
HAL Id: hal-02545415
https://laas.hal.science/hal-02545415v1

Submitted on 10 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Autonomic Web Services Based on Different Adaptive
Quasi-Asynchronous Checkpointing Techniques

Mariano Vargas-Santiago, Luis Morales-Rosales, Raul Monroy, Saúl Eduardo
Pomares Hernández, Khalil Drira

To cite this version:
Mariano Vargas-Santiago, Luis Morales-Rosales, Raul Monroy, Saúl Eduardo Pomares Hernández,
Khalil Drira. Autonomic Web Services Based on Different Adaptive Quasi-Asynchronous Checkpoint-
ing Techniques. Applied Sciences, 2020, 10 (7), pp.2495. �10.3390/app10072495�. �hal-02545415�

https://laas.hal.science/hal-02545415v1
https://hal.archives-ouvertes.fr

Autonomic Web Services Based on Different Adaptive
Quasi-Asynchronous Checkpointing Techniques

Mariano Vargas-Santiago 1,† , Luis Morales-Rosales 2,*,† , Raul Monroy 1,† , Saul

Pomares-Hernandez 3,4,5,† and Khalil Drira 4,5,†

1 Tecnologico de Monterrey, School of Engineering and Science, Carretera al Lago de Guadalupe Km. 3.5,

Atizapán, Estado de México 52926, Mexico; mariano.v.santiago@tec.mx (M.V.-S.); raulm@itesm.mx (R.M.)
2 Faculty of Civil Engineering, CONACyT-Universidad Michoacana de San Nicolás de Hidalgo,

Morelia 58000, Mexico
3 Department of Computer Science, National Institute for Astrophysics, Optics and Electronic (INAOE) ,

Tonantzlintla 72840, Mexico; spomares@inaoep.mx
4 CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France; khalil@laas.fr
5 Université de Toulouse, LAAS, F-31400 Toulouse, France

* Correspondence: lamorales@conacyt.mx

† These authors contributed equally to this work.

Abstract: Companies, organizations and individuals use Web services to build complex business

functionalities. Web services must operate properly in the unreliable Internet infrastructure even in

the presence of failures. To increase system dependability, organizations, including service providers,

adapt their systems to the autonomic computing paradigm. Strategies can vary from having one to all

(S-CHOP, self-configuration, self-healing, self-optimization and self-protection) features. Regarding

self-healing, an almost identical tool is communication-induced checkpointing (CiC), a checkpoint

contains the state (heap, registers, stack, kernel state) for each process in the system. CiC is based on

quasi-synchronous checkpointing where processes take checkpoints relying of control information

piggybacked inside application messages; however, avoiding dangerous patterns such as Z-paths and

Z-cycles; in such a regard the system takes forced checkpoints and avoids inconsistent states. CiC,

unlike other tools, does not incur system performance, our proposal does not incur high overhead (as

results show), and it has the advantage of being scalable. As we have shown in a previous work, CiC

can be used to address dependability problems when dealing with Web services, as CiC mechanism

work in a distributed and efficient manner. Therefore, in this work we propose an adaptable and

dynamic generation of checkpoints to support fault tolerance. We present an alternative considering

Quality of Service (QoS) criteria, and the different impact applications have on it. We propose taking

checkpoints dynamically in case of failure or QoS degradation. Experimental results show that our

approach has significantly reduced the generation of checkpoints of various well-known tools in the

literature.

Keywords: autonomic computing; web services; autonomic systems; internet technologies;
checkpointing

1. Introduction

We find distributed systems everywhere (they are ubiquitous) and people use them in their

everyday life. Organizations and users benefit from distributed systems, for these kinds of systems

make it possible to complete tasks that otherwise could not be carried out by a single computer; people

all over the world can collaborate on projects for solving difficult tasks; organizations benefit one from

another through sharing resources and building large scale distributed systems; distributed systems

mailto:mariano.v.santiago@tec.mx
mailto:raulm@itesm.mx
mailto:spomares@inaoep.mx
mailto:es@inaoep.mx
mailto:khalil@laas.fr
mailto:lamorales@conacyt.mx

exploit the divide and conquer approach, if applicable, decomposing a task into smaller sub-tasks, and

sending them along several computers, for their execution [1–3].

Because distributed systems rely on a network for passing information to accomplish a task,

system communication mostly takes place over an unreliable Internet infrastructure. Distributed

systems are error prone, due to two main factors: first, their design, and, second, the communication

channels. Paraphrasing Leslie Lamport’s words: “You know you have a distributed system when the

crash of a computer you have never heard of stops you from getting any work done” [4].

Dependability is the most promising technique out of many to address the issue pointed out by

Lamport. Dependability is the ability of a system to provide services to its users, even under different

threats, such as malicious attacks and software/hardware bugs. System dependability addresses a

broad spectrum of characteristics, including system reliability, system availability and fault tolerance,

to mention a few [5]. In distributed computing, dependability is crucial, as organizations demand

more dependable computer systems, expecting components and applications to work even in the

occurrence failures.

There are three main strategies to improve the dependability of a distributed system: fault

avoidance, fault detection and diagnosis, and fault tolerance. We address fault tolerance, as in our

previous work [1], where a system recovers from different faults with minimum service interruption,

based on checkpointing. In this vein, it is now common that organizations want to improve the

dependability of distributed systems based in fault tolerance techniques. This technique relies on

rollback recovery, a technique that guarantees a system can continue providing services to users upon

failure occurrence. One open challenge for distributed computing is to offer fault tolerance techniques

to all computing devices, even those that are less powerful but still work in heterogeneous

environments; including mobile phones, IoT cameras, or any other small device that support service

requests from corporate enterprises through web services or any other application. True for hybrid

approaches that rely on autonomic computing and fault tolerance techniques addressing issues such

as minoring, detecting and system recovery [1,6,7].

Checkpointing provides fault tolerance to increase dependability in distributed systems and a

checkpointing implementation incurs low runtime overhead. The Communication induced

Checkpointing (CiC) technique achieves the aforementioned checkpointing characteristics relying on

rollback recovery [3,8,9]. To implement any checkpointing based technique a process has to save their

state, a so-called checkpoint, checkpointing regularly. Usually, processes record their checkpoints

individually during failure-free systems execution. After a failure the system has then the ability to

restart from the last saved checkpoint, reducing the amount of work to be re-executed by the system.

CiC’s main goal is to save consistent global snapshots (CGSs) [10,11], one from each process, so that

all checkpoints are free from dangerous checkpointing patterns (z-cycles and z-paths) [9,12,13].

Current mechanisms force the insertion of a checkpoint when anticipating the appearance of one such

dangerous pattern; nevertheless, as we will argue, not all forced checkpoints triggered are necessary

because saving useless information can lead to an excess of storage space, resource usage, and

computation; the lesser the number of forced checkpoints, the better.

Building upon our previous work [1] where we proposed autonomic Web services enhanced by a

quasi-asynchronous checkpointing mechanism, we merge autonomic computing and dependability

techniques such as fault tolerance. In this article, we follow the approach as mentioned earlier;

however, our main contribution is focused into present the first dynamic and adaptable generation of

forced checkpoints based on monitoring the system performance by considering non-functional

requirements. The goal is to dynamically adapt the generation of forced checkpoints through a diffuse

approach considering Quality of Services parameters associated with system performance measures.

Therefore, we only record useful system snapshots reducing the overhead and system overload. We

consider the probability of system failure and system degradation as key factors before checkpointing.

Specifically, we consider non-functional requirements, such as Quality of Service (QoS) parameters yet

implemented within the MAPE control loop of a web service; this enables us to reduce

the number of forced checkpoints further while maintaining system consistency. Detecting degradation

problems via monitoring QoS is carried out also in accordance with process or service requirements,

including Service Level Agreements (SLAs).

