a contribution
of our preliminary work Michieletto, Cenedese, Zaccar-
ian & Franchi (2017). On the other hand, Section 6 pro-
vides additional contributions of this improved version:
first we provide a rigorous proof of local asymptotic sta-
bility of the error dynamics, by exploiting a hierarchical
structure and the reduction theorems presented in El-
Hawwary & Maggiore (2013); then, we propose an exten-
sion of the proposed control law, accounting also for the
restricted stabilization of a given constant orientation.

4 Zero-moment Preferential Direction

4.1 Main Assumption and Zero-moment Direction d∗

In order to attain a constant position and orientation
for the platform, the stabilizing controller must be able
to simultaneously reject moment disturbances in any di-
rection and counteract the gravity force. These require-
ments are satisfied under the next assumption on the
control input matrices F and M introduced in (11) and
on certain arbitrary bases of their kernels, namely

F̄ ∈ Rn×(n−rk(F)) such that Im(F̄) = ker(F), (18)

M̄ ∈ Rn×(n−rk(M)) such that Im(M̄) = ker(M). (19)

We emphasize that the properties of F, M, F̄ and M̄ dis-
cussed below are geometric properties of the subspaces
ker(F) and ker(M) and are satisfied (or not) indepen-
dently of the specific choices of F̄ and M̄ satisfying (18)-
(19). We also highlight that a necessary condition for
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Fig. 2. Block diagram of the closed-loop system with the proposed dynamic control strategy.

Assumption 1 to hold is that the UAV has at least 4 pro-
pellers. The proof of this fact is nontrivial and is given
in Corollary 1 in Section 4.2.

Assumption 1 With F̄ as in (18), rk(MF̄) = 3.

Assumption 1 implies rk(M) = 3 (matrix M has full row
rank), corresponding to the possibility of freely assigning
the control moment τττ c in (11). Moreover, the condition
rk(F) ≥ 1 discussed after (11) ensures that there exists
a zero moment direction generating a non-zero control
force, as established below. 2

Proposition 1 Under Assumption 1, there exists ū ∈
ker(M) such that ‖Fū‖ = 1

In view of Proposition 1, whose proof is postponed to
Section 4.2 to avoid breaking the flow of the exposition,
Assumption 1 enables a sufficient level of decoupling
between fc and τττ c in (11), thus ensuring the existence
of (at least) a direction where the intensity ‖fc‖ of the
control force can be arbitrarily assigned with the con-
trol moment τττ c equal to zero. Referring to the notation
in Michieletto et al. (2018), Assumption 1 is fulfilled for
uncoupled platforms (UC) having at least a decoupled
force direction (D1). Based on the quantity ū introduced
in Proposition 1, this zero-moment preferential direction
is defined as

d∗ := Fū ∈ Im(F) ∩ S2. (20)

We emphasize that Assumption 1 is more intuitive than
(although equivalent to) the convoluted algebraic prop-
erty introduced in our preliminary work Michieletto,
Cenedese, Zaccarian & Franchi (2017). More specif-
ically, we observe that Assumption 1 implies that
MF̄ is right-invertible, namely there exists a matrix
X ∈ R(n−rk(F))×3, whose dimensions depend on the
rank of F, such that MF̄X = I3. This corresponds to

2 Differently from Michieletto et al. (2018), no constraint is
imposed here on the positivity of the control input vector.

the property assumed in Michieletto, Cenedese, Zac-
carian & Franchi (2017) requiring the existence of a
generalized right pseudo-inverse of M, as stated next.

Lemma 1 Assumption 1 holds if and only if there exists
a matrix K ∈ Rn×n such that MKM> is invertible and
FM†

K = 0, where M†
K = KM>(MKM>)−1 ∈ Rn×3 is

the generalized right pseudo-inverse of M.

Proof. (⇒) We assume that rk(MF̄) = 3. Then, select-
ing K := F̄(F̄)> we obtain from the rank condition that
MKM> = MF̄(MF̄)> ∈ R3×3 is invertible. Moreover

FM†
K = 0 because FF̄ = 0.

(⇐) Proceeding ab absurdo, we assume that rk(MF̄) <
3 and that a matrix K exists satisfying the properties in
the statement of the lemma; for that matrix we have

FM†
K = 0, MM†

K = I. (21)

Consider now any nonzero τττ c /∈ Im(MF̄) (its existence is
guaranteed by the stated rank assumption) and denote

u := M†
Kτττ c. Then the left equation in (21) implies that

u ∈ ker(F), i.e., there exists w ∈ Rn such that u = F̄w.
Using the right equation in (21), through simple substi-

tutions, we get τττ c = MM†
Kτττ c = Mu = MF̄w, which

clearly contradicts the assumption that τττ c /∈ Im(MF̄),
leading to an absurd and completing the proof. �

4.2 Proof of Proposition 1

The following lemma, of independent interest, holds true
for any selection of the matrices in (18)-(19) and is useful
to the end of proving Proposition 1.

Lemma 2 The following are equivalent:

(i) rk(FM̄) ≥ 1;
(ii) ∃ū ∈ ker(M) such that ‖Fū‖ = 1.
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Proof. (i) ⇒ (ii). Since Im(M̄) = ker(M), one can al-
ways select a unit vector u? ∈ ker(M) as a linear combi-
nation of the columns of M̄ and the rank condition en-
sures that Fu? 6= 0. Choosing ū = u?/‖Fu?‖ completes
the proof.

(ii) ⇒ (i). Since ū ∈ ker(M) we may write ū = M̄a for
some a ∈ Rn−rk(M). Since 1 = ‖Fū‖ = ‖FM̄a‖, then it
follows that rk(FM̄) ≥ 1. �

We are now ready to prove Proposition 1.

