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Abstract: Companies, organizations and individuals use Web services to build complex business 

functionalities. Web services must operate properly in the unreliable Internet infrastructure even in 

the presence of failures. To increase system dependability, organizations, including service providers, 

adapt their systems to the autonomic computing paradigm. Strategies can vary from having one to all 

(S-CHOP, self-configuration, self-healing, self-optimization and self-protection) features. Regarding 

self-healing, an almost identical tool is communication-induced checkpointing (CiC), a checkpoint 

contains the state (heap, registers, stack, kernel state) for each process in the system. CiC is based on 

quasi-synchronous checkpointing where processes take checkpoints relying of control information 

piggybacked inside application messages; however, avoiding dangerous patterns such as Z-paths and 

Z-cycles; in such a regard the system takes forced checkpoints and avoids inconsistent states. CiC, 

unlike other tools, does not incur system performance, our proposal does not incur high overhead (as 

results show), and it has the advantage of being scalable. As we have shown in a previous work, CiC 

can be used to address dependability problems when dealing with Web services, as CiC mechanism 

work in a distributed and efficient manner. Therefore, in this work we propose an adaptable and 

dynamic generation of checkpoints to support fault tolerance. We present an alternative considering 

Quality of Service (QoS) criteria, and the different impact applications have on it. We propose taking 

checkpoints dynamically in case of failure or QoS degradation. Experimental results show that our 

approach has significantly reduced the generation of checkpoints of various well-known tools in the 

literature. 
 

Keywords: autonomic computing; web services; autonomic systems; internet technologies;  
checkpointing 

 

1. Introduction 

We find distributed systems everywhere (they are ubiquitous) and people use them in their  

everyday life. Organizations and users benefit from distributed systems, for these kinds of systems 

make it possible to complete tasks that otherwise could not be carried out by a single computer; people 

all over the world can collaborate on projects for solving difficult tasks; organizations benefit one from 

another through sharing resources and building large scale distributed systems; distributed systems 
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exploit the divide and conquer approach, if applicable, decomposing a task into smaller sub-tasks, and 

sending them along several computers, for their execution [1–3]. 

Because distributed systems rely on a network for passing information to accomplish a task, 

system communication mostly takes place over an unreliable Internet infrastructure. Distributed 

systems are error prone, due to two main factors: first, their design, and, second, the communication 

channels. Paraphrasing Leslie Lamport’s words: “You know you have a distributed system when  the 

crash of a computer you have never heard of stops you from getting any work done” [4]. 

Dependability is the most promising technique out of many to address the issue pointed out by 

Lamport. Dependability is the ability of a system to provide services to its users, even under different 

threats, such as malicious attacks and software/hardware bugs. System dependability addresses a 

broad spectrum of characteristics, including system reliability, system availability and fault tolerance, 

to mention a few [5]. In distributed computing, dependability is crucial, as organizations demand 

more dependable computer systems, expecting components and applications to work even in the 

occurrence failures. 

There are three main strategies to improve the dependability of a distributed system: fault 

avoidance, fault detection and diagnosis, and fault tolerance. We address fault tolerance, as in our 

previous work [1], where a system recovers from different faults with minimum service interruption, 

based on checkpointing. In this vein, it is now common that organizations want to improve the 

dependability of distributed systems based in fault tolerance techniques. This technique relies on 

rollback recovery, a technique that guarantees a system can continue providing services to users upon 

failure occurrence. One open challenge for distributed computing is to offer fault tolerance techniques 

to all computing devices, even those that are less powerful but still work in heterogeneous 

environments; including mobile phones, IoT cameras, or any other small device that support service 

requests from corporate enterprises through web services or any other application. True for hybrid 

approaches that rely on autonomic computing and fault tolerance techniques addressing issues such 

as minoring, detecting and system recovery [1,6,7]. 

Checkpointing provides fault tolerance to increase dependability in distributed systems and     a 

checkpointing implementation incurs low runtime overhead. The Communication induced 

Checkpointing (CiC) technique achieves the aforementioned checkpointing characteristics relying on 

rollback recovery [3,8,9]. To implement any checkpointing based technique a process has to save their 

state, a so-called checkpoint, checkpointing regularly. Usually, processes record their checkpoints 

individually during failure-free systems execution.  After a failure the system has then the ability   to 

restart from the last saved checkpoint, reducing the amount of work to be re-executed by the system. 

CiC’s main goal is to save consistent global snapshots (CGSs) [10,11], one from each process, so that 

all checkpoints are free from dangerous checkpointing patterns (z-cycles and z-paths) [9,12,13]. 

Current mechanisms force the insertion of a checkpoint when anticipating the appearance of one such 

dangerous pattern; nevertheless, as we will argue, not all forced checkpoints triggered are necessary 

because saving useless information can lead to an excess of storage space, resource usage, and 

computation; the lesser the number of forced checkpoints, the better. 

Building upon our previous work [1] where we proposed autonomic Web services enhanced by a 

quasi-asynchronous checkpointing mechanism, we merge autonomic computing and dependability 

techniques such as fault tolerance. In this article, we follow the approach as mentioned earlier; 

however, our main contribution is focused into present the first dynamic and adaptable generation of 

forced checkpoints based on monitoring the system performance by considering non-functional 

requirements. The goal is to dynamically adapt the generation of forced checkpoints through a diffuse 

approach considering Quality of Services parameters associated with system performance measures. 

Therefore, we only record useful system snapshots reducing the overhead and system overload. We 

consider the probability of system failure and system degradation as key factors before checkpointing. 

Specifically, we consider non-functional requirements, such as Quality of Service (QoS) parameters yet 

implemented within the MAPE control loop of a web service; this enables us to reduce 



 

 

the number of forced checkpoints further while maintaining system consistency. Detecting degradation 

problems via monitoring QoS is carried out also in accordance with process or service requirements, 

including Service Level Agreements (SLAs). 

A summary of our contributions are as follows: 

• A dynamic and adaptable generation of checkpoints, by considering the monitoring of system 

performance through non-functional requirements and a fuzzy approach, allowing to reduce the 

overhead and system overload. 

• The design of an autonomic web services (MAPE) control loop that allows an easy implementation 
of diverse checkpointing techniques. 