A summary of our contributions are as follows:

• A dynamic and adaptable generation of checkpoints, by considering the monitoring of system

performance through non-functional requirements and a fuzzy approach, allowing to reduce the

overhead and system overload.

• The design of an autonomic web services (MAPE) control loop that allows an easy implementation
of diverse checkpointing techniques.

• The adaptation of diverse checkpointing techniques to offer consistency (checkpoints free of

dangerous patterns such as zigzag paths and z-cycles) and non-functional requirements (system

evaluation for individual web services).

• A comparative study that shows the performance of different fault tolerance techniques that rely

on the most commonly used checkpointing techniques. We hypothesize that a fault tolerance

technique can be used under diverse applications and that by adopting one technique many more

can easily further be adapted for other computer-related areas.

Using web services as a black box containing all relative MAPE features, we implemented three

different checkpointing techniques, namely, Delayed Checkpointing Fully Informed (DCFI) credited

to Simon et al. [9], HMNR also called Fully Informed (FI) presented by Helary et al. [14], and Fully

Informed and Efficient (FINE) of Luo and Manivannan [15]. In order to detect a faulty component of a

system, we propose implementing the MAPE control loop individually by each web service; doing so

can lead to discarding useless checkpoints or to update the frequency these are taken. We evaluate web

services QoS, at runtime, using a fuzzy approach; in particular, we propose a fuzzy-consistency system

evaluation (FCSE) function, as previously reported in [1], we identify useless checkpoint concerning

QoS and system consistency. To the best of our knowledge, this is the first mechanism that combines a

fuzzy approach for system assessment purposes with CiC mechanisms. We used ChkSim [16] and

Jfuzzylogic http://jfuzzylogic.sourceforge.net/html/index.html, for simulation as both are compatible

with JAVA programming language. We show that our proposal is more efficient than current solutions.

To this end, we have compared our approach against three of the most efficient CiC based solutions,

reported in State-of-the-Art.

We organized the rest of the paper as follows. In Section 2, we give an overview of related work.

Then, in Section 3, we analyze the mathematical model for checkpointing and briefly introduce fuzzy

logic. In Section 4, we provide an analysis of the environment and the assumptions upon which our

solution builds, and present a case study. Next, we elaborate on the results that support our approach,

showing the feasibility, Section 5. Finally, conclusions drawn from this study appear in Section 7, along

with suggestions for further work.

2. Related Work

In this section, we provide some of the most efficient fault tolerance techniques that rely on

checkpointing. In our previous work, we list some of the work that merges autonomic computing and

checkpointing techniques (work that addresses some know fault tolerance techniques for Web services

and business processes) [1]. Besides, in [1], we ensure the dependability by merging CiC mechanisms

and autonomous computing. In [17], we implemented a fuzzy evaluation model into the MAPE loop

to measure system performance without degrading the system. In contrast, in this paper, we show

how to generate dynamically checkpoints with less overhead and system overload.

There exist many methods for checkpointing such as synchronous checkpointing, asynchronous

checkpointing and quasi-asynchronous checkpointing; we focus on quasi-asynchronous checkpointing.

A complete survey can be found in [3], where we give a new taxonomy for business processes that rely

on checkpointing mechanisms for both orchestration and choreography.

http://jfuzzylogic.sourceforge.net/html/index.html

i

^

State-of-the-Art literature classifies quasi-asynchronous checkpointing further into two different

communication induced and index-based protocols, which in turn implement a variant of Lamport’s

logical clock. For instance, the HMNR protocol [14], also called Fully Informed (FI) [18], called this way

because it bears specific information about the causal past of processes. New versions of the FI method

appear regularly in State-of-the-Art literature, proposing a more efficient strategy. For example, Tsai

introduces the LazyFI approach [19], which applies a lazy strategy to increment FI’s logical clocks.

Fully Informed and Efficient (FINE) is other FI variant, introduced by Luo and Manivannan [15,20].

In FINE authors establish a stronger checkpointing condition using the same control information

preserved by FI. An optimized version of FINE, called LazyFINE, applies a lazy strategy using the

work of Lou and Manivannan [21,22]. Finally, Simon et al. [9,12,23] propose another FI variant, which

addresses system scalability, aimed for large-scale systems. Simon et al. reduce the number of forced

checkpoints by delaying non-forced checkpoints.

Fault tolerance techniques relying on checkpointing protocols can apply a rollback recovery when

detecting system failure. However, using these techniques is known to have a high computational

cost (since more and more constraint resource devices need these techniques) new strategies must

evolve to meet these constraints. The comparison between checkpointing protocols is in terms of the

number of forced checkpoints; the lesser the number of forced checkpoints the better. Therefore, fault

tolerance techniques that rely on checkpointing must reduce the message overhead exchanged by each

process because failing to do so can require a large amount of storage space to store checkpoints [3,24].

Currently, there is not an optimal checkpointing protocol for all checkpoints and communication

patterns, regardless of how each mechanism triggers forced checkpoints [25].

3. Background and Definitions

3.1. System Model

Distributed systems have specific characteristics such as: communication between processes is

done by exchanging messages, time is not global for all processes, each process can have its own time,

and processes do not share a common memory. Processes can be one or more nodes, and processes

consist of a single thread or any number of threads (a process can be a computer, a service, a cell phone,

a video game console, etc.). In a distributed computation P = {P1, P2, . . . , Pn} represent a finite set of

processes; where communication channels can be unpredictable, presenting finite delays, however,

these channels are considered asynchronous and reliable. In a distributed system, there exist two types

of events internal and external.

An internal event reflects a change in the state of a process, for example, when checkpointing. A

checkpoint contains the state of a process such as heap, registers, stack, and the kernel state. We

denote Cx as checkpoints that contain the state of a process i and Ei denotes all checkpoints previously

taken. We consider external events, those that affect the state of the system globally,

for instance, send and delivery of messages, where m is a message; send(m) denotes the sending of m by

any process Pi ∈ P; and delivery(Pj, m) denotes the delivery of message m to another process Pj ∈ P,

where Pi ƒ= Pj. The set of messages M containing external events is given by the following expression:

Em = {send(m) : m ∈ M} ∪ {delivery(Pi, m) : m ∈ M ∧ Pi ∈ P}

where Em is the set of events associated with M. All set of events in the system, E, are:

E = Ei ∪ Em

Therefore, modeling of a distributed computation is done through a partially-ordered set E =

(E, →) where → and denotes Lamport’s happened-before relationship [26].

ĉheckpoints defined on E.

^

^

k

k

k k

3.2. Background

The Happened Before Relation (HBR) determines the causal precedence dependencies for a set of

events. HBR has a strict partial order (i.e., it is transitive, irreflexive and antisymmetric). Lamport

defined the HBR in the following way [26]:

Definition 1. HBR, denote by →, is defines the smallest relationship for a set of events E, established by three

rules, as follows:

1. Let a and b be events in the same process. Thus, if an event a occurs before b, then a → b.

2. If a stands for the event send(m), and b for the event delivery(Pi, m), then a → b.

3. If a → b and b → c, then a → c.

In practice, HBR is expensive, since it accounts for the precedence of every pair of events. We

mitigate expensiveness by introducing a stronger relationship; identifying and attaching the minimal

amount of control information per message to ensure causal ordering.

Immediate Dependency Relation (IDR). The IDR is expressed by ↓, and it is the transitive reduction

of the HBR. We define the IDR in the following way [27]:

Definition 2. Two events, a, b ∈ E, are related by the IDR, a ↓ b, if:

a ↓ b ⇔ [a → b ∧ ∀c ∈ E, ¬(a → c → b)]

Where E stands for a set of events.