Proof of Proposition 1. By virtue of Lemma 2 it is enough
to prove that Assumption 1 implies rk(FM̄) ≥ 1, which
is done next. Ab absurdo, we assume that rk(FM̄) =
0, i.e., the product FM̄ corresponds to the null ma-
trix. This implies ker(M) ⊆ ker(F), namely, ker(M) ∩
ker(F) = ker(M). We recall that for generic matrices A
and B of suitable dimensions it holds that rk(AB) =
dim(Im(AB)) = rk(B)− dim(ker(A) ∩ Im(B)) (Zhang
2011). Since rk(M) = 3 from Assumption 1, it follows
that

rk(MF̄) = rk(F̄)− dim
(
ker(M) ∩ Im(F̄)

)
= dim (ker(F))− dim (ker(M))

= n− rk(F)− (n− rk(M))

= 3− rk(F).

Under Assumption 1, this gives rk(F) = 0, which con-
tradicts the fact that F is non-zero by construction. �

A relatively interesting corollary of Lemma 2 is a rank
property for the overall input matrix [F>M>]> ∈ R6×n

which is not a priori assumed but is instead a conse-
quence of Assumption 1.

Corollary 1 Assumption 1 holds only if
(i) the UAV has n ≥ 4 propellers and
(ii) the control input matrices satisfy rk([F>M>]>) ≥ 4.

Proof. Since [F>M>]> has n columns, then (ii) ⇒ (i).
Hence we only need to prove that Assumption 1 im-
plies item (ii). Assumption 1 implies rk([F>M>]>) =
rk(M) + rk(F − FM†M) ≥ 3 (Tian 2004). Ab ab-
surdo, suppose that rk([F>M>]>) = 3, namely
rk(F − FM†M) = 0. Then F − FM†M = 0, but this
contradicts the statement of Proposition 1, thus con-
cluding the proof. �

5 Proposed Dynamic Controller

Based on Assumption 1 and its implications in Proposi-
tion 1, we propose here a dynamic controller where the
control input u is selected as

u = M†
Kτττ r + ūf, (22)

so that the reference moment τττ r ∈ R3 and force intensity
f ∈ R conveniently appear in expression (11). Indeed, by
Proposition 1 using the zero-moment direction in (20),
selection (22) implies,

fc = Fu = d∗f, (23)

τττ c = Mu = τττ r, (24)

which clearly reveals a favorable decoupling in the
wrench components. Taking advantage of this decou-
pling, we are interested in steering the platform toward
a desired orientation qd ∈ S3 such that the resulting
force R(qd)fc acting on the translational dynamics (14)
(in the direction of R(qd)d∗ because of (23)) coincides
with a desired stabilizing action selected here as a simple
PD + gravity compensation feedback function fr ∈ R3

corresponding to

fr := mge3 − kppep − kpdev, (25)

where ep = p − pr ∈ R3 and ev = v ∈ R3 are the
position error and the velocity error, respectively, while
kpp, kpd ∈ R+ are arbitrary (positive) scalar PD gains
governing the proportional and derivative actions of the
attitude transient. Rather than algebraically computing
qd, an auxiliary state can be introduced in the controller,
accounting for the evolution of qd in S3 through the
quaternion-based dynamics (5), namely

q̇d =
1

2
qd ◦

[
0
ωωωd

]
, (26)

where ωωωd ∈ R3 is an additional virtual input to be se-
lected so that the actual input to the translational dy-
namics (14) converges to the state feedback (25). In other
words, ωωωd should drive to zero the following mismatch,
motivated by (14) and (23),

f∆ := R(qd)fc − fr = R(qd)d∗f − fr. (27)

We will ensure that f∆ converges to zero by considering
the variable f in (22) as an additional scalar state of the
controller, and then imposing

ωωωd =
1

f
[d∗]×R(qd)

>ννν, (28)

ḟ = (R(qd)d∗)
>
ννν, (29)

where

ννν :=
kpdkpp
m

ep+

(
k2
pd

m
−kpp

)
ev−

(
kpd
m

+k∆

)
f∆, (30)

with k∆ ∈ R+ being an additional (positive) scalar gain.
Note that equation (28) requires f 6= 0 (this is guar-
anteed by the stated assumptions and will be formally
established in Fact 2 in Section 6.2).
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The scheme is completed by an appropriate selection of
τττ r in (22) ensuring that the attitude q tracks the de-
sired attitude qd. This task is easily realizable because
of Assumption 1, which guarantees full-authority con-
trol action on the rotational dynamics. To simplify the
exposition, we introduce the mismatch q∆ ∈ S3 between
the current and the desired orientation, namely

q∆ := q−1
d ◦q =

[
ηdη + εεε>d εεε

−ηεεεd + ηdεεε− [εεεd]×εεε

]
=

[
η∆

εεε∆

]
. (31)

Then moment τττ r in (22) entailing the convergence to
zero of this mismatch can be selected as

τττ r = −kapεεε∆ − kadωωω∆ +ωωω × Jωωω + Jωωωdd, (32)

where ωωω∆ = ωωω − ωωωd ∈ R3 is the angular velocity mis-
match and the PD gains kap ∈ R+ and kad ∈ R+ allow
to tune the proportional and derivative actions of the
attitude transient, respectively.

Note that a feedforward term appears in (32), compen-
sating for the quadratic terms in ωωω emerging in (15), in
addition to a correction term ωωωdd ∈ R3 ensuring forward
invariance of the set where q = qd and ωωω = ωωωd. The
expression of this term is reported in (33) at the top of
the page, and can be proved to be equal to ω̇ωωd along the
solutions (the proof is available in Appendix).

Equations (25)–(38) may be gathered in the dynamics
ẋc = fc(xc,xp,pr) of controller (17), represented by
the dashed blue block in Figure 2, whose state is xc =[
q>d f

]> ∈ S3 × R and whose inputs are the plant state
vector xp introduced at the end of Section 3, and the
reference position pr ∈ R3.