• The adaptation of diverse checkpointing techniques to offer consistency (checkpoints free of 

dangerous patterns such as zigzag paths and z-cycles) and non-functional requirements (system 

evaluation for individual web services). 

• A comparative study that shows the performance of different fault tolerance techniques that rely 

on the most commonly used checkpointing techniques. We hypothesize that a fault tolerance 

technique can be used under diverse applications and that by adopting one technique many more 

can easily further be adapted for other computer-related areas. 

Using web services as a black box containing all relative MAPE features, we implemented three 

different checkpointing techniques, namely, Delayed Checkpointing Fully Informed (DCFI) credited 

to Simon et al. [9], HMNR also called Fully Informed (FI) presented by Helary et al. [14], and Fully 

Informed and Efficient (FINE) of Luo and Manivannan [15]. In order to detect a faulty component of a 

system, we propose implementing the MAPE control loop individually by each web service; doing so 

can lead to discarding useless checkpoints or to update the frequency these are taken. We evaluate web 

services QoS, at runtime, using a fuzzy approach; in particular, we propose a fuzzy-consistency system 

evaluation (FCSE) function, as previously reported in [1], we identify useless checkpoint concerning 

QoS and system consistency. To the best of our knowledge, this is the first mechanism that combines a 

fuzzy approach for system assessment purposes with CiC mechanisms. We used ChkSim [16] and 

Jfuzzylogic http://jfuzzylogic.sourceforge.net/html/index.html, for simulation as both are compatible 

with JAVA programming language. We show that our proposal is more efficient than current solutions. 

To this end, we have compared our approach against three of the most efficient CiC based solutions, 

reported in State-of-the-Art. 

We organized the rest of the paper as follows. In Section 2, we give an overview of related work. 

Then, in Section 3, we analyze the mathematical model for checkpointing and briefly introduce fuzzy 

logic. In Section 4, we provide an analysis of the environment and the assumptions upon which our 

solution builds, and present a case study. Next, we elaborate on the results that support our approach, 

showing the feasibility, Section 5. Finally, conclusions drawn from this study appear in Section 7, along 

with suggestions for further work. 

2. Related Work 

In this section, we provide some of the most efficient fault tolerance techniques that rely on 

checkpointing. In our previous work, we list some of the work that merges autonomic computing and 

checkpointing techniques (work that addresses some know fault tolerance techniques for Web services 

and business processes) [1]. Besides, in [1], we ensure the dependability by merging CiC mechanisms 

and autonomous computing. In [17], we implemented a fuzzy evaluation model into the MAPE loop 

to measure system performance without degrading the system. In contrast, in this paper, we show 

how to generate dynamically checkpoints with less overhead and system overload. 

There exist many methods for checkpointing such as synchronous checkpointing, asynchronous 

checkpointing and quasi-asynchronous checkpointing; we focus on quasi-asynchronous checkpointing. 

A complete survey can be found in [3], where we give a new taxonomy for business processes that rely 

on checkpointing mechanisms for both orchestration and choreography. 

http://jfuzzylogic.sourceforge.net/html/index.html
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State-of-the-Art literature classifies quasi-asynchronous checkpointing further into two different 

communication induced and index-based protocols, which in turn implement a variant of Lamport’s 

logical clock. For instance, the HMNR protocol [14], also called Fully Informed (FI) [18], called this way 

because it bears specific information about the causal past of processes. New versions of the FI method 

appear regularly in State-of-the-Art literature, proposing a more efficient strategy. For example, Tsai 

introduces the LazyFI approach [19], which applies a lazy strategy to increment FI’s logical clocks. 

Fully Informed and Efficient (FINE) is other FI variant, introduced by Luo and Manivannan [15,20]. 

In FINE authors establish a stronger checkpointing condition using the same control information 

preserved by FI. An optimized version of FINE, called LazyFINE, applies a lazy strategy using the 

work of Lou and Manivannan [21,22]. Finally, Simon et al. [9,12,23] propose another FI variant, which 

addresses system scalability, aimed for large-scale systems. Simon et al. reduce the number of forced 

checkpoints by delaying non-forced checkpoints. 

Fault tolerance techniques relying on checkpointing protocols can apply a rollback recovery when 

detecting system failure. However, using these techniques is known to have a high computational 

cost (since more and more constraint resource devices need these techniques) new strategies must 

evolve to meet these constraints. The comparison between checkpointing protocols is in terms of the 

number of forced checkpoints; the lesser the number of forced checkpoints the better. Therefore, fault 

tolerance techniques that rely on checkpointing must reduce the message overhead exchanged by each 

process because failing to do so can require a large amount of storage space to store checkpoints [3,24]. 

Currently, there is not an optimal checkpointing protocol for all checkpoints and communication 

patterns, regardless of how each mechanism triggers forced checkpoints [25]. 

3. Background and Definitions 
 

3.1. System Model 

Distributed systems have specific characteristics such as: communication between processes is 

done by exchanging messages, time is not global for all processes, each process can have its own time, 

and processes do not share a common memory. Processes can be one or more nodes, and processes 

consist of a single thread or any number of threads (a process can be a computer, a service, a cell phone, 

a video game console, etc.). In a distributed computation P = {P1, P2, . . . , Pn} represent a finite set of 

processes; where communication channels can be unpredictable, presenting finite delays, however, 

these channels are considered asynchronous and reliable. In a distributed system, there exist two types 

of events internal and external. 