Checkpoint and communication pattern (CCP): A CCP contains all information about processes local

checkpoints as well as their transitive messages, i.e., incoming and outgoing messages towards other

processes; the CCP has the following definition [28]:

Definition 3. A CCP is a pair (E, Ei)

where E is a partially-ordered set modelling a distributed computation and Ei is a set of local

Figure 1 illustrates a CCP and all associated checkpoints, intervals, and exchanged messages. For

example, checkpoint interval is illustrated as Ix , (x ƒ= 0) , representing that a checkpoint belongs to

process Pk. A checkpointing interval represents events that happened before another checkpoint in Pk,

from Cx−1 to Cx , (x ƒ= 0).

Figure 1. An example of a CCP, where mi ∈ M (i ∈ {1, . . . , 8}) represent messages; being M all

messages, and each Cx represents a process local checkpoint.

Pi P

Pi

Pj

3.3. How Consistent Global Snapshots (CGS) Are Build

There exist diverse ways to take checkpoints for a distributed system such as synchronous

checkpoint, asynchronous checkpointing and quasi-asynchronous checkpointing, where process take

checkpoints independently, and systems gain the ability to restart their computation after those

checkpoints. However, not all saved checkpoints guarantee to return to a consistent global snapshot

(CGS). Netzer and Xu [13] gave the following definition:

Definition 4. A CGS cannot contain any causally related checkpoints (see below); for any pair of checkpoints

Ci and Cj we have:

¬(Ci → Cj) ∧ ¬(Cj → Ci)

where → is now extended over checkpoints in a conventional manner.

CGS must avoid dangerous patterns as stipulated by Netzer and Xu a zigzag path or z-path)

generalizes the Happened-Before Relation (HBR) in the following way:

Definition 5. Let Pi, Pj ∈ P. There exists a z-path from Cx to Cy
j

if there are messages m1, m2, ..., ml ∈ M

such that:

1. m1 is sent by process Pi after Cx .

2. if some process Pr receives mk(1 ≤ k < l), then mk+1 is sent by Pr in the same or at a later checkpoint

interval (although mk+1 can be send before or after mk is received), and

3. Process Pj receives ml before Cy

Definition 6. A checkpoint Cx is in a zigzag cycle or z-cycle, if there is a z-path from Cx to itself.
i i

A z-path was defined by Helary et al. [14] in the following way:

Definition 7. A z-path [m1, ..., mq ∈ M] is a causal z-path if for each pair of consecutive messages mk and

mk+1, delivery(Pi, mk) → send(mk+1), with Pi ∈ P. Otherwise, it is a non-causal z-path.

Definition 8. A local checkpoint Cy z-depends on a local checkpoint Cx, denoted Cx z
Cy, if:

j

1. j = i and y > x, or

i i → j

2. there is a z-path from Cx to Cy
i j

3.4. Fuzzy Logic

Definition 9. Zadeh [29] gives the following definition: a set A, is defined as a membership function fA(x) that

maps the elements of a universe X to elements in the interval [0, 1] : fA(x) : X ›→ [0, 1] and represent a degree
of membership of x in A.

Meaning that the close fA(x) values to 1 implies a higher the degree of membership of x in A.

To represent the fuzzy set A consider a pair of values: each element x ∈ X having a degree of

membership to A.

A = {(x, fA(x))|x ∈ X}

Definition 10. Fuzzification converts a value or quantity to fuzzy quantity.

One of the most common fuzzifiers is the triangular function, next described:

• Triangular function: fA(x) = max[min(
 x − L

,
 R − x

), 0].

C − L R − C

L,C and R values delimit the fuzzy set A, where C is the most substantial input value to A.

Definition 11. Defuzzification converts a fuzzy quantity into a value or quantity.

Defuzzification is done by applying the weighted average method, using the next algebraic equation:

∑ fA(ac)(ac)

∑ fA(ac)

where ∑ denotes algebraic summation and ac is the centroid of each symmetric membership function.

3.4.1. A Brief Description of FIS

A fuzzy inference system uses fuzzy logic to model almost anything into an input space to an

output space. Using FIS, one can formalize human language into a simple mathematical model. FIS

consists of four modules, next described:

• Fuzzification module: This module transforms anything that is modelled by crisp numbers into a
membership function and transforms them into fuzzy sets using a fuzzification function.

• Knowledgebase: stores the rules that are given by experts in the form of if-then rules.

• Inference engine: makes inferences from the inputs and tries to simulate human reasoning by using
if-then rules

• Defuzzification module: this module gives as output a crisp value that can be easily interpreted by
humans or computers; it transforms membership functions into fuzzy sets.

The most known type of FIS are the Mamdani and the Sugeno [30].

• A Mamdani system gives as a result fuzzy outputs and inputs.

– If x is A and y is B then z is V

• A Sugeno system gives as outputs “crisp” values and takes fuzzy inputs from the inference engine.

– If x is A and y is B then z = f (x, y)

4. Dynamic Checkpointing for CiC Algorithms Based on Fuzzy Non-Functional Dependencies

4.1. Architecture

We propose a general architecture for distributed and heterogeneous environments, dependable

enough to warranty system fault tolerance upon failures, as illustrated in Figure 2. In a previous work,

we merged checkpointing mechanisms (CiC) with autonomic computing (MAPE control loop) [1]. In

this work, we add an evaluation mechanism for each transaction that takes place in the system, we

evaluate all Web services in play, allowing us to evaluate the overall QoS, as shown in Figure 2. By

evaluating individual QoS values for Web services we can decide to checkpoint or to discard

checkpoints depending on systems current behaviour. Our approach decreases the number of forced

checkpoints when the system is maintained in good or fair condition, thereby reducing the overhead

of the system.

Next, we give a small description for the MAPE control loop and we establish how to complement

it with this work. The Monitoring phase re-collects data from each of the processes for the system in play.

Monitoring initiates the petitions, sending and receiving process’s requests/responses. This stage also

computes QoS parameters such as response time, CPU and memory percentage usage. The Analysis

layer, in charge of detecting abnormal situations and decision making based on extracted information

from messages and logs, i.e., checks whether the behaviour of the system is normal, suffers any

abnormality or if it is in a faulty state. To predict the immediate future state of the system, artificial

intelligence and soft computing may be used, for example, based on autonomic computing [1] or

any other approach that supports predictions like Hidden Markov Model (HMM) [31], Bayesian

Networks [32,33] or Fuzzy Logic. The Analysis layer computes the overall QoS value at a given time,

using soft computing, during any Web service transaction. We found that using fuzzy logic for QoS

evaluation does not incur system degradation, as shown in the results section, i.e., it does not affect

its performance.

We consider the order of messages as well as their timing in communication events as these are

relevant for system consistency. Therefore, we extrapolate the principles of the communication-induced

checkpointing (CiC) mechanism to the Fault Tolerance layer. CiC does not only guarantee the order of

messages and consistency, but it also establishes uniformity when building consistent global

snapshots (CGSs).

Figure 2. General Architecture.

Distributed systems are dynamic; there exists competition for shared resources between diverse

parties, for instance, many clients requesting to buy a product from a web which in turn request

availability of the product to several service providers. Autonomic computing address such issues by

introducing the notion of an autonomic manager; the autonomic manager is in charge of taking

corresponding actions upon detecting anomalies in the system. The autonomic computing is proactive,

in it, there exists a knowledgebase that generates information about previous experiences from

monitored and managed elements. A fuzzy inference system can be used along with Managed Elements

for diagnosis and learning purposes; in autonomic computing monitored elements are known as

managed element. We represent non-functional requirements (QoS) as fuzzy variables. By monitoring

QoS, at runtime, we easily know the behaviour of individual Web services and also for Web services

compositions. Take for instance, Figure 3, for autonomic Web services, where Autonomic Managers

control and manage Web services.

Figure 3 shows the architecture for Autonomic Web Services. Web Services instances and the

underlying infrastructure are the managed elements. These managed elements are monitored and

controlled by Autonomic Mangers via touchpoint interfaces.

F
C
S

E

F
C
S

E

F
C
S

E

F
C
S

E

Diagnosis

Figure 3. Autonomic Web Service architecture.