Remark 1 The feedback interconnection between (16)
and (17) provides a smooth vector field in the region
where f 6= 0, evolving in a closed set comprising Carte-
sian products of Euclidean spaces and S3. Due to these
regularity properties, the local asymptotic stability re-
sults reported in Section 6 enjoy a certain degree of ro-
bustness, whose details are reported in Goebel et al.
(2012)(Ch. 7), ensuring a graceful performance degra-
dation in the presence of unmodeled phenomena such as
sensor noise and actuator dynamics. These useful prop-
erties are numerically illustrated in Section 7. y

6 Stability Analysis

6.1 Reduction theorem and invariance principle

To suitably formalize and prove closed-loop stability,
we summarize here some essential results and notation
from El-Hawwary & Maggiore (2013). First, given a
closed set S, an open neighborhood N (S) of S is an open
set such that S ⊂ N (S). Given ε > 0, the ε ball around

S is Bε(S) := {x | miny∈S ‖y − x‖ < ε}. Then, denote
by ϕ(t,x0) the (unique) solution to the closed loop (16)-
(17) starting at x(0) = (xp(0),xc(0)) = x0 and evalu-
ated at time t ∈ R≥0. The following are some basic sta-
bility definitions from El-Hawwary & Maggiore (2013),
Maggiore et al. (2019).

Definition 1 (Set Stability and Attractivity) Given 3

a closed (not necessarily bounded) set Γ1,
(i) Γ1 is stable for (16)-(17) if for each ε > 0 there
exists a neighborhood N (Γ1) of Γ1 such that all solutions
starting in N (Γ1) never leave Bε(Γ1);
(ii) Γ1 is (locally) attractive for (16)-(17) if there exists
a neighborhood N (Γ1) such that all solutions starting in
N (Γ1) converge to Γ1 and it is globally attractive if all
solutions converge to Γ1;
(iii) Γ1 is (locally, respectively, globally) asymptotically
stable for (16)-(17) if it is stable and (locally, respectively,
globally) attractive for (16)-(17);
(iv) given a closed set Γ2 ⊃ Γ1, set Γ1 is stable, (locally or
globally) attractive or (locally or globally) asymptotically
stable relative to Γ2, if the properties (i), (ii), (iii) above
hold with initial conditions restricted to the set Γ2.

Given a compact set Γ1 and a closed set Γ2 ⊃ Γ1, the
set Γ2 is locally asymptotically stable near Γ1 for (16)-
(17) if there exists r > 0 such that all solutions starting
in Br(Γ1) converge to Γ2 (local attractivity near Γ1) and
the following property holds: (local stability near Γ1) for
each ε > 0, there exists δ > 0 such that for any t̄ > 0, all
solutions starting from x0 ∈ Bδ(Γ1) satisfy (ϕ(t,x0) ∈
Br(Γ1), ∀t ≤ t̄) ⇒ ϕ(t̄,x0) ∈ Bε(Γ2).

The reader is referred to El-Hawwary & Maggiore
(2013), Maggiore et al. (2019) for further details about
Definition 1, nonetheless we recall here that (local)
asymptotic stability of Γ2 implies (local) asymptotic
stability of Γ2 near Γ1 for any Γ1 ⊂ Γ2. The following
result is the reduction theorem used in our proof, which
is a corollary of Thm. 4.7 in Maggiore et al. (2019).

Proposition 2 Consider three closed sets Γ1 ⊂ Γ2 ⊂
Γ3 with Γ1 compact. If (i) Γ1 is locally asymptotically
stable for (16)-(17) relative to Γ2 and (ii) Γ2 is locally
asymptotically stable for (16)-(17) near Γ1, relative to
Γ3, then Γ1 is locally asymptotically stable for (16)-(17)
relative to Γ3.

We also present below a formulation of the invari-
ance principle corresponding to a corollary of Thm. 1

3 Note that in El-Hawwary & Maggiore (2013) forward in-
variance of Γ1 is assumed. However, as noted in the general-
izations discussed in Maggiore et al. (2019), this assumption
is not necessary. Moreover, the definition of stability near a
set is slightly different from the one given in El-Hawwary &
Maggiore (2013) and coincides with the (equivalent) formu-
lation in Maggiore et al. (2019).
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ωωωdd =
1

f
[d∗]×R>(qd) (k1R(q)d∗ξf + k2(ep, ev, f∆)ep + k3(ep, ev, f∆)ev + k4(ep, ev, f∆)f∆) , where (33)

k1 =
k2
pd

m2
− kpp

m
, (34)

k2(ep, ev, f∆) = −
(
k2
pdkpp

m2
+
k2
pp

m
+ κ(ep, ev, f∆)

kpdkpp
m

)
, (35)

k3(ep, ev, f∆) = −
(
k2
pdkpp

m2
+
k2
pp

m
+ κ(ep, ev, f∆)

kpdkpp
m

)
, (36)

k4(ep, ev, f∆) =
k2
pd

m2
− kpp

m
+
kpdk∆

m
+ k2

∆ + κ(ep, ev, f∆)

(
kpd
m

+ k∆

)
, (37)

κ(ep, ev, f∆) = − 2

f
d>∗ R(qd)

>

(
kpdkpp
m

ep +

(
k2
pd

m
− kpp

)
ev −

(
kpd
m

+ k∆

)
f∆

)
. (38)

in Seuret et al. (2019) that will be useful in the proofs
of Section 6.3.