An internal event reflects a change in the state of a process, for example, when checkpointing.  A 

checkpoint contains the state of a process such as heap,  registers,  stack,  and the kernel state.    We 

denote Cx as checkpoints that contain the state of a process i and Ei denotes all checkpoints previously 

taken.   We  consider external events, those that affect the state of the system globally, 

for instance, send and delivery of messages, where m is a message; send(m) denotes the sending of m by 

any process Pi ∈ P; and delivery(Pj, m) denotes the delivery of message m to another process Pj ∈ P, 

where Pi ƒ= Pj. The set of messages M containing external events is given by the following expression: 

Em = {send(m) : m ∈ M} ∪ {delivery(Pi, m) : m ∈ M ∧ Pi ∈ P} 

where Em is the set of events associated with M. All set of events in the system, E, are: 

E = Ei ∪ Em 

Therefore, modeling of a distributed computation is done through a partially-ordered set E = 

(E, →) where → and denotes Lamport’s happened-before relationship [26]. 
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3.2. Background 

The Happened Before Relation (HBR) determines the causal precedence dependencies for a set of 

events. HBR has a strict partial order (i.e., it is transitive, irreflexive and antisymmetric). Lamport 

defined the HBR in the following way [26]: 

Definition 1. HBR, denote by →, is defines the smallest relationship for a set of events E, established by three 

rules, as follows: 

1. Let a and b be events in the same process. Thus, if an event a occurs before b, then a → b. 

2. If a stands for the event send(m), and b for the event delivery(Pi, m), then a → b. 

3. If a → b and b → c, then a → c. 

In practice,  HBR is expensive,  since it accounts for the precedence of every pair of events.     We 

mitigate expensiveness by introducing a stronger relationship; identifying and attaching the minimal 

amount of control information per message to ensure causal ordering. 

 

Immediate Dependency Relation (IDR). The IDR is expressed by ↓, and it is the transitive reduction 

of the HBR. We define the IDR in the following way [27]: 
 

Definition 2. Two events, a, b ∈ E, are related by the IDR, a ↓ b, if: 

a ↓ b ⇔ [a → b ∧ ∀c ∈ E, ¬(a → c → b)] 

Where E stands for a set of events. 

Checkpoint and communication pattern (CCP): A CCP contains all information about processes local 

checkpoints as well as their transitive messages, i.e., incoming and outgoing messages towards other 

processes; the CCP has the following definition [28]: 

Definition 3. A CCP is a pair (E, Ei) 

where E is a partially-ordered set modelling a distributed computation and Ei is a set of local 

 
Figure 1 illustrates a CCP and all associated checkpoints, intervals, and exchanged messages. For 

example, checkpoint interval is illustrated as Ix , (x ƒ= 0) , representing that a checkpoint belongs to 

process Pk. A checkpointing interval represents events that happened before another checkpoint in Pk, 

from Cx−1 to Cx , (x ƒ= 0). 

 
 

Figure 1. An example of a CCP, where mi ∈ M (i ∈ {1, . . . , 8}) represent messages; being M all 

messages, and each Cx represents a process local checkpoint. 
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3.3. How Consistent Global Snapshots (CGS) Are Build 

There exist diverse ways to take checkpoints for a distributed system such as synchronous 

checkpoint, asynchronous checkpointing and quasi-asynchronous checkpointing, where process take 

checkpoints independently, and systems gain the ability to restart their computation after those 

checkpoints. However, not all saved checkpoints guarantee to return to a consistent global snapshot 

(CGS). Netzer and Xu [13] gave the following definition: 

 

Definition 4. A CGS cannot contain any causally related checkpoints (see below); for any pair of checkpoints 

Ci and Cj we have: 

¬(Ci → Cj) ∧ ¬(Cj → Ci) 

where → is now extended over checkpoints in a conventional manner. 

CGS must avoid dangerous patterns as stipulated by Netzer and Xu a zigzag path or z-path) 

generalizes the Happened-Before Relation (HBR) in the following way: 

Definition 5. Let Pi, Pj ∈ P. There exists a z-path from Cx to Cy 
j 

if there are messages m1, m2, ..., ml ∈ M 

such that: 

1. m1 is sent by process Pi after Cx . 

2. if some process Pr receives mk(1 ≤ k < l), then mk+1 is sent by Pr in the same or at a later checkpoint 

interval (although mk+1 can be send before or after mk is received), and 

3. Process Pj receives ml before Cy 

Definition 6. A checkpoint Cx is in a zigzag cycle or z-cycle, if there is a z-path from Cx to itself. 
i i 

 

A z-path was defined by Helary et al. [14] in the following way: 
 

Definition 7. A z-path [m1, ..., mq ∈ M] is a causal z-path if for each pair of consecutive messages mk and 

mk+1, delivery(Pi, mk) → send(mk+1), with Pi ∈ P. Otherwise, it is a non-causal z-path. 

Definition 8. A local checkpoint Cy z-depends on a local checkpoint Cx, denoted Cx z 
Cy, if: 

j 

1. j = i and y > x, or 

i i → j 

2. there is a z-path from Cx to Cy 
i j 

 

3.4. Fuzzy Logic 

Definition 9. Zadeh [29] gives the following definition: a set A, is defined as a membership function fA(x) that 

maps the elements of a universe X to elements in the interval [0, 1] : fA(x) : X ›→ [0, 1] and represent a degree 
of membership of x in A. 

 

Meaning that the close fA(x) values to 1 implies a higher the degree of membership of x in A. 

To represent the fuzzy set A consider a pair of values: each element x ∈ X having a degree of 

membership to A. 
 

A = {(x, fA(x))|x ∈ X} 

Definition 10. Fuzzification converts a value or quantity to fuzzy quantity. 

 
One of the most common fuzzifiers is the triangular function, next described: 

• Triangular function: fA(x) = max[min(
 x − L 

,
 R − x 

), 0]. 

C − L R − C 



 

 

L,C and R values delimit the fuzzy set A, where C is the most substantial input value to A. 

 
Definition 11. Defuzzification converts a fuzzy quantity into a value or quantity. 

 
Defuzzification is done by applying the weighted average method, using the next algebraic equation: 

∑ fA(ac)(ac) 

∑ fA(ac) 

where ∑ denotes algebraic summation and ac is the centroid of each symmetric membership function. 

3.4.1. A Brief Description of FIS 

A fuzzy inference system uses fuzzy logic to model almost anything into an input space to an 

output space.  Using FIS, one can formalize human language into a simple mathematical model.   FIS 

consists of four modules, next described: 

• Fuzzification module: This module transforms anything that is modelled by crisp numbers into a 
membership function and transforms them into fuzzy sets using a fuzzification function. 

• Knowledgebase: stores the rules that are given by experts in the form of if-then rules. 

• Inference engine: makes inferences from the inputs and tries to simulate human reasoning by using 
if-then rules 

• Defuzzification module: this module gives as output a crisp value that can be easily interpreted by 
humans or computers; it transforms membership functions into fuzzy sets. 

The most known type of FIS are the Mamdani and the Sugeno [30]. 