The Autonomic Manager has the following functions:

• Monitoring: the monitoring module aims at detecting, at runtime, changes known as symptoms

for managed elements, for instance, when monitoring the Service Level Agreements (SLA) and

detecting deviations in response times.

• Analysis: to analyze module gives a diagnosis about the current state of the system, based on

monitored data, for instance, when QoS parameters overpass a certain threshold. We use FIS to

evaluate and give a diagnosis for Web services.

• The systems common Knowledgebase stores policies; these policies can change over time. The

policies define configurations for monitored components and there exists predefined policies. New

policies can appear when changes occur in the system; policies trigger corrective actions. Web

services base their autonomic behaviour in these rules to achieve self-management functions.

The autonomic computing establishes that systems have to learn and adapt to changes, we achieve

such behavior by relying on FIS. FIS mimics human reasoning by adapting to abrupt changes in the

system environment (changes that are usually not considered in the predefined policies). Therefore,

FIS complements the Autonomic Manager by achieving an efficient diagnosis for systems behavior as

it contemplates all its possibilities.

4.2. Dynamically Checkpointing Autonomic Web Services

On the one hand, the Fault Tolerance layer relies on the communication-induced checkpointing

(CiC) mechanism [1]. On the other hand, we propose QoS assessment and systems performance

evaluation for generating checkpoints dynamically, at any given time, thus obliterating the notion

that CiC mechanisms have high implementation cost. Web services performance can be known using

simple if-then rules, rules brought up by fuzzy logic. It is easy to evaluate a system and for it to adapt

by establishing a set of rules from relationships between inputs (monitored data) and outputs (systems

actual behaviour). We exploit QoS criteria by measuring systems non-functional requirements and

simulate under different workloads. Therefore, managing the QoS threshold implies the ability to

checkpoint, different CiC algorithms, in a dynamic manner.

Measuring QoS parameters associated with messages exchanged between different processes; we

propose a QoS temporal association. We define a fuzzy-consistency system between messages, we

know the actual systems performance; we compute the overall QoS by retrieving information among

exchanged messages and compute their individual QoS parameters.

We formulate the FCSE based on the fuzzy-consistency system (FCS). Let the FCS relate monitored

QoS parameters such as CPU, memory percentage usage and response time (RT) as follows:

“The quality of system behaviour at a certain time t relative to the QoS parameters."

Diagnostic

P
la

n
n

in
g

M
o

n
it

o
ri

n
g

−

−

−

We consider three linguistic variables:

• RT indicates the time it took a process to send a request up until it received its response back.

• CPU % indicates the CPU usage; it is used as behavioural metric to know the performance at a
certain time.

• and the Memory % indicates the memory percentage usage; it is used as a behavioural metric to
know the performance at a particular time.

We use FIS to determine the state of the FCSE; next we give a brief definition:

(a) Fuzzification: To fuzzify (as crisp values) inputs and outputs we use a triangular symmetric

fuzzifier, for instance, Mamdani FIS (refer to Definition 10). Each variable was defined as follows:

• RT: VG(e) associated to very good, G(e) associated to good, A(e) associated to average, B(e) associated
to bad, and VB(e) associated to very bad.

• for the CPU: CPU_L(e) associated to low, CPU_M associated to medium, CPU_H associated to high,
and CPU_VH associated to very high.

• and finally for the Memory MEM_L(e) associated to low, MEM_M(e) associated to medium, MEM_H

associated to high, and MEM_VH associated to very high.

Table 1 lists each linguistic variable and gives its corresponding fuzzy set. Where σ represents all

the values for the response time, varying from the smallest value to the biggest value; based on ITU

G.1010 standard values for Web services, preferred ∈ [0 − 2) seconds, acceptable ∈ (2 − 4) seconds

and unacceptable ∈ (4 to infinity). Where G represents all the values for CPU ∈ [0, 100]. Finally, ϕ

represents all the values for the memory used at a specific time ∈ [0, 100].

Table 1. Membership functions and their corresponding variables.

Variable Values of Membership Functions

Set L C R

VG σ0 σ2 σ0 σ2

G σ0 σ2 σ4

Response Time

CPU

Memory

A σ2 σ4 σ6

B σ4 σ6 σ8

VB σ6 σ8 σ8 + σ2

CPU_L G0 G2 G0 G2

CPU_M G0 G2 G4

CPU_H G2 G4 G6

CPU_VH G4 G6 G8

M_L ϕ0 ϕ2 ϕ0 ϕ2

M_M ϕ0 ϕ2 ϕ4

M_H ϕ2 ϕ4 ϕ6

M_VH ϕ6 ϕ8 ϕ8 + ϕ2

(b) Fuzzy inference (FI):

We determine the FCSE by using Mamdani inference rules; thus, we compute the performance of

the system (based on QoS parameters) at any particular time.

We defined 80 combinations for inference rules [17], therefore computational is not considered.

We argue that our evaluation does not incur in high system overhead, as experimental results show.

(c) Defuzzification: The output (FCSE) of the Mamdani FIS is a fuzzy variable, we convert it to a

scalar value easily interpreted by a human. We use the defuzzication for FIS’s output using the

weighted average method, please refer to Definition 11.

5. Results

The results are twofold; first, we show the performance of our approach, and results show it does

not incur in system degradation, i.e., as first step we only measure the fuzzy implementation. Second,

we evaluate QoS non-functional requirements between all messages exchanged in the system, reducing

dynamically the number of forced checkpoints diverse algorithms generate depending on actual

systems behavior.

5.1. Experimental Setup

The first aim of the experiments is to show that using our solution does not incur in high system

overhead; we established a simulation environment with the following characteristics; we deployed

Web services to carry out dummy services, yet interactive enough to intercommunicate with other

Web services and service providers; we simulated different workload conditions for diverse system

performance; we measure our model of fuzzy non-functional parameters.

We experimented in a Dell Precision Workstation with the following characteristics: 16 GB RAM,

Windows 7 64-bit operating system. We host the WS02 Application Server for Web services deployment,

and we stress-test those Web services with concurrent requests incoming from diverse JAVA based

clients, to have a more or less real-world situation, for instance, when diverse clients are trying to buy

something online from different service providers. We used the Jfuzzylogic http://jfuzzylogic.

sourceforge.net/html/index.html framework for the FCSE and fuzzy related programming compatible

with JAVA.

5.2. Fuzzy Setup

We performed two experiments. The first experiment, consisted of measuring systems

performance using and not using the proposed evaluation method. The second experiment, consisted of

stress-tests for diverse system performance and the overall QoS evaluation to dynamically checkpoint

using three different communication-induced tools such as DCFI, FI and FINE.

First, we described the corresponding membership functions for inputs and outputs. The RT
(response time) was ∈ (0, 100) seconds. ITU G.1010 tries to standardize Web services performance for

real-life scenarios and recommends the following values: preferred ∈ (0, 2) seconds, acceptable ∈ (2, 4)

seconds and unacceptable ∈ (4, in f inity). CPU % and Memory % usage ∈ (0, 100), depending on its

actual usage. The FCSE ∈ (0, 5), in charge of the overall QoS; we associated a membership function

with all the variables above as shown in Table 2.

Just to clarify, the FCSE set is associated to the following linguistic variables:

• FCSE: FCSE_VH(e) associated to very high, FCSE_H(e) associated to high, FCSE_A(e) associated to

average, FCSE_L(e) associated to low, and FCSE_VL(e) associated to very low.

FCSE evaluation gave crisp output values ∈ (0, 5); if the FCSE output value was close to zero,

meaning no degradation of the system was found, the FCSE was very high, therefore the RT crisp value

corresponded to very high; the CPU % and Memory % usage crisp values were very low. Contrarily,

if the FCSE crisp value was close to five, it means the system suffered degradation; if the FCSE was

very low it resembled performance problems, therefore, Web services had very high RT and very high

CPU % and Memory % usage.

http://jfuzzylogic.sourceforge.net/html/index.html
http://jfuzzylogic.sourceforge.net/html/index.html

−

−

−

Table 2. Membership functions values for inputs and outputs.