Proposition 3 Consider system ξ̇ξξ = f(ξξξ), ξξξ ∈ Ξ, where
f is continuous and Ξ is a closed set, and a compact set
A ⊂ Ξ. If there exists a scalar r > 0 and a continu-
ously differentiable function V , positive definite w.r.t. A
(namely zero in A and positive outside A), such that

V̇ (ξξξ) := 〈∇V (ξξξ), f(ξξξ)〉 ≤ 0, ∀ξξξ ∈ Br(A), (39)

and such that no solution ϕ exists starting from ξξξ0 ∈
Br(A) for which V (ϕ(t, ξξξ0)) = V (ξξξ0) 6= 0, then A is

locally asymptotically stable for ξ̇ξξ = f(ξξξ).

Proof. The proof is a direct consequence of (Seuret et al.
2019, Thm 1). Continuity of f and closedness of Ξ ensures
that the dynamics satisfies the hybrid basic conditions
of As. 6.5 in Goebel et al. (2012). Since the dynamics
is only continuous-time (corresponding to D = ∅ and
G(ξ) = ∅ in Thm. 1 in Seuret et al. (2019) then only
(Seuret et al. 2019, eqn. (2)) needs to be checked, which
is guaranteed by (39) for a continuously differentiable
V . Finally, for a local version of Thm. 1 in Seuret et al.
(2019), radial unboundedness is not necessary and the
local proof follows exactly the same steps as Thm. 1
in Seuret et al. (2019) with all the bounds restricted to
a sublevel set Eµ := {ξξξ : V (ξξξ) ≤ µ} of V , with µ > 0,
satisfying Eµ ⊂ Br(A). �

6.2 Error dynamics

We consider here the closed loop between plant dynam-
ics ẋp = fp(xp,u), as defined at the end of Section 3
and controller dynamics ẋc = fc(xc,xp,pr) through the
expression of u in (22), introduced and discussed in Sec-
tion 5. In particular, we select in this section suitable er-
ror coordinates enabling the stability proof carried out

below in Section 6.3. We start by characterizing the dy-
namics of the orientation error variable q∆ in (31) and
of the associated angular velocity mismatch ωωω∆. As long
as f 6= 0, so that ωd in (28) is well defined, we may write:

q̇∆ =
1

2
q∆ ◦

[
0
ωωω∆

]
, (40)

Jω̇ωω∆ = −ωωω × Jωωω − Jω̇ωωd + τττ r = −kapεεε∆ − kadωωω∆, (41)

where we used (32) and the fact that ω̇ωωd = ωωωdd, as proven
in Appendix A. Moreover, to establish useful proper-
ties of the translational dynamics, we use the transla-

tional error vector et :=
[
e>p e>v

]> ∈ R6, introduced af-
ter (25), which well characterizes the deviation from the
reference position pr and the reference linear velocity
vr = 03. Combining (14) with the definition of f∆ given
in (27) the dynamics of et can be written as follows

ėp = ev (42)

mėv = −mge3 + (R(q)−R(qd))fc + fr + f∆. (43)

A last mismatch variable that needs to be characterized
is the (scalar) controller state f . To this end, combin-
ing (14) with (23), we observe that the zero position er-
ror condition ep = 03 can only be reached if the state f ,
governed by (29), converges to mg. Nonetheless, instead
of describing the error system in terms of the deviation
f − mg, we prefer to use the redundant set of coordi-
nates f∆ in (27) and the attitude q ∈ S3 of the platform
whose dynamics is described by (13). This choice of (er-
ror) variables is motivated by the following fact.

Fact 1 As long as f 6= 0, the dynamics of the forces
mismatch f∆ in (27) is given by

ḟ∆ = −k∆f∆. (44)

Proof. Using its definition in (27), the dynamics of the
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forces mismatch f∆ in (27) is given by

ḟ∆ = R(qd)d∗ḟ + Ṙ(qd)d∗f − ḟr (45)

= ḟ∆,1 + ḟ∆,2 + ḟ∆,3 (46)

with the following quantities being well defined because
f 6= 0 and derived by using the selections of ωωωd, ḟ
in (28), (29), the expression of fr in (25) and the relation
[[εεε1]×εεε2]× = [εεε1]×[εεε2]× − [εεε2]×[εεε1]× = εεε2εεε

>
1 − εεε1εεε>2 :

ḟ∆,1 = R(qd)d∗ḟ = (R(qd)d∗) (R(qd)d∗)
>
ννν (47)

= R(qd)d∗d
>
∗ R(qd)

>ννν (48)

ḟ∆,2 = Ṙ(qd)d∗f = R(qd)[ωωωd]×d∗f (49)

= −R(qd)[d∗]× [d∗]×R(qd)
>ννν (50)

ḟ∆,3 = −ḟr = kppėp + kpdėv (51)

= kppev +
kpd
m

(−kppep − kpdev + f∆) . (52)

Summing up the terms (48), (50) and (52), we get

ḟ∆ = ννν − kpdkpp
m

ep −
(
k2
pd

m
− kpp

)
ev +

kpd
m

f∆, (53)

and, finally, employing the definition of ννν in (30), we
obtain (44). �

All the previously introduced error variables can be used
to prove that the proposed control scheme solves Prob-
lem 1. To formalize this observation, rather than using
coordinates (xp,xc) = (p,q,v,ωωω,qd, f) ∈ R3 × S3 ×
R6 × S3 × R, we consider the following equivalent coor-
dinates for the error dynamics

z := (q∆,ωωω∆, f∆, et,q) (54)

∈ Z := S3×R3×R3×R6×S3 ⊆ R20.

The ensuing error dynamics ż = fz(z) is given by (40)-
(43), (44) and (13).