• A Mamdani system gives as a result fuzzy outputs and inputs. 

– If x is A and y is B then z is V 

• A Sugeno system gives as outputs “crisp” values and takes fuzzy inputs from the inference engine. 

– If x is A and y is B then z = f (x, y) 
 

4. Dynamic Checkpointing for CiC Algorithms Based on Fuzzy Non-Functional Dependencies 
 

4.1. Architecture 

We propose a general architecture for distributed and heterogeneous environments, dependable 

enough to warranty system fault tolerance upon failures, as illustrated in Figure 2. In a previous work, 

we merged checkpointing mechanisms (CiC) with autonomic computing (MAPE control loop) [1]. In 

this work, we add an evaluation mechanism for each transaction that takes place in the system, we 

evaluate all Web services in play, allowing us to evaluate the overall QoS, as shown in Figure 2. By 

evaluating individual QoS values for Web services we can decide to checkpoint or to discard 

checkpoints depending on systems current behaviour. Our approach decreases the number of forced 

checkpoints when the system is maintained in good or fair condition, thereby reducing the overhead 

of the system. 

Next, we give a small description for the MAPE control loop and we establish how to complement 

it with this work. The Monitoring phase re-collects data from each of the processes for the system in play. 

Monitoring initiates the petitions, sending and receiving process’s requests/responses. This stage also 

computes QoS parameters such as response time, CPU and memory percentage usage. The Analysis 

layer, in charge of detecting abnormal situations and decision making based on extracted information 

from messages and logs, i.e., checks whether the behaviour of the system is normal, suffers any 

abnormality or if it is in a faulty state. To predict the immediate future state of the system, artificial 

intelligence and soft computing may be used, for example, based on autonomic computing [1] or 



 

  

 

   
 

 

  

 

    

 

any other approach that supports predictions like Hidden Markov Model (HMM) [31], Bayesian 

Networks [32,33] or Fuzzy Logic. The Analysis layer computes the overall QoS value at a given time, 

using soft computing, during any Web service transaction. We found that using fuzzy logic for QoS 

evaluation does not incur system degradation, as shown in the results section, i.e., it does not affect 

its performance. 

We consider the order of messages as well as their timing in communication events as these are 

relevant for system consistency. Therefore, we extrapolate the principles of the communication-induced 

checkpointing (CiC) mechanism to the Fault Tolerance layer. CiC does not only guarantee the order of 

messages and consistency, but it also establishes uniformity when building consistent global 

snapshots (CGSs). 

 

 
 
 
 
 
 

 

 
Figure 2. General Architecture. 

 

Distributed systems are dynamic; there exists competition for shared resources between diverse 

parties, for instance, many clients requesting to buy a product from a web which in turn request 

availability of the product to several service providers. Autonomic computing address such issues by 

introducing the notion of an autonomic manager; the autonomic manager is in charge of taking 

corresponding actions upon detecting anomalies in the system. The autonomic computing is proactive, 

in it, there exists a knowledgebase that generates information about previous experiences from 

monitored and managed elements. A fuzzy inference system can be used along with Managed Elements 

for diagnosis and learning purposes; in autonomic computing monitored elements are known as 

managed element. We represent non-functional requirements (QoS) as fuzzy variables. By monitoring 

QoS, at runtime, we easily know the behaviour of individual Web services and also for Web services 

compositions. Take for instance, Figure 3, for autonomic Web services, where Autonomic Managers 

control and manage Web services. 

Figure 3 shows the architecture for Autonomic Web Services. Web Services instances and the 

underlying infrastructure are the managed elements. These managed elements are monitored and 

controlled by Autonomic Mangers via touchpoint interfaces. 

F
C
S

E
 

F
C
S

E
 

F
C
S

E
 

F
C
S

E
 



 

 

 

Diagnosis 
 

 
 
 
 
 
 

 

Figure 3. Autonomic Web Service architecture. 
 

The Autonomic Manager has the following functions: 

• Monitoring: the monitoring module aims at detecting, at runtime, changes known as symptoms 

for managed elements, for instance, when monitoring the Service Level Agreements (SLA) and 

detecting deviations in response times. 

• Analysis: to analyze module gives a diagnosis about the current state of the system, based on 

monitored data, for instance, when QoS parameters overpass a certain threshold. We use FIS to 

evaluate and give a diagnosis for Web services. 

• The systems common Knowledgebase stores  policies;  these  policies  can  change  over  time.  The 

policies define configurations for monitored components and there exists predefined policies. New 

policies can appear when changes occur in the system; policies trigger corrective actions. Web 

services base their autonomic behaviour in these rules to achieve self-management functions. 

The autonomic computing establishes that systems have to learn and adapt to changes, we achieve 

such behavior by relying on FIS. FIS mimics human reasoning by adapting to abrupt changes in the 

system environment (changes that are usually not considered in the predefined policies). Therefore, 

FIS complements the Autonomic Manager by achieving an efficient diagnosis for systems behavior as 

it contemplates all its possibilities. 

4.2. Dynamically Checkpointing Autonomic Web Services 

On the one hand, the Fault Tolerance layer relies on the communication-induced checkpointing 

(CiC) mechanism [1]. On the other hand, we propose QoS assessment and systems performance 

evaluation for generating checkpoints dynamically, at any given time, thus obliterating the notion 

that CiC mechanisms have high implementation cost. Web services performance can be known using 

simple if-then rules, rules brought up by fuzzy logic. It is easy to evaluate a system and for it to adapt 

by establishing a set of rules from relationships between inputs (monitored data) and outputs (systems 

actual behaviour). We exploit QoS criteria by measuring systems non-functional requirements and 

simulate under different workloads. Therefore, managing the QoS threshold implies the ability to 

checkpoint, different CiC algorithms, in a dynamic manner. 

Measuring QoS parameters associated with messages exchanged between different processes; we 

propose a QoS temporal association. We define a fuzzy-consistency system between messages, we 

know the actual systems performance; we compute the overall QoS by retrieving information among 

exchanged messages and compute their individual QoS parameters. 

We formulate the FCSE based on the fuzzy-consistency system (FCS). Let the FCS relate monitored 

QoS parameters such as CPU, memory percentage usage and response time (RT) as follows: 

“The quality of system behaviour at a certain time t relative to the QoS parameters." 
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We consider three linguistic variables: 

• RT indicates the time it took a process to send a request up until it received its response back. 