Variable Values of Membership Functions

Input

Set L C R

VG −2.5 0 2.5

Response Time

CPU

Memory

FCSE

G 0 2.5 5
A 2.5 5 7.5
B 5 7.5 10

VB 7.5 10 12.5

CPU_L 33.33 0 33.33
CPU_M 0 33.33 66.67
CPU_H 33.33 66.67 100

CPU_VH 66.67 100 133.3

M_L 33.33 0 33.33
M_M 0 33.33 66.67
M_H 33.33 66.67 100

M_VH 66.67 100 133.3

Output

FCSE_VH 1.25 0 1.25
FCSE_H 0 1.25 2.5
FCSE_A 1.25 2.5 3.75
FCSE_L 2.5 3.75 5

FCSE_VL 3.75 5 6.25

5.3. Performance Evaluation

5.3.1. Using QoS Criteria for Diagnostics

From the first experiment, recall that the purpose was to stress-test Web services with a lot of

concurrent requests and to measure our proposed approach and the impact it has in systems

performance. We obtained the following results: Figures 4 and 5 show the same number of messages

sent from 10 clients up to 5000 clients. In both Figs. we report the average response time; the response

time measured the time it takes a client from sending their request (a message) until they get their

response back (from a service provider). From Figures 4 and 5 we observed that the average RT and

its corresponding standard deviation were quite similar in both (approaches without QoS evaluation

and after using the QoS evaluation based on FIS) graphs for all cases even after highly increasing the

number of clients; the QoS evaluation performed better by reducing abrupt increments in the average

response time as the number of clients grows. In collaborative environments where

intercommunication take place an important issue is resource usage and storage. Therefore, proposed

solutions must remain constant and scalable even in the presence of large-scale environments, our

solution aims to support these issues, and as illustrated by Figure 5. Besides, our proposal remained

constant for a high number of interactions; therefore, it is scalable.

4000

3500

3000

2500

2000

1500

1000

500

0

Average RT and Standard Deviation

AVG(RT)

STD(RT)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of processes

Figure 4. No QoS evaluation computing average response time and its standard deviation.

8000

7000

6000

5000

4000

3000

2000

1000

0

Average RT and Standard Deviation

AVG(RT)

STD(RT)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of processes

Figure 5. Using QoS evaluation, computing average response time and its standard deviation.

To have a significant statistical sample, we executed each run for 100 times. For instance, when 20

concurrent clients requested a Web service we collected 2000 samples, and computed their average RT

and standard deviation, as shown in Figure 5. For 50 concurrent clients, we collected 5000 samples,

so on. In addition, each scenario constituted a dedicated server that hosted Web services and each

Web service instance computed the overall QoS for each request/response. Specifically, computing at

runtime, at any point in time, the fuzzy-consistency system evaluation (FCSE). The statistical sample

size followed the Cochran’s sample size formula [34]:

t2 pq
n =

d2

(1.65)2(.5)(.5)

n =
(0.0825)2

= 100

where t = value for the selected alpha level of 0.05 in each tail = 1.65, (p)(q) = estimate of variance =

0.25, d = acceptable margin of error for the portion being estimated = 0.0825 (the error researcher was

willing to accept 8.25% for our case).

From Figures 4 and 5 we can conclude that the proposed QoS evaluation approach slightly

incremented the average RT, however, it remained constant, and it helped having a fast evaluation of

the system at any time. The evaluation helped us to diagnose the system and take proactive actions,

in our case decide if a checkpoint was essential or not. Hence, we could compute the evaluation of the

system; at runtime our next goal was to leverage this calculation. Adapting to changes in the

environment one can take advantage by establishing policies for QoS non-functional requirements and

reduce the number forced checkpoints taken. In the next section, we show how by evaluating QoS

T
im

e
 i
n

 m
s

T

im
e

 i
n

 m
s

 DCFI(FCSE 0.625)

FINE(FCSE 0.625)

FI (FSCE 0.625)

DCFI(FCSE 1.25)

 FINE(FCSE 1.25)

 FI (FSCE 1.25)

DCFI(FCSE 1.875)

 FINE(FCSE 1.875)

FI (FSCE 1.875)

 DCFI(FCSE 2.5)

 FINE(FCSE 2.5)

 FI (FSCE 2.5)

 DCFI(FCSE 3.125)

FINE(FCSE 3.125)

 FI (FSCE 3.125)

 DCFI(FCSE 3.75)

FINE(FCSE 3.75)

 FI (FSCE 3.75)

 DCFI(FCSE 0.625)

FINE(FCSE 0.625)

 FI (FSCE 0.625)

 DCFI(FCSE 1.25)

 FINE(FCSE 1.25)

 FI (FSCE 1.25)

 DCFI(FCSE 1.875)

 FINE(FCSE 1.875)

 FI (FSCE 1.875)

 DCFI(FCSE 2.5)

 FINE(FCSE 2.5)

 FI (FSCE 2.5)

 DCFI(FCSE 3.125)

FINE(FCSE 3.125)

 FI (FSCE 3.125)

 DCFI(FCSE 3.75)

FINE(FCSE 3.75)

 FI (FSCE 3.75)

non-functional parameters we can discard useless checkpoints regarding Web services’ behavior at

any given time.

5.3.2. Dynamic Checkpointing for CiC Algorithms

We ran different scenarios with diverse values for QoS parameters, and followed an exponential

distribution, simulating real-world conditions, see Figures 6–8. Therefore, the crisp values for the

FCSE varied from 0 to 5 after evaluated by the FIS system; this was named the FCSE window. This

window can be very rigorous; for instance, we took forced checkpoints when the output computed

crisp value of the FCSE satisfied that it was equal to 0.625 or lower. We referred to a relax window to

that one allowing a more degraded system, having an FCSE crisp output value of 3.75. Also, we

considered crisp intermediate values between the rigorous window and the relaxed window and

evaluate windows with the following values: 0.625, 1.25, 1.875, 2.5, 3.125, y 3.75.

1000 Messages (100 Iterations)

140

120

100

80

60

40

20

0

0 20 40 60 80 100 120 140 160

Number of processes

Figure 6. The number of forced checkpoints for 1000 messages sent. Evaluating three Quality of Service

(QoS) non-functional parameters.

2500 Messages (100 Iterations)

400

350

300

250

200

150

100

50

0

0 20 40 60 80 100 120 140 160

Number of processes

Figure 7. The number of forced checkpoints for 2500 messages sent. Evaluating three Quality of Service

(QoS) non-functional parameters.

N
u

m
b

e
r

o
f

F
o

rc
ed

 C
h

ec
k

p
o

in
ts

N

u
m

b
e

r
o

f
F

o
rc

ed
 C

h
ec

k
p

o
in

ts

 DCFI(FCSE 0.625)

FINE(FCSE 0.625)

 FI (FSCE 0.625)

 DCFI(FCSE 1.25)

 FINE(FCSE 1.25)

 FI (FSCE 1.25)

 DCFI(FCSE 1.875)

 FINE(FCSE 1.875)

 FI (FSCE 1.875)

 DCFI(FCSE 2.5)

 FINE(FCSE 2.5)

 FI (FSCE 2.5)

 DCFI(FCSE 3.125)

FINE(FCSE 3.125)

 FI (FSCE 3.125)

 DCFI(FCSE 3.75)

FINE(FCSE 3.75)

 FI (FSCE 3.75)

 DCFI(FCSE 0.625)

FINE(FCSE 0.625)

FI (FSCE 0.625)

DCFI(FCSE 1.25)

 FINE(FCSE 1.25)

 FI (FSCE 1.25)

DCFI(FCSE 1.875)

 FINE(FCSE 1.875)

FI (FSCE 1.875)

 DCFI(FCSE 2.5)

 FINE(FCSE 2.5)

 FI (FSCE 2.5)

 DCFI(FCSE 3.125)

FINE(FCSE 3.125)

 FI (FSCE 3.125)

 DCFI(FCSE 3.75)

FINE(FCSE 3.75)

 FI (FSCE 3.75)

5000 Messages (100 Iterations)

800

700

600

500

400

300

200

100

0

0 20 40 60 80 100 120 140 160

Number of processes

Figure 8. The number of forced checkpoints for 5000 messages sent. Evaluating three Quality of Service

(QoS) non-functional parameters

In order to show that our proposal can be adapted, to simulate several system requirements, we

also ran different scenarios where we include four QoS non-functional parameters, such as CPU

(Good Medium, Bad), Memory (Good, Medium, Bad), Response Time (Good, Average, Bad) and

Reliability(Good, Average, Bad), see Figures 9–11.