In the following, we restrict the attention to the next
compact set (that results from the Cartesian product of
compact sets)

Z0 :=
{
z ∈ Z | q∆ = qI ,ωωω∆ = 0, f∆ = 0, et = 0,

R(q)d∗ = e3

}
, (55)

capturing the requirements of Problem 1. In particu-
lar, if z approaches asymptotically Z0, then the desired
position is asymptotically reached (et = 0) with some
constant orientation q ensuring that the selected zero-
moment direction d∗ is correctly aligned with the steady-
state action mge3, thus compensating for the gravity
force. Before proceeding with the stability analysis, we
establish a useful property of the compact set Z0.

Fact 2 There exists a scalar r > 0 such that the con-
troller state f is (uniformly) bounded away from zero in
the set Br(Z0).

Proof. Since in Z0 we have et = 0 and f∆ = 0, then
from (27) it follows that d∗f = mgR>(qd)e3. Taking
norms on both sides and due to the property of rotation
matrices, it holds that |f | = mg > 0 in Z0. Continuity
of f and compactness of Z0 then implies the existence
of r > 0 such that |f | > mg

2 in Br(Z0). To prove this,
assume by a contradiction that such an r > 0 does not
exist. Then there exists a sequence of points arbitrarily
close to Z0 where |f | ≤ mg

2 and from these points we can
extract a converging subsequence whose limit belongs to
Z0 and satisfies (by continuity) |f | ≤ mg

2 , which contra-
dicts f = mg, thus completing the proof. �

6.3 Proof of asymptotic stability

In this section we apply the reduction approach summa-
rized in Section 6.1 to prove the following main result.

Theorem 1 Consider the closed-loop system in Figure 2
between plant (16) and controller (17). The compact set
Z0 in (55) is locally asymptotically stable for the cor-
responding dynamics. In particular, controller (17) is a
solution to Problem 1.

The reduction-based proof is carried out by focusing on
increasingly large nested sets, each of them character-
ized by a desirable behavior of certain components of the
error dynamics state z in (54). These sets satisfy the in-
clusion Z0 = Zq ⊂ Zf ⊂ Za ⊂ Z with Z0 and Z defined
in (55) and (54), respectively, Za being the subset of Z
where the attitude mismatch (q∆,ωωω∆) is null and Zf
being the subset of Za where the virtual input fr in (25)
is the actual input of the translational dynamics (12),
namely the force mismatch f∆ is null. More precisely,

Za := {z ∈ Z | q∆ = qI , ωωω∆ = 0} , (56)

Zf := {z ∈ Za | f∆ = 0} , (57)

Zq :=
{
z ∈ Zf | et = 0

}
. (58)

We first establish that Z0 coincides with Zq. Then we
exploit the reduction approach of Proposition 2 to hier-
archically enlarge the set of allowable initial conditions
in a sequence of nested lemmas.

Lemma 3 Set Z0 in (55) and set Zq in (58) coincide.

Proof. It is immediate to see that any point in Z0 also
belongs toZq. Consider now any point inZq. Since q∆ =
qI , then qd = q. Together with f∆ = 0 and et = 0, this
implies from (25) and (27) that R(q)d∗f = fr = mge3,
namely |f | = mg and R(q)d∗ = e3 thus proving that
the point is also in Z0. �
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Lemma 4 SetZ0 is locally asymptotically stable relative
to Zf for the error dynamics.

Proof. By virtue of Lemma 3 we may equivalently prove
local asymptotic stability of Zq. To this end, consider
dynamics (42)-(43) for initial conditions in Zf . Such dy-
namics corresponds to the situation of input fr acting di-
rectly on the translational component of the plant (14),
which provides the following autonomous system:

ėp = ev, mėv = −kppep − kpdev. (59)

Consider the Lyapunov function candidate

Vp :=
1

2
me>v ev +

1

2
kppe

>
p ep, (60)

which is clearly positive definite (w.r.t. the origin) and
whose derivative along (59) corresponds to

V̇p = me>v ėv + kppe
>
p ėp

= e>v (−kppep − kpdev) + kppe
>
p ev = −kpd‖ev‖2,

which is negative semi-definite. Due to the left equation
in (59), no solution (either from the zero one) can evolve
with ev identically zero, therefore no solution keeps Vp
constant and nonzero, and local asymptotic stability of
the origin for dynamics (59) follows from Proposition 3
applied with A = {0}. Since (59) coincides with the
error dynamics ż = fz(z) restricted to Zf , and with the
origin coinciding with Zq, the proof is completed. �

Lemma 5 Set Z0 is locally asymptotically stable, rela-
tive to Za, for the error dynamics.

Proof. We prove the result by applying Proposition 2
with Γ1 = Z0, Γ2 = Zf and Γ3 = Za. In particular,
hypothesis (i) of Proposition 2 is proven by Lemma 4.
Hypothesis (ii) is proven next by showing that Zf is
locally asymptotically stable for (16)-(17) near Z0, rel-
ative to Za. To this end, consider the derivative of f∆,
along dynamics (42)-(43) restricted to Za (so that, us-
ing q∆ = qI , we may use q = qd) and close to Z0 (so
that, according to Fact 2 f is bounded away from zero).

From Fact 1, this corresponds to ḟ∆ = −k∆f∆ in (44).
Then positivity of k∆ establishes exponential stability
of Zf near Z0 for the dynamics restricted to Za, using
the Lyapunov function V∆ := f>∆ f∆. �

Lemma 6 Set Z0 is locally asymptotically stable, rela-
tive to Z, for the error dynamics, i.e., Theorem 1 holds.