• CPU % indicates the CPU usage; it is used as behavioural metric to know the performance at a 
certain time. 

• and the Memory % indicates the memory percentage usage; it is used as a behavioural metric to 
know the performance at a particular time. 

 

We use FIS to determine the state of the FCSE; next we give a brief definition: 

(a) Fuzzification: To fuzzify (as crisp values) inputs and outputs we use a triangular symmetric 

fuzzifier, for instance, Mamdani FIS (refer to Definition 10). Each variable was defined as follows: 

• RT: VG(e) associated to very good, G(e) associated to good, A(e) associated to average, B(e) associated 
to bad, and VB(e) associated to very bad. 

• for the CPU: CPU_L(e) associated to low, CPU_M associated to medium, CPU_H associated to high, 
and CPU_VH associated to very high. 

• and finally for the Memory MEM_L(e) associated to low, MEM_M(e) associated to medium, MEM_H 

associated to high, and MEM_VH associated to very high. 

Table 1 lists each linguistic variable and gives its corresponding fuzzy set. Where σ represents all 

the values for the response time, varying from the smallest value to the biggest value; based on ITU 

G.1010 standard values for Web services, preferred ∈ [0 − 2) seconds, acceptable ∈ (2 − 4) seconds 

and unacceptable ∈ (4 to infinity).  Where G represents all the values for CPU ∈ [0, 100].  Finally, ϕ 

represents all the values for the memory used at a specific time ∈ [0, 100]. 

Table 1. Membership functions and their corresponding variables. 
 

Variable Values of Membership Functions 
 

Set L C R 

VG σ0 σ2 σ0 σ2 

G σ0 σ2 σ4 

Response Time 

 
 

 
CPU 

 
 
 

Memory 

A σ2 σ4 σ6 

B σ4 σ6 σ8 

VB σ6 σ8 σ8 + σ2 

CPU_L G0 G2 G0 G2 

CPU_M G0 G2 G4 

CPU_H G2 G4 G6 

CPU_VH G4 G6 G8 

M_L ϕ0 ϕ2 ϕ0 ϕ2 

M_M ϕ0 ϕ2 ϕ4 

M_H ϕ2 ϕ4 ϕ6 

M_VH ϕ6 ϕ8 ϕ8 + ϕ2 
 

 

(b) Fuzzy inference (FI): 

We determine the FCSE by using Mamdani inference rules; thus, we compute the performance of 

the system (based on QoS parameters) at any particular time. 

We defined 80 combinations for inference rules [17], therefore computational is not considered. 

We argue that our evaluation does not incur in high system overhead, as experimental results show. 

(c) Defuzzification:  The output (FCSE) of the Mamdani FIS is a fuzzy variable, we convert it to   a 

scalar value easily interpreted by a human. We use the defuzzication for FIS’s output using the 

weighted average method, please refer to Definition 11. 



 

 
5. Results 

The results are twofold; first, we show the performance of our approach, and results show it does 

not incur in system degradation, i.e., as first step we only measure the fuzzy implementation. Second, 

we evaluate QoS non-functional requirements between all messages exchanged in the system, reducing 

dynamically the number of forced checkpoints diverse algorithms generate depending on actual 

systems behavior. 

5.1. Experimental Setup 

The first aim of the experiments is to show that using our solution does not incur in high system 

overhead; we established a simulation environment with the following characteristics; we deployed 

Web services to carry out dummy services, yet interactive enough to intercommunicate with other 

Web services and service providers; we simulated different workload conditions for diverse system 

performance; we measure our model of fuzzy non-functional parameters. 

We experimented in a Dell Precision Workstation with the following characteristics: 16 GB RAM, 

Windows 7 64-bit operating system. We host the WS02 Application Server for Web services deployment, 

and we stress-test those Web services with concurrent requests incoming from diverse JAVA based 

clients, to have a more or less real-world situation, for instance, when diverse clients are trying to buy 

something online from different service providers. We used the Jfuzzylogic http://jfuzzylogic. 

sourceforge.net/html/index.html framework for the FCSE and fuzzy related programming compatible 

with JAVA. 

5.2. Fuzzy Setup 

We performed two experiments. The first experiment, consisted of measuring systems 

performance using and not using the proposed evaluation method. The second experiment, consisted of 

stress-tests for diverse system performance and the overall QoS evaluation to dynamically checkpoint 

using three different communication-induced tools such as DCFI, FI and FINE. 

First, we described the corresponding membership functions for inputs and outputs. The RT 
(response time) was ∈ (0, 100) seconds. ITU G.1010 tries to standardize Web services performance for 

real-life scenarios and recommends the following values: preferred ∈ (0, 2) seconds, acceptable ∈ (2, 4) 

seconds and unacceptable ∈ (4, in f inity). CPU % and Memory % usage ∈ (0, 100), depending on its 

actual usage. The FCSE ∈ (0, 5), in charge of the overall QoS; we associated a membership function 

with all the variables above as shown in Table 2. 

Just to clarify, the FCSE set is associated to the following linguistic variables: 

• FCSE: FCSE_VH(e) associated to very high, FCSE_H(e) associated to high, FCSE_A(e) associated to 

average, FCSE_L(e) associated to low, and FCSE_VL(e) associated to very low. 

FCSE evaluation gave crisp output values ∈ (0, 5); if the FCSE output value was close to zero, 

meaning no degradation of the system was found, the FCSE was very high, therefore the RT crisp value 

corresponded to very high; the CPU % and Memory % usage crisp values were very low. Contrarily, 

if the FCSE crisp value was close to five, it means the system suffered degradation; if the FCSE was 

very low it resembled performance problems, therefore, Web services had very high RT and very high 

CPU % and Memory % usage. 

http://jfuzzylogic.sourceforge.net/html/index.html
http://jfuzzylogic.sourceforge.net/html/index.html
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Table 2. Membership functions values for inputs and outputs. 