We compared the performance of three different CiC algorithms, namely DCFI, FI and FINE.

These were chosen because they are recent algorithms and the most efficient reported in the literature.

We simulated and analyzed these three algorithms using the distributed checkpointing simulator

ChkSim [16] and JFuzzyLogic. ChkSim simulator, models distributed systems in a deterministic

manner reproducing the same behavior for two or more algorithms, and allows running simulation as

often as necessary. We took the number of forced checkpoints as key performance indicator to compare

each checkpointing algorithm regarding the overhead each one of them produce.

1000 Messages (100 Iterations)

140

120

100

80

60

40

20

0

0 20 40 60 80 100 120 140 160

Number of processes

Figure 9. The number of forced checkpoints for 1000 messages sent. Evaluating four QoS

non-functional parameters.

N
u

m
b

e
r

o
f

F
o

rc
ed

 C
h

ec
k

p
o

in
ts

N

u
m

b
e

r
o

f
F

o
rc

ed
 C

h
ec

k
p

o
in

ts

 DCFI(FCSE 0.625)

FINE(FCSE 0.625)

FI (FSCE 0.625)

DCFI(FCSE 1.25)

 FINE(FCSE 1.25)

 FI (FSCE 1.25)

 DCFI(FCSE 1.875)

 FINE(FCSE 1.875)

FI (FSCE 1.875)

 DCFI(FCSE 2.5)

 FINE(FCSE 2.5)

 FI (FSCE 2.5)

 DCFI(FCSE 3.125)

FINE(FCSE 3.125)

 FI (FSCE 3.125)

 DCFI(FCSE 3.75)

FINE(FCSE 3.75)

 DCFI(FCSE 0.625)

FINE(FCSE 0.625)

FI (FSCE 0.625)

DCFI(FCSE 1.25)

 FINE(FCSE 1.25)

 FI (FSCE 1.25)

DCFI(FCSE 1.875)

 FINE(FCSE 1.875)

FI (FSCE 1.875)

 DCFI(FCSE 2.5)

 FINE(FCSE 2.5)

 FI (FSCE 2.5)

 DCFI(FCSE 3.125)

FINE(FCSE 3.125)

 FI (FSCE 3.125)

 DCFI(FCSE 3.75)

FINE(FCSE 3.75)

 FI (FSCE 3.75)

2500 Messages (100 Iterations)

400

350

300

250

200

150

100

50

0

0 20 40 60 80 100 120 140 160

Number of processes

Figure 10. The number of forced checkpoints for 2500 messages sent. Evaluating four QoS non-

functional parameters.

5000 Messages (100 Iterations)

800

700

600

500

400

300

200

100

0

0 20

40 60

80 100

120

140

160

Number of processes

Figure 11. The number of forced checkpoints for 5000 messages sent. Evaluating four QoS non-

functional parameters.

In Figures 6–8, we analyzed the performance of three different communication-induced

checkpointing mechanisms (DFCI, FINE, and FI) in terms of forced checkpoints. We used the next

configuration; scenario one consisted of 0 to 160 concurrent clients each sending 1000 messages;

scenario two consisted of 0 to 160 concurrent clients each sending of 2500; scenario three consisted 0

to 160 concurrent clients each sending 5000 messages; for each scenario, we varied the QoS window.

Again to have a significant statistical sample we executed each point of each scenario for 100 iterations

with different checkpointing patterns as well as their communication or messages exchanged.

Figures 6–8 shows that the DCFI, for all checkpointing mechanisms, generated the lowest number

of forced checkpoints, this has to do with the QoS window. For example, for a rigorous QoS the number

of forced checkpoints was similar to the one presented observed for DCFI without using our approach.

Yet, as the window relaxed the number of forced checkpoints reduced drastically. For all cases the

best performing checkpointing mechanism was the DCFI, because it generated fewer checkpoints

N
u

m
b

e
r

o
f

F
o

rc
ed

 C
h

ec
k

p
o

in
ts

N

u
m

b
e

r
o

f
F

o
rc

ed
 C

h
ec

k
p

o
in

ts

compared to FI and FINE. FI was the second-best checkpointing mechanism, and FINE also reduced

its checkpointing generation but compared to the other two mechanisms it presented the worst cases.

Experiments presented in Figures 9–11 shows that if the number of non-functional parameters

increased to evaluate the system performance, then this allowed relaxing and detecting smaller changes

in the system behavior; as a consequence, fewer forced checkpoints were generated. For all the cases

presented in these Figs. the number of checkpoints generated was lower by improving the granularity

that monitors the system behavior.

To conclude this section, based on results presented in Figures 6–8, we can argue that our approach

correlated both cost (QoS parameters: response time, CPU, Memory, reliability) and benefit (how well

the system behaves) in the following way:

• When QoS was very high it implied saving checkpoints, because there were enough resources
available, and the cost of storing checkpoints was minimal.

• When QoS was very low it implied not saving many checkpoints, because there were not enough

resources available, yet our approach saved some checkpoints for preserving consistency upon

a failure.

• The granularity to monitor the system performance through non-functional parameters allowed us

to detect smalls changes, and the system evaluation was enriched; hence fewer forced checkpoints

could be generated when the system behavior was good.

5.4. Comparison between Static Approaches and Our Proposed Dynamic Approaches

We designed a case of study to observe the differences between static CiC approaches, that did

not adapt to the degradation of the system, and our proposal. The case of study considered that the

QoS conditions to satisfy were the most demanding, so it was necessary to guarantee the highest QoS

for the attention of users. Tables 3–5 show how as the number of messages and processes increased,

considering the idealized conditions with the highest rigor in the quality of service parameters, using

the most rigorous QoS window of 0.6225; there was a small decrease in the number of forced

checkpoints and even in some cases the number of forced checkpoints taken were the same. We

reduced the number of forced checkpoints by 0.2% to 4% with respect to CiC static methods, however

Tables 3–5 only show the QoS rigorous case; the reduction in the number of forced checkpoints is

clearly expressed in Figures 6–8, which would be more significant for environments where the quality

of service could be relaxed without compromising the system efficiency if applications allowed.

Table 3. Comparison between static approach and dynamic approach for 1000 messages.