Proof. Theorem 1 holds under the main statement of
the lemma because Z is the overall state for the error
dynamics. Therefore local asymptotic stability relative
to Z coincides with local asymptotic stability.
We prove the main statement of the lemma by applying

Proposition 2 with Γ1 = Z0, Γ2 = Za and Γ3 = Z.
In particular, hypothesis (i) of Proposition 2 is proven
by Lemma 5. The proof is completed next by showing
hypothesis (ii), namely that Za is locally asymptotically
stable for (16)-(17) near Z0, relative to Z. To this end,
we focus the attention on the states q∆ and ωωω∆ whose
evolution near Z0 (where f is bounded away from zero
as established in Fact 2) is autonomous and has been
computed in (40)-(41). To establish asymptotic stability
of Za it is enough to focus on the compact set A :=
{(q∆,ωωω∆) ∈ S3 × R3 : q∆ = qI ,ωωω∆ = 0} for (40)-(41).
In particular, we apply Proposition 3 by defining the
Lyapunov function candidate

Va := 2kap(1− η∆) +
1

2
ωωω>∆Jωωω∆, (61)

which is positive definite w.r.t. A, due to the fact that
|η∆| ≤ 1 because q∆ ∈ S3 by the definition of Z. The
derivative of Va along (40), (41) turns out to be

V̇a = −2kapη̇∆ +ωωω>∆Jω̇ωω∆ (62)

= kapωωω
>
∆εεε∆ +ωωω>∆(−kapεεε∆ − kadωωω∆) (63)

= −kad‖ωωω∆‖2. (64)

From standard Lyapunov-based attitude control (see,
e.g., Mayhew et al. (2009)) the only solution to (40)-(41)
associated to a constant and nonzero Va is the constant
solution starting at (q∆(0),ωωω∆(0)) = (−qI ,0), which
is an equilibrium associated to a value of Va(−qI ,0) =
4kap > 0. By continuity of Va there exists a small enough
neighborhood satisfying the hypotheses of Proposition 3
and the proof is completed. �

Remark 2 Our main result establishes local stability
results rather than global ones. Two main obstructions
motivate our local results. The first one arises from the
fact that topological obstructions prevent a continuous
feedback from inducing global robust stability prop-
erties in the attitude stabilization problem solved in
Lemma 6 (where robustness is of the type commented in
Remark 1). Alternative attitude stabilization solutions
may be obtained following the hybrid approach pro-
posed in Mayhew et al. (2009), among others. The sec-
ond obstruction is related to the fact that, due to (28),
our control law is not locally bounded when approach-
ing the points in the state space where the controller
state f is zero. While this is a well known and typical
problem in UAV control, overcoming this limitation is
less straightforward and could be addressed by following
the hybrid approach in the recent work of Casau et al.
(2017). We emphasize here that both of the above lim-
itations do not prevent large operating regions for our
stabilizer: the attitude stabilization proof of Lemma 6
shows almost global results and the condition f = 0 is
far from the typical operating conditions, due to the
gravity action. The size of the operating region is well
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illustrated by the simulations carried out in Section 7
with large initial errors. y

Remark 3 (Restricted Orientation Stabilization) It is
possible to extend the proposed solution with an addi-
tional requirement of restricted stabilization of a given
reference orientation qr ∈ S3, where ‘restricted’ refers to
the fact that such an orientation should be tracked with
a lower hierarchical priority as compared to the transla-
tional error stabilization. This extended goal is achieved
by first introducing the attitude error q′∆ ∈ S3 defined
as

q′∆ :=q−1
r ◦ qd=

[
ηrηd + εεε>r εεεd

−ηdεεεr + ηrεεεd − [εεεr]×εεεd

]
=

[
η′∆
εεε′∆

]
, (65)

and then replacing the expression of ωωωd in (28) using an
additional term:

ωωωd =
1

f
[d∗]×R(qd)

>ννν +ωωω′d, with (66)

ωωω′d = −kqd∗d>∗ εεε′∆, (67)

where kq ∈ R+ is a proportional gain. The projection
d∗d

>
∗ in (67) ensures that [ωωω′d]×d∗ = 0, so that the

equalities in (49) remain unchanged and Fact 1 remains
valid. As a consequence, the proofs in Lemmas 3–6 are
valid and Theorem 1 holds with (28) replaced by (67).

The appealing feature of using (66) instead of (28) is
understood by looking at the Lyapunov-like function
V ′∆ = 2(1+η′∆), which is lower bounded. Since solutions
converge to Z0, where ννν = 0 and ωωωd = ωωω′d, using (26),
(65), (66), restricting the attention to this set, we get

V̇ ′∆ = 2η̇′∆ = (εεε′∆)>ωωωd

= −kq(εεε′∆)>d∗d
>
∗ εεε
′
∆ = −kq‖d>∗ εεε′∆‖2,

which, from lower boundedness of V ′∆, implies that d>∗ εεε
′
∆

converges to zero, namely the projection of the orienta-
tion error εεε′∆ in the direction of d∗ is zero. This extension
is well illustrated by our simuations of Section 7. y

7 Simulation Results

The effectiveness of the proposed controller for solving
Problem 1 is here validated by numerical simulations on
the multi-rotor platform introduced in Ryll et al. (2019)
characterized by n = 6 tilted propellers with fixed tilting
angles, all sharing the same geometric and aerodynamics
features (i.e., w.r.t. (8), cfi = cf and cτi = cτ , i =
1 . . . 6). This is depicted in Figure 3.

To accurately describe the platform, we consider a lo-
cal frame FPi = {OPi , (xPi ,yPi , zPi)} for each rotor
i ∈ {1 . . . 6}. The origin OPi coincides with the CoM of

Fig. 3. Star-shaped hexarotor with tilted propellers described
in Section 7 - red/blue discs correspond to CW/CCW rotors.