 

Variable Values of Membership Functions 
 

Input 

Set L C R 

VG −2.5 0 2.5 

Response Time 

 
 
 

 
CPU 

 
 
 

Memory 

 
 
 
 

FCSE 

G 0 2.5 5 
A 2.5 5 7.5 
B 5 7.5 10 

VB 7.5 10 12.5 

CPU_L 33.33 0 33.33 
CPU_M 0 33.33 66.67 
CPU_H 33.33 66.67 100 

CPU_VH 66.67 100 133.3 

M_L 33.33 0 33.33 
M_M 0 33.33 66.67 
M_H 33.33 66.67 100 

M_VH 66.67 100 133.3 

Output 

FCSE_VH 1.25 0 1.25 
FCSE_H 0 1.25 2.5 
FCSE_A 1.25 2.5 3.75 
FCSE_L 2.5 3.75 5 

FCSE_VL 3.75 5 6.25 
 

 

 
5.3. Performance Evaluation 

 

5.3.1. Using QoS Criteria for Diagnostics 

From the first experiment,  recall that the purpose was to stress-test Web  services with a lot     of 

concurrent requests and to measure our proposed approach and the impact it has in systems 

performance. We obtained the following results: Figures 4 and 5 show the same number of messages 

sent from 10 clients up to 5000 clients. In both Figs. we report the average response time; the response 

time measured the time it takes a client from sending their request (a message) until they get their 

response back (from a service provider). From Figures 4 and 5 we observed that the average RT and 

its corresponding standard deviation were quite similar in both (approaches without QoS evaluation 

and after using the QoS evaluation based on FIS) graphs for all cases even after highly increasing the 

number of clients; the QoS evaluation performed better by reducing abrupt increments in the average 

response time as the number of clients grows. In collaborative environments where 

intercommunication take place an important issue is resource usage and storage. Therefore, proposed 

solutions must remain constant and scalable even in the presence of large-scale environments, our 

solution aims to support these issues, and as illustrated by Figure 5. Besides, our proposal remained 

constant for a high number of interactions; therefore, it is scalable. 
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Figure 4. No QoS evaluation computing average response time and its standard deviation. 
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Figure 5. Using QoS evaluation, computing average response time and its standard deviation. 
 

To have a significant statistical sample, we executed each run for 100 times. For instance, when 20 

concurrent clients requested a Web service we collected 2000 samples, and computed their average RT 

and standard deviation, as shown in Figure 5. For 50 concurrent clients, we collected 5000 samples, 

so on. In addition, each scenario constituted a dedicated server that hosted Web services and each 

Web service instance computed the overall QoS for each request/response. Specifically, computing at 

runtime, at any point in time, the fuzzy-consistency system evaluation (FCSE). The statistical sample 

size followed the Cochran’s sample size formula [34]: 

t2 pq 
n =  

d2 

(1.65)2(.5)(.5) 

n = 
(0.0825)2 

= 100
 

where t = value for the selected alpha level of 0.05 in each tail = 1.65, (p)(q) = estimate of variance = 

0.25, d = acceptable margin of error for the portion being estimated = 0.0825 (the error researcher was 

willing to accept 8.25% for our case). 

From Figures 4 and 5 we can conclude that the proposed QoS evaluation approach slightly 

incremented the average RT, however, it remained constant, and it helped having a fast evaluation of 

the system at any time. The evaluation helped us to diagnose the system and take proactive actions, 

in our case decide if a checkpoint was essential or not. Hence, we could compute the evaluation of the 

system; at runtime our next goal was to leverage this calculation. Adapting to changes in the 

environment one can take advantage by establishing policies for QoS non-functional requirements and 

reduce the number forced checkpoints taken. In the next section, we show how by evaluating QoS 

T
im

e
 i
n

 m
s

 
T

im
e

 i
n

 m
s

 



 

   DCFI(FCSE 0.625) 

FINE(FCSE 0.625) 

      
FI (FSCE 0.625) 

DCFI(FCSE 1.25) 

     FINE(FCSE 1.25) 

       FI (FSCE 1.25) 

DCFI(FCSE 1.875) 

    FINE(FCSE 1.875) 

FI (FSCE 1.875) 

      DCFI(FCSE 2.5) 

      FINE(FCSE 2.5) 

   FI (FSCE 2.5) 

   DCFI(FCSE 3.125) 

FINE(FCSE 3.125) 

      FI (FSCE 3.125) 

     DCFI(FCSE 3.75) 

FINE(FCSE 3.75) 

       FI (FSCE 3.75) 

   DCFI(FCSE 0.625) 

FINE(FCSE 0.625) 

      FI (FSCE 0.625) 

 DCFI(FCSE 1.25) 

     FINE(FCSE 1.25) 

       FI (FSCE 1.25) 

 DCFI(FCSE 1.875) 

    FINE(FCSE 1.875) 

  FI (FSCE 1.875) 

      DCFI(FCSE 2.5) 

      FINE(FCSE 2.5) 

   FI (FSCE 2.5) 

   DCFI(FCSE 3.125) 

FINE(FCSE 3.125) 

      FI (FSCE 3.125) 

     DCFI(FCSE 3.75) 

FINE(FCSE 3.75) 

       FI (FSCE 3.75) 

 

non-functional parameters we can discard useless checkpoints regarding Web services’ behavior at 

any given time. 

5.3.2. Dynamic Checkpointing for CiC Algorithms 

We ran different scenarios with diverse values for QoS parameters, and followed an exponential 

distribution, simulating real-world conditions, see Figures 6–8. Therefore, the crisp values for the 

FCSE varied from 0 to 5 after evaluated by the FIS system; this was named the FCSE window. This 

window can be very rigorous; for instance, we took forced checkpoints when the output computed 

crisp value of the FCSE satisfied that it was equal to 0.625 or lower. We referred to a relax window  to 

that one allowing a more degraded system, having an FCSE crisp output value of 3.75. Also, we 

considered crisp intermediate values between the rigorous window and the relaxed window and 

evaluate windows with the following values: 0.625, 1.25, 1.875, 2.5, 3.125, y 3.75. 
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Figure 6. The number of forced checkpoints for 1000 messages sent. Evaluating three Quality of Service 

(QoS) non-functional parameters. 
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Figure 7. The number of forced checkpoints for 2500 messages sent. Evaluating three Quality of Service 

(QoS) non-functional parameters. 
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Figure 8. The number of forced checkpoints for 5000 messages sent. Evaluating three Quality of Service 

(QoS) non-functional parameters 

In order to show that our proposal can be adapted, to simulate several system requirements,  we 

also ran different scenarios where we include four QoS non-functional parameters, such as CPU 

(Good Medium, Bad), Memory (Good, Medium, Bad), Response Time (Good, Average, Bad) and 

Reliability(Good, Average, Bad), see Figures 9–11. 

