
A hierarchical fault tolerant architecture for an
autonomous robot

Anthony Favier, Antonin Messioux
LAAS-CNRS

INPT ENSEEIHT, Univ. of Toulouse
Toulouse, France

{anthony.favier, antonin.messioux} @etu.enseeiht.fr

Jérémie Guiochet, Jean-Charles Fabre
LAAS-CNRS

UPS, INPT, Univ. of Toulouse
Toulouse, France

{jeremie.guiochet, jean-charles.fabre}@laas.fr

Charles Lesire
ONERA/DTIS

Univ. of Toulouse
Toulouse, France

charles.lesire@onera.fr

Abstract—This paper presents a generic approach to specify
a fault tolerant robot controller, and its implementation and
validation with ROS and Gazebo. The main idea is to implement
a fault tolerance strategy using a fault tree and an ordered set of
recovery modules. A fault injection campaign has been carried
out with a mobile autonomous robot for airport inspection using
simulation with Gazebo and ROS. This successful experiment
implements a safety-first strategy.

Index Terms—Fault tolerance, Autonomous mobile robot, Sim-
ulation, Fault injection, ROS, Gazebo

I. INTRODUCTION

Increasing complexity and autonomy of tasks performed by
mobile robots, requires to deploy more and more techniques
to analyse and guarantee confidence in such systems [1].
Among all dependability techniques, fault tolerance, defined
as a technique to avoid service failures in the presence of faults
[2], has been widely used in robots and autonomous systems.
Basically, a fault tolerance mechanism (FTM) is composed
of a detection module (DM) and a recovery module (RM).
This definition is applicable to basic redundant architectures
(e.g., redundant sensors), to more complex fault tolerant ar-
chitectures (e.g. at the localization function level [3], or at the
system level [4]), and it is also widely used in component-
based robot controllers [5]. However, such approaches fail to
address an issue which is the coordination between several
fault tolerance mechanisms included in the robot controller at
different layers. Indeed, when integrating FTM, the recovery
actions may be triggered in a concurrent way, which can lead
to unwanted states of the system. For instance, a FTM could
be in charge of respawning some active control components,
which are actually required by another FTM to stop the robot.
To cope with such situations, our approach is to define a
partial order between FTM based on a fault tree analysis, and
another one for RM impact on safety. Based on these basic
elements, we propose a basic safety-first strategy implemented
in a FTM Manager. We apply this approach to a simulated
mobile autonomous robot checking lights on airport runways
in a ROS/Gazebo environment.

This paper first introduces the case study, the Osmosis
project [6], in section III. Then we present an overview of
the approach in section IV and its application in section V.
Lessons learnt are provided in the conclusion.

II. RELATED WORK

Fault tolerance is at the very heart of robotic and au-
tonomous systems community interest. Indeed, in the SPARC
roadmoap [7], the proposed “dependability levels” actually do
not address dependability as a whole, but defines levels of
autonomy of the robot regarding fault tolerance (e.g. how
the system is able to autonomously manage, even predict,
and recover from faults). If most of the work in robotic
fault tolerance was developed to cover hardware failures (e.g.,
for industrial manipulators in [8], [9]), the concept has been
extended to the complete architecture of robot and autonomous
systems, from the functional layer to the decisional layer.
At the functional level, fault tolerance in robotics has been
experimented for actuators, sensors or perception software
errors. For instance, [5] propose to develop dedicated monitors
for each software component for mobile robots, which is
also done in [10]. In these papers, timing or reasonableness
checks are performed for hardware and software modules
with recovery mechanisms impacting the decisional level (for
instance, reduce the autonomy level of the robot). In [11],
the faults from environment and sensors are detected and
recovered in the layer responsible for action sequencing and
execution in autonomous robot. In case of error detection, the
corresponding function is executed in a fall-back mode. Other
functions are chosen to deliver the same task or the level of
autonomy is reduced by switching to a tele-operated mode. In
this case, the decisional layer is disconnected. At decisional
level, some works on “execution monitoring” [12]–[14] fo-
cus on planner capacity to cover errors, like environmental
hazards [15] or faults in the hardware layer [16]. There are
actually few works really focusing on fault tolerance at the
decisional level as in [17]–[19], and one popular approach is
to use active safety monitors in independent layers as fault
tolerance mechanisms [4], [20]–[22].

All these works are actually focusing on detection and re-
covery mechanisms dedicated to specific layers in autonomous
robot architecture, but do not address the issue of synchronisa-
tion between fault tolerance mechanisms. Such approach can
be found in distributed systems [23] and networks [24], but
they are globally more focusing on synchronisation protocols
rather than on the consistency between the recovery mecha-



Fig. 1. The simulated Summit Xl robot and the airport with Gazebo

Mission
Manager HMI

Graph
Planner

Osmosis
control

Safety
Pilot

summit xl

Localization

Teleoperation

Fig. 