No of
Processes

DCFI
No Fuzzy

DCFI
Fuzzy

Reduction
%

FINE
No Fuzzy

FINE
Fuzzy

Reduction
%

DCFI
No Fuzzy

DCFI
Fuzzy

Reduction
%

10 131 131 0 139 138 0.7194 143 142 0.6993
20 143 142 0.6993 146 145 0.6849 148 147 0.6757
30 145 144 0.6897 147 146 0.6803 148 147 0.6757
40 145 144 0.6897 147 146 0.6803 148 146 1.3514
50 145 144 0.6897 146 145 0.6849 147 146 0.6803
60 143 142 0.6993 144 143 0.6944 145 144 0.6897
70 142 141 0.7042 143 142 0.6993 144 143 0.6944
80 144 142 1.3889 144 143 0.6944 145 144 0.6897
90 142 141 0.7042 142 141 0.7042 143 142 0.6993
100 139 137 1.4398 139 138 0.7194 140 139 0.7143
110 139 138 0.7194 139 138 0.7194 140 139 0.7143
120 137 136 0.7299 137 136 0.7299 137 136 0.7299
130 135 134 0.7407 135 134 0.7407 136 135 0.7353
140 133 132 0.7519 133 132 0.7519 134 133 0.7463

150 133 132 0.7519 133 132 0.7519 134 133 0.7463

Hence, it is essential to remark that when we established a very high quality of service, our model

behaved almost similar to static CIC approaches. This is possibly because the fuzzy evaluation

approach can adapt its behavior and maintain the system consistency and efficiency regarding to

established QoS parameters by the user. To conclude, adaptability goes hand on hand with the allowed

system degradation, since the number of forced checkpoints generation is adjusted for situations where

the quality of service can be relaxed.

Table 4. Comparison between static approach and dynamic approach for 2500 messages.

No of
Processes

DCFI
No Fuzzy

DCFI
Fuzzy

Reduction

%

FINE
No Fuzzy

FINE
Fuzzy

Reduction

%

DCFI
No Fuzzy

DCFI
Fuzzy

Reduction

%

10 331 328 0.9063 367 350 4.6322 375 359 4.2667
20 359 357 0.5571 371 369 0.5391 378 375 0.7937
30 368 366 0.5435 377 374 0.79576 383 378 1.3055
40 374 372 0.5347 379 376 0.79156 383 382 0.2611
50 375 373 0.5333 379 377 0.5277 382 378 1.0471
60 373 370 0.8043 376 374 0.5319 379 378 0.2639
70 375 372 0.8 377 377 0 382 379 0.7853
80 378 376 0.5291 380 377 0.7894 382 380 0.5236
90 376 374 0.5319 378 374 1.0582 380 378 0.5263
100 374 372 0.5347 376 373 0.7979 378 377 0.2646
110 374 371 0.8021 376 372 1.0638 377 374 0.7958
120 371 368 0.8086 372 368 1.0753 374 371 0.8021
130 369 366 0.8130 370 368 0.5405 372 371 0.2688
140 369 367 0.5420 371 369 0.5391 372 372 0

150 370 367 0.8108 371 369 0.5391 372 371 0.26882

Table 5. Comparison between static approach and dynamic approach for 5000 messages.

No of
Processes

DCFI
No Fuzzy

DCFI
Fuzzy

Reduction
%

FINE
No Fuzzy

FINE
Fuzzy

Reduction
%

DCFI
No Fuzzy

DCFI
Fuzzy

Reduction
%

10 661 656 0.7564 698 693 0.7163 752 717 4.6543
20 721 717 0.5548 740 734 0.8108 763 752 1.4417
30 741 737 0.5398 754 749 0.6631 772 763 1.1658
40 755 749 0.7947 764 759 0.6545 776 772 0.5155
50 762 757 0.6562 769 764 0.6510 776 769 0.9021
60 757 752 0.6605 764 759 0.6545 773 769 0.5175
70 763 758 0.6553 768 763 0.6510 778 773 0.6427
80 769 764 0.6510 774 768 0.7752 778 774 0.5141
90 765 760 0.6536 770 765 0.6494 774 770 0.5170
100 763 758 0.6553 763 761 0.2621 772 770 0.2591
110 763 760 0.3932 765 763 0.2614 772 770 0.2591
120 764 759 0.6545 764 762 0.2618 770 767 0.3896
130 761 756 0.6570 764 759 0.6545 769 767 0.2601
140 764 758 0.7853 767 761 0.7823 771 769 0.2594

150 765 760 0.6536 768 761 0.9115 771 769 0.2594

6. Discussion

Implementing the communication-induced checkpointing (CiC) mechanism to whichever

device or system, brings benefits such as supporting fault tolerance, and increments regarding

dependability. We leverage the fact that there is a trade-off between systems performance under

different circumstances, i.e., when system performance is correct and when system performance suffers

degradation or deviations. Therefore, we minimize performance issues due to storage space and

propose a solution that checkpoints efficiently.

Various approaches for distributed checkpointing algorithms are available (see Section 2), but most

of them rely their efforts on strategies on how to checkpoint and avoid dangerous patters: zigzag paths

and z-cycles. Most do not consider discarding forced checkpoints and therefore, are not appropriate for

less powerful devices, cannot consider non-functional requirements and cannot discard unnecessary

the frequency for checkpointing in their solutions.

Considering QoS while the checkpointing mechanism is run, systems can leverage opportunities

to discard forced triggered checkpoints. Thus the frequency for generating checkpoints is diminished.

7. Conclusions

We show the first solution that allows a dynamic and adaptable generation of forced checkpoints.

Carried out through a fuzzy consistency system evaluation, identifying useless forced checkpoints.

We compared three different communication-induced checkpointing-based mechanisms; experimental

results demonstrate our efficiency, as we managed to reduce the number of forced checkpoints,

because we took into account the quality of service (QoS) of the system at a given time. We consider

systems non-functional requirements for the generation of checkpoints, we dynamically adapt to

changes in the system since we consider good and bad system performance for our measurements; we

consider a window of rigorous quality of service as well as a relaxed window. For these windows the

delayed checkpointing algorithm (DCFI) outperforms other algorithms and has the least number of

forced checkpoints. We reduced the number of forced checkpoints by using our approach; experimental

results show that the DCFI mechanism has better performance over FI and FINE. For instance, DCFI

performs better than the other two mechanisms but only 3% better. All compared algorithms reduce

their generation of forced checkpoints, however, as shown in the results the reduction depends on the

actual systems behavior. We can also argue that CiC based solutions are scalable because they continue

to work correctly even in the presence of a high number of interactions. Plus these kinds of solutions

increase systems dependability without harming systems performance.

As future work, we can assign a weight to all inputs and check if a gain or reduction, in terms of

the number of forced checkpoints, is present for diverse communication-induced checkpointing

mechanisms. In addition, we will extend the proposed solution by including a self-healing mechanism

in order to detect malicious attacks and carry out system recovery by fuzzy evaluating the consistency

of the system.

Author Contributions: Conceptualization, M.V.-S., L.M.-R. and S.P.-H.; formal analysis, M.V.-S., L.M.-R. and
R.M.; investigation, M.V.-S.; methodology, M.V.-S.; software, M.V.-S.; supervision, L.M.-R., R.M., S.P.-H. and K.D.;
validation, L.M.-R., R.M., S.P.-H. and K.D.; writing—original draft, M.V.-S.; writing—review and editing, L.M.-R.
and R.M. All authors have read and agreed to the published version of the manuscript.

Funding: Mariano Vargas-Santiago specially thanks El Instituto Nacional de Astrofísica Óptica y Electrónica for
the grant granted for the fulfillment of this research. Besides, Luis Morales-Rosales thanks to CONACYT for the
research project 613 named, Cyber-physical Systems for the Development of Intelligent Transport Systems to carry
out this contribution.

Acknowledgments: The authors want to thank Rebekah Hosse Sullivan for taking her time and reviewing this
work.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

CCP Checkpointing an Communication Patterns

CGS Consistent Global Snapshot

CiC Communication-induced Checkpointing

DCFI Delayed Checkpointing Fully Informed

FCS Fuzzy Consistency System

FCSE Fuzzy Consistency System Evaluation

FI Fully Informed

FINE Fully Informed aNd Efficient

HMM Hidden Markov Model

QoS Quality of Service

WS Web Services

References

1. Vargas-Santiago, M.; Morales-Rosales, L.; Pomares-Hernandez, S.; Drira, K. Autonomic Web Services

Enhanced by Asynchronous Checkpointing. IEEE Access 2018, 6, 5538–5547.