Table 1
Physical and aerodynamic parameters of the hexarotor.

cf cτ ` m J

10−5 N
Hz2

10−7 Nm
Hz2

0.5 m 1.5 kg diag{[0.075 0.075 0.15]}kgm2

the i-th motor-propeller combination, xPi
,yPi

∈ S2 de-
termine its spinning plane, while zPi ∈ S2 identifies its
spinning axis. As shown in Figure 3, OP1 . . . OP6 lie on
the same plane where they are equally spaced on a circle,
i.e., the considered multi-rotor is a star-shaped hexaro-
tor. Formally, for i ∈ {1 . . . 6}, the position pi ∈ R3 of
OPi

in FB is given by

pi = q(γi, e3) ◦ [0 ` 0 0]
> ◦ q(γi, e3)−1, (68)

where, adopting (2), q(γi, e3) ∈ S3 is the unit quaternion
associated to the rotation by γi = (i − 1)π/3 about
e3, according to the axis-angle representation given in
Section 2, and ` > 0 is the distance between OPi

and
OB . Moreover, we assume that the orientation of each
FPi

w.r.t. FB can be represented by the unit quaternion
qi ∈ S3 such that

qi = q(γi, e3) ◦ q(βi, e2) ◦ q(αi, e1), (69)

where q(βi, e2), q(αi, e1) ∈ S3 agree with the axis-
angle representation and the constant tilt angles
αi, βi∈ (−π2 , π2 ] uniquely define the direction of zPi

in
FB . Indeed, the frame FPi is obtained from FB by first
rotating by αi about x-axis and then by βi around the
resulting y-axis. In particular, these angles are chosen
so that αi = −αi+1 and αi = π

6 for i = 1, 3, 5, while
βi = π

18 for i = 1 . . . 6. Since the tilting is fixed, all angles
αi and βi, i = 1, . . . , 6, are constant during the flight.

The described hexarotor, whose physical and aerody-
namic parameters are summarized in Table 1, satisfies
Assumption 1, and the associated matrix K in (22) is
not simply the identity matrix. In particular, K can be
chosen as the product between an orthogonal basis of
the null space of F and its transpose (i.e., K = F̄(F̄)>

as in the proof of Lemma 1).
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Table 2
Standard deviation of the modeled sensor noise added to the
corresponding physical quantities.

p v q ωωω

6.4× 10−4 m 1.4× 10−3 m/s 1.2× 10−3 2.7× 10−3 rad/s

The performed simulations use dynamics (12)-(15) aug-
mented with several unmodeled real-world effects, which
should be well handled by the control scheme because of
the robustness properties emphasized in Remark 1.

• The position and orientation feedback and their
derivatives are affected by time delay tf = 0.012 s
and Gaussian noise corrupts the measurements ac-
cording to Table 2. The actual position and orien-
tation are fed back with a lower sampling frequency
of 100 Hz while the controller runs at 500 Hz. These
properties are reflecting a typical motion capture
system and an inertial measurement unit (IMU).

• The electronic speed controller (ESC) driving
the motors is modeled by quantizing the desired
input u via a 10 bit discretization in the feasi-
ble motor speed, thus resulting in a step size of
≈ 0.12 Hz. Additionally, the motor-propeller com-
bination is modeled as a first order transfer func-
tion

(
G(s) = (1 + 0.005s)−1

)
. The resulting signal

is corrupted by a rotational velocity dependent
Gaussian noise (see Table 2). This combination re-
produces quite accurately the dynamic behavior of
a common ESC motor-propeller combination, such
as BL-Ctrl-2.0, by MikroKopter, Robbe ROXXY
2827-35 and a 10 inch rotor blade Franchi & Mallet
(2017).

To well illustrate the proposed control scheme, in the fol-
lowing we report the results of a simulation composed of
three phases. The first phase ([0, 10]s) corresponds to the
take off maneuver during which the platform is required
to lift up from the ground starting from its initial posi-
tion (the origin of the world frame). During the second
phase ([10, 20]s), the control goal is to steer the vehicle
to a new reference position without imposing any refer-
ence orientation. Finally, in the third phase ([20, 30]s),
the platform stabilizes a specific orientation (according
to the developments of Remark 3), while maintaining
the achieved position.

To accomplish the described tasks sequence, two differ-
ent preferential directions are imposed: in the first phase
we select d∗ = e3 since a vertical force is needed for the
take off maneuver, in both the second and third phase,
instead, the preferential direction is chosen so that the
vehicle is required to hover with a tilting of π

18 w.r.t. the
x-axis of the world frame (identified by the unit vector
xW ∈ S2 in Figure 3). This last scenario might occur,
for instance, in environmental inspection applications
wherein the employed aerial vehicle is equipped with a
rigidly attached end effector Ollero et al. (2018). The

gains of the controller are chosen as kpp = 12, kpd = 8,
kap = 5, kad = 2.5, k∆ = 1.3 and kq = 0 for the first
two phases, kq = 1 in the third one. These values induce
desirable transients on the equivalent PD-like error dy-
namics. Furthermore, note that ωωωd accounts for the ad-
ditional term ωωω′d in (67) only when kq 6= 0, i.e., only dur-
ing the third phase when a specific reference orientation
is imposed.

The simulation results are depicted in Figure 4. The first
and second plots report the position and orientation of
the hexarotor, respectively, compared to their reference
values. We emphasize that qr coincides with qd during
phases 1 and 2, when a reference orientation is not im-
posed. The trend of the error variables q∆, ωωω∆, ep and
ev is depicted in the subsequent four plots. The seventh
plot reports the controller state f , compared to its equi-
librium value mg (dashed). Finally, the last plot shows
the control inputs commanded to the propellers. Note
that we use the roll-pitch-yaw (RPY) angles (φ•, θ•, ψ•)
to represent the attitude to give a better insight of the
vehicle attitude, however the internal computations are
all carried out with unit quaternions.