We compared the performance of three different CiC algorithms, namely DCFI, FI and FINE. 

These were chosen because they are recent algorithms and the most efficient reported in the literature. 

We simulated and analyzed these three algorithms using the distributed checkpointing simulator 

ChkSim [16] and JFuzzyLogic. ChkSim simulator, models distributed systems in a deterministic 

manner reproducing the same behavior for two or more algorithms, and allows running simulation as 

often as necessary. We took the number of forced checkpoints as key performance indicator to compare 

each checkpointing algorithm regarding the overhead each one of them produce. 
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Figure  9. The  number  of  forced  checkpoints  for  1000  messages  sent. Evaluating four QoS 

non-functional parameters. 
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Figure 10. The number of forced checkpoints for 2500 messages sent. Evaluating four QoS non-

functional parameters. 
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Figure 11. The number of forced checkpoints for 5000 messages sent. Evaluating four QoS non-

functional parameters. 

In Figures 6–8, we analyzed the performance of three different communication-induced 

checkpointing mechanisms (DFCI, FINE, and FI) in terms of forced checkpoints. We used the next 

configuration; scenario one consisted of 0 to 160 concurrent clients each sending 1000 messages; 

scenario two consisted of 0 to 160 concurrent clients each sending of 2500; scenario three consisted 0 

to 160 concurrent clients each sending 5000 messages; for each scenario, we varied the QoS window. 

Again to have a significant statistical sample we executed each point of each scenario for 100 iterations 

with different checkpointing patterns as well as their communication or messages exchanged. 

Figures 6–8 shows that the DCFI, for all checkpointing mechanisms, generated the lowest number 

of forced checkpoints, this has to do with the QoS window. For example, for a rigorous QoS the number 

of forced checkpoints was similar to the one presented observed for DCFI without using our approach. 

Yet, as the window relaxed the number of forced checkpoints reduced drastically. For all cases the 

best performing checkpointing mechanism was the DCFI, because it generated fewer checkpoints 
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compared to FI and FINE. FI was the second-best checkpointing mechanism, and FINE also reduced 

its checkpointing generation but compared to the other two mechanisms it presented the worst cases. 

Experiments presented in Figures 9–11 shows that if the number of non-functional parameters 

increased to evaluate the system performance, then this allowed relaxing and detecting smaller changes 

in the system behavior; as a consequence, fewer forced checkpoints were generated. For all the cases 

presented in these Figs. the number of checkpoints generated was lower by improving the granularity 

that monitors the system behavior. 

To conclude this section, based on results presented in Figures 6–8, we can argue that our approach 

correlated both cost (QoS parameters: response time, CPU, Memory, reliability) and benefit (how well 

the system behaves) in the following way: 

• When QoS was very high it implied saving checkpoints, because there were enough resources 
available, and the cost of storing checkpoints was minimal. 

• When QoS was very low it implied not saving many checkpoints, because there were not enough 

resources available, yet our approach saved some checkpoints for preserving consistency upon 

a failure. 

• The granularity to monitor the system performance through non-functional parameters allowed us 

to detect smalls changes, and the system evaluation was enriched; hence fewer forced checkpoints 

could be generated when the system behavior was good. 

5.4. Comparison between Static Approaches and Our Proposed Dynamic Approaches 

We designed a case of study to observe the differences between static CiC approaches, that did 

not adapt to the degradation of the system, and our proposal. The case of study considered that the 

QoS conditions to satisfy were the most demanding, so it was necessary to guarantee the highest QoS 

for the attention of users. Tables 3–5 show how as the number of messages and processes increased, 

considering the idealized conditions with the highest rigor in the quality of service parameters, using 

the most rigorous QoS window of 0.6225; there was a small decrease in the number of forced 

checkpoints and even in some cases the number of forced checkpoints taken were the same. We 

reduced the number of forced checkpoints by 0.2% to 4% with respect to CiC static methods, however 

Tables 3–5 only show the QoS rigorous case; the reduction in the number of forced checkpoints is 

clearly expressed in Figures 6–8, which would be more significant for environments where the quality 

of service could be relaxed without compromising the system efficiency if applications allowed. 

 
Table 3. Comparison between static approach and dynamic approach for 1000 messages. 

 

No of 
Processes 

DCFI 
No Fuzzy 

DCFI 
Fuzzy 

Reduction 
% 

FINE 
No Fuzzy 

FINE 
Fuzzy 

Reduction 
% 

DCFI 
No Fuzzy 

DCFI 
Fuzzy 

Reduction 
% 

10 131 131 0 139 138 0.7194 143 142 0.6993 
20 143 142 0.6993 146 145 0.6849 148 147 0.6757 
30 145 144 0.6897 147 146 0.6803 148 147 0.6757 
40 145 144 0.6897 147 146 0.6803 148 146 1.3514 
50 145 144 0.6897 146 145 0.6849 147 146 0.6803 
60 143 142 0.6993 144 143 0.6944 145 144 0.6897 
70 142 141 0.7042 143 142 0.6993 144 143 0.6944 
80 144 142 1.3889 144 143 0.6944 145 144 0.6897 
90 142 141 0.7042 142 141 0.7042 143 142 0.6993 
100 139 137 1.4398 139 138 0.7194 140 139 0.7143 
110 139 138 0.7194 139 138 0.7194 140 139 0.7143 
120 137 136 0.7299 137 136 0.7299 137 136 0.7299 
130 135 134 0.7407 135 134 0.7407 136 135 0.7353 
140 133 132 0.7519 133 132 0.7519 134 133 0.7463 

150 133 132 0.7519 133 132 0.7519 134 133 0.7463 

 
Hence, it is essential to remark that when we established a very high quality of service, our model 

behaved almost similar to static CIC approaches. This is possibly because the fuzzy evaluation 



 

 

approach can adapt its behavior and maintain the system consistency and efficiency regarding to 

established QoS parameters by the user. To conclude, adaptability goes hand on hand with the allowed 

system degradation, since the number of forced checkpoints generation is adjusted for situations where 

the quality of service can be relaxed. 