2. Zhao, W. Building Dependable Distributed Systems; John Wiley & Sons: Hoboken, NJ, USA, 2014.

3. Vargas-Santiago, M.; Pomares-Hernandez, S.; Rosales, L.M.; Hadj-Kacem, H. Survey on Web Services Fault

Tolerance Approaches Based on Checkpointing Mechanisms. J. Softw. 2017, 12, 507–525.

4. Tanenbaum, A.S.; Van Steen, M. Distributed Systems: Principles and Paradigms; Prentice-Hall: Upper Saddle

River, NJ, USA, 2007.

5. Siewiorek, D.; Swarz, R. Reliable Computer Systems: Design and Evaluation; Digital Press: Washington, MA,

USA, 2017.

6. Kephart, J.O.; Chess, D.M. The vision of autonomic computing. Computer 2003, 36, 41–50.

7. Huebscher, M.C.; McCann, J.A. A survey of autonomic computing—Degrees, models, and applications.

ACM Comput. Surv. (CSUR) 2008, 40, 1–28.

8. Elnozahy, E.N.; Alvisi, L.; Wang, Y.M.; Johnson, D.B. A survey of rollback-recovery protocols in message-

passing systems. ACM Comput. Surveys (CSUR) 2002, 34, 375–408.

9. Simon, A.C.; Hernandez, S.E.P.; Cruz, J.R.P. A Delayed Checkpoint Approach for Communication-Induced

Checkpointing in Autonomic Computing. In Proceedings of the 2013 Workshops on Enabling Technologies:

Infrastructure for Collaborative Enterprises, Hammamet, Tunisia, 17–20 June 2013; pp. 56–61.

10. Chandy, K.M.; Lamport, L. Distributed snapshots: Determining global states of distributed systems.

ACM Trans. Comput. Syst. (TOCS) 1985, 3, 63–75.

11. Kshemkalyani, A.D.; Singhal, M. Distributed Computing: Principles, Algorithms, and Systems; Cambridge

University Press: Cambridge, UK, 2008.

12. Simón, A.C.; Hernandez, S.E.P.; Cruz, J.R.P.; Halima, R.B.; Kacem, H.H. Self-healing in autonomic distributed

systems based on delayed communication-induced checkpointing. Int. J. Auton. Adapt. Commun. Syst. 2016,

9, 183–200.

13. Netzer, R.; Xu, J. Necessary and sufficient conditions for consistent global snapshots. IEEE Trans. Parallel

Distrib. Syst. 1995, 6, 165–169.

14. Hélary, J.M.; Mostefaoui, A.; Netzer, R.H.; Raynal, M. Communication-based prevention of useless

checkpoints in distributed computations. Distrib. Comput. 2000, 13, 29–43.

15. Luo, Y.; Manivannan, D. Fine: A fully informed and efficient communication-induced checkpointing protocol

for distributed systems. J. Parallel Distrib. Comput. 2009, 69, 153–167.

16. Vieira, G.M.; Buzato, L.E. Chksim: A Distributed Checkpointing Simulator; Technical Report IC-05-034; 2005.

Available online: https://dcomp.sor.ufscar.br/gdvieira/chksim/ (accessed on 3 March 2020).

17. Vargas-Santiago, M.; Pomares-Hernandez, S.; Morales-Rosales, L.; Khlif, H.; Hadj-Kacem, H. Towards

Dependable Web Services in Collaborative Environments Based on Fuzzy Non-functional Dependencies In

Proceedings of the 5th International Conference in Software Engineering Research and Innovation

(CONISOFT), Mérida, Yucatán, Mexico, 25–27 October 2017.

18. Tsai, J. An efficient index-based checkpointing protocol with constant-size control information on messages.

IEEE Trans. Depend. Secure Comput. 2005, 2, 287–296.

19. Tsai, J. Applying the Fully-Informed Checkpointing Protocol to the Lazy Indexing Strategy. J. Inf. Sci. Eng.

2007, 23, 1611–1621.

20. Luo, Y.; Manivannan, D. FINE: A Fully Informed aNd Efficient communication-induced checkpointing

protocol. In Proceedings of the Third International Conference on Systems, IEEE Computer Society:

Washington, MA, USA, 13–18 April 2008; pp. 16–22.

21. Luo, Y.; Manivannan, D. Theoretical and experimental evaluation of communication-induced checkpointing

protocols in and families. Perform. Eval. 2011, 68, 429–445.

22. Luo, Y.; Manivannan, D. Theoretical and Experimental Evaluation of Communication-Induced

Checkpointing Protocols in F E Family. In Proceedings of the 2008 IEEE International Performance,

Computing and Communications Conference, Austin, TX, USA, 7–9 December 2008; pp. 217–224.

23. Simon, A.C.; Hernandez, S.E.P.; Cruz, J.R.P.; Gomez-Gil, P.; Drira, K. A scalable communication-induced

checkpointing algorithm for distributed systems. IEICE Trans. Inf. Syst. 2013, 96, 886–896.

https://dcomp.sor.ufscar.br/gdvieira/chksim/

24. Jafary, B.; Fiondella, L. Optimal checkpointing of fault tolerant systems subject to correlated failure. In

Proceedings of the 2017 Annual Reliability and Maintainability Symposium, Orlando, FL, USA, 23–26

January 2017; pp. 1–6.

25. Garcia, I.C.; Vieira, G.; Buzato, L.E. A Rollback in the History of Communication-Induced Checkpointing.

arXiv 2017, arXiv:170206167.

26. Lamport, L. Time, clocks, and the ordering of events in a distributed system. Commun. ACM 1978, 21, 558–

565.

27. Hernandez, S.P.; Fanchon, J.; Drira, K. The immediate dependency relation: An optimal way to ensure causal

group communication. Annu. Rev. Scalable Comput. 2004, 3, 61–79.

28. Wang, Y.M.; Fuchs, W.K. Lazy checkpoint coordination for bounding rollback propagation. In Proceedings of

the IEEE 12th Symposium on Reliable Distributed Systems, Princeton, NJ, USA, 6–8 October 1993; pp. 78–85.

29. Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353.

30. Takagi, T.; Sugeno, M. Fuzzy identification of systems and its applications to modeling and control. IEEE

Trans. Syst. Man Cybern. 1985, 1, 116–132.

31. Halima, R.B.; Guennoun, M.K.; Drira, K.; Jmaiel, M. Providing predictive self-healing for web services: A

qos monitoring and analysis-based approach. J. Inf. Assur. Secur. 2008, 3, 175–184.

32. Koh-Dzul, R.; Vargas-Santiago, M.; Diop, C.; Exposito, E.; Moo-Mena, F.; Gómez-Montalvo, J. Improving

ESB capabilities through diagnosis based on Bayesian networks and machine learning. J. Softw. 2014, 9,

2206–2211.

33. Koh-Dzul, R.; Vargas-Santiago, M.; Diop, C.; Exposito, E.; Moo-Mena, F. A smart diagnostic model for an

autonomic service bus based on a probabilistic reasoning approach. In Proceedings of the 2013 IEEE 10th

International Conference on Ubiquitous Intelligence and Computing and 2013 IEEE 10th International

Conference on Autonomic and Trusted Computing, Vietri sul Mere, Italy, 18–21 December 2013; pp. 416–421.

34. Kotrlik, J.; Higgins, C. Organizational research: Determining appropriate sample size in survey research

appropriate sample size in survey research. Inf. Technol. Learn. Perfor. J. 2001, 19, 43.

View publication stats

https://www.researchgate.net/publication/340456975

	1. Introduction
	2. Related Work
	3. Background and Definitions
	4. Dynamic Checkpointing for CiC Algorithms Based on Fuzzy Non-Functional Dependencies
	5. Results
	6. Discussion
	7. Conclusions
	Abbreviations
	References