During the take-off (first) phase, the hexarotor smoothly
reaches the reference position in roughly 5 s, while main-
taining a constant orientation. Note that take-off hap-
pens after almost 1 s from the beginning of the simula-
tion because the controller state f (seventh plot) is ini-
tialized at 1

2mg, and the equilibrium value mg needs to
be reached to counteract the gravity force, thereby en-
abling take-off. In general it is advisable to initialize the
controller state to qd(0) = q(0) and f(0) = mg, to min-
imize the transients, but we deliberately select large ini-
tial errors in our simulations to validate the closed-loop
performance with non-ideal controller initializations. In
the second phase, the selected zero-moment direction d∗
induces a rotation of the platform whose roll angle φ
quickly sets to π

18 , as shown in the second plot. At the
same time, the vehicle is required to track a new posi-
tion by moving on the (xy)-plane of the world frame.
The position error ep (shown in the fifth plot) converges
to zero in roughly 5 s, similar to the first phase, since the
controller gains are unchanged. From the third plot we
also observe that the position and attitude errors con-
verge with comparable transient time scales, a feature
that is not allowed in two-loops control schemes requir-
ing time-scale separation between position and attitude
transients. Finally, one can notice that the second phase
of the conducted simulation is also marked by a different
distribution of the propellers command inputs. The two
propellers whose CoMs lie on the rotation axis, namely
rotors 1 and 4 in Figure 3, are, indeed, required to de-
crease their spinning rates. Nonetheless, at the steady-
state, all the spinning rates belong to [60, 110]Hz, which
represents a feasible range of values from a technolog-
ical point of view. Finally, in the third phase, the pro-
posed controller, extended as in Remark 3, guarantees
the stabilization of the vehicle to the given reference ori-
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Fig. 4. The three phases in Section 7: take off in [0, 10]s,
hovering in [10, 20]s and orientation stabilization in [20, 30]s.

entation (φr, θr, ψr) =
(
π
18 , 0,

π
4

)
, which coincides with

a rotation about the preferential direction and justifies
the fact that q∆ = q−1

r ◦ q converges to zero. Remark-
ably, this maneuver does not modify the steady-state
propeller inputs.

Fig. 5. Second phase of the simulation of Figure 4 with dif-
ferent attitude initial conditions.

In our last simulation we illustrate the comments in Re-
mark 2 by using the same position reference as in phase
2 of the previous simulation, but starting from large ini-
tial attitude errors, which also cause large position tran-
sients, due to the cascaded structure of the error dy-
namics. Figure 5 reports the RPY angles associated to
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the orientation error q∆, the position error ep, the con-
troller state f and the spinning rate ωi of the platform
propellers for multiple selections of the initial attitude.
In particular, the initial angles (φ0, θ0, ψ0) associated to
q0 = q(0) are chosen with ψ0 = 0 and (φ0, θ0) assum-
ing multiple values (reported in the legend) in the set{
−π3 , 0, π3

}
×
{
−π3 , 0, π3

}
. In all of the considered cases

both the position and orientation error converge to zero
in less than 10 s with smooth transients. The large over-
shoots reveal that, as anticipated in Remark 2, the re-
gion of attraction associated to our local asymptotic sta-
bility proofs of Section 6 is rather large. In addition,
we observe that the rotor commands are in the feasible
spinning rate range in all the cases.

8 Conclusions

We addressed the hovering control task for a generic class
of multi-rotor aerial vehicles (MAV) whose propellers are
arbitrary in number and position/orientation. Adopting
the quaternion attitude representation, we designed a
state feedback nonlinear controller to stabilize the MAV
at a reference position with an arbitrary but constant
orientation. The proposed solution relies on some non-
restrictive assumptions on the control input matrices F
and M that ensure the existence of a preferential direc-
tion in the feasible force space, along which the control
force and the control moment are decoupled. Stability
and asymptotic convergence of the tracking error have
been rigorously proven through a cascaded-like proof ex-
ploiting nested sets and reduction theorems. The theo-
retical findings are confirmed by the numerical simula-
tion results, supporting the test of the control scheme
on a real platform in the near future.

A Proof of the identity ω̇ωωd = ωωωdd

The identity ω̇ωωd = ωωωdd stated in Section 5 is proven below
using [[εεε1]×εεε2]× = [εεε1]×[εεε2]×− [εεε2]×[εεε1]× = εεε2εεε

>
1 −εεε1εεε>2 .

The derivative ofωωωd in (28) results from the sum of three
components, namely ω̇ωωd = ω̇ωωd,1 + ω̇ωωd,2 + ω̇ωωd,3 with

ω̇ωωd,1 = − 1

f2
[d∗]×R>d νννḟ

(29)
= − 1

f2
[d∗]×R>d νννd

>
∗ R>d ννν

= −
(
d>∗ R>d ννν

)
f2

[d∗]×R>d ννν

ω̇ωωd,2 =
1

f
[d∗]×Ṙ>d ννν = − 1

f
[d∗]×[ωωωd]×R>d ννν

(28)
= − 1

f2
[d∗]×

[
[d∗]×R>d ννν

]
×R>d ννν

= −
(
d>∗ R>d ννν

)
f2

[d∗]×R>d ννν

where R>d stands for R>(qd). Thus, we get

ω̇ωωd,1 + ω̇ωωd,2 = − 2

f2

(
d>∗ R>d ννν

)
[d∗]×R>d ννν, (A.1)

= − 1

f
κ(ep, ev, f∆)[d∗]×R>d ννν, (A.2)

by introducing the gain κ(ep, ev, f∆) ∈ R that, exploit-
ing (30), results as in (38). The derivation of ω̇ωωd,3 is in-
stead reported in (A.3)-(A.7) where Rd = R(qd) and
R = R(q) to simplify the notation.

Using (A.2) and (A.7), and setting k1, k2(ep, ev, f∆),
k3(ep, ev, f∆) and k4(ep, ev, f∆) as in (34)-(37), it is
straightforward to verify that ω̇ωωd = ωωωdd.
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