 
Table 4.  Comparison between static approach and dynamic approach for 2500 messages. 

 

No of 
Processes 

DCFI 
No Fuzzy 

DCFI 
Fuzzy 

Reduction 

% 

FINE 
No Fuzzy 

FINE 
Fuzzy 

Reduction 

% 

DCFI 
No Fuzzy 

DCFI 
Fuzzy 

Reduction 

% 

10 331 328 0.9063 367 350 4.6322 375 359 4.2667 
20 359 357 0.5571 371 369 0.5391 378 375 0.7937 
30 368 366 0.5435 377 374 0.79576 383 378 1.3055 
40 374 372 0.5347 379 376 0.79156 383 382 0.2611 
50 375 373 0.5333 379 377 0.5277 382 378 1.0471 
60 373 370 0.8043 376 374 0.5319 379 378 0.2639 
70 375 372 0.8 377 377 0 382 379 0.7853 
80 378 376 0.5291 380 377 0.7894 382 380 0.5236 
90 376 374 0.5319 378 374 1.0582 380 378 0.5263 
100 374 372 0.5347 376 373 0.7979 378 377 0.2646 
110 374 371 0.8021 376 372 1.0638 377 374 0.7958 
120 371 368 0.8086 372 368 1.0753 374 371 0.8021 
130 369 366 0.8130 370 368 0.5405 372 371 0.2688 
140 369 367 0.5420 371 369 0.5391 372 372 0 

150 370 367 0.8108 371 369 0.5391 372 371 0.26882 

 
Table 5.  Comparison between static approach and dynamic approach for 5000 messages. 

 

No of 
Processes 

DCFI 
No Fuzzy 

DCFI 
Fuzzy 

Reduction 
% 

FINE 
No Fuzzy 

FINE 
Fuzzy 

Reduction 
% 

DCFI 
No Fuzzy 

DCFI 
Fuzzy 

Reduction 
% 

10 661 656 0.7564 698 693 0.7163 752 717 4.6543 
20 721 717 0.5548 740 734 0.8108 763 752 1.4417 
30 741 737 0.5398 754 749 0.6631 772 763 1.1658 
40 755 749 0.7947 764 759 0.6545 776 772 0.5155 
50 762 757 0.6562 769 764 0.6510 776 769 0.9021 
60 757 752 0.6605 764 759 0.6545 773 769 0.5175 
70 763 758 0.6553 768 763 0.6510 778 773 0.6427 
80 769 764 0.6510 774 768 0.7752 778 774 0.5141 
90 765 760 0.6536 770 765 0.6494 774 770 0.5170 
100 763 758 0.6553 763 761 0.2621 772 770 0.2591 
110 763 760 0.3932 765 763 0.2614 772 770 0.2591 
120 764 759 0.6545 764 762 0.2618 770 767 0.3896 
130 761 756 0.6570 764 759 0.6545 769 767 0.2601 
140 764 758 0.7853 767 761 0.7823 771 769 0.2594 

150 765 760 0.6536 768 761 0.9115 771 769 0.2594 

 
6. Discussion 

Implementing the communication-induced checkpointing (CiC) mechanism to whichever 

device or system, brings benefits such as supporting fault tolerance, and increments regarding 

dependability. We leverage the fact that there is a trade-off between systems performance under 

different circumstances, i.e., when system performance is correct and when system performance suffers 

degradation or deviations. Therefore, we minimize performance issues due to storage space and 

propose a solution that checkpoints efficiently. 

Various approaches for distributed checkpointing algorithms are available (see Section 2), but most 

of them rely their efforts on strategies on how to checkpoint and avoid dangerous patters: zigzag paths 

and z-cycles. Most do not consider discarding forced checkpoints and therefore, are not appropriate for 

less powerful devices, cannot consider non-functional requirements and cannot discard unnecessary 

the frequency for checkpointing in their solutions. 

Considering QoS while the checkpointing mechanism is run, systems can leverage opportunities 

to discard forced triggered checkpoints. Thus the frequency for generating checkpoints is diminished. 



 

 
7. Conclusions 

We show the first solution that allows a dynamic and adaptable generation of forced checkpoints. 

Carried out through a fuzzy consistency system evaluation, identifying useless forced checkpoints. 

We compared three different communication-induced checkpointing-based mechanisms; experimental 

results demonstrate our efficiency, as we managed to reduce the number of forced checkpoints, 

because we took into account the quality of service (QoS) of the system at a given time. We consider 

systems non-functional requirements for the generation of checkpoints, we dynamically adapt to 

changes in the system since we consider good and bad system performance for our measurements; we 

consider a window of rigorous quality of service as well as a relaxed window. For these windows the 

delayed checkpointing algorithm (DCFI) outperforms other algorithms and has the least number of 

forced checkpoints. We reduced the number of forced checkpoints by using our approach; experimental 

results show that the DCFI mechanism has better performance over FI and FINE. For instance, DCFI 

performs better than the other two mechanisms but only 3% better. All compared algorithms reduce 

their generation of forced checkpoints, however, as shown in the results the reduction depends on the 

actual systems behavior. We can also argue that CiC based solutions are scalable because they continue 

to work correctly even in the presence of a high number of interactions. Plus these kinds of solutions 

increase systems dependability without harming systems performance. 

As future work, we can assign a weight to all inputs and check if a gain or reduction, in terms of 

the number of forced checkpoints, is present for diverse communication-induced checkpointing 

mechanisms. In addition, we will extend the proposed solution by including a self-healing mechanism 

in order to detect malicious attacks and carry out system recovery by fuzzy evaluating the consistency 

of the system. 
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The following abbreviations are used in this manuscript: 

CCP Checkpointing an Communication Patterns 

CGS Consistent Global Snapshot 

CiC Communication-induced Checkpointing 

DCFI Delayed Checkpointing Fully Informed 

FCS Fuzzy Consistency System 

FCSE Fuzzy Consistency System Evaluation 

FI Fully Informed 

FINE Fully Informed aNd Efficient 

HMM Hidden Markov Model 

QoS Quality of Service 

WS Web Services 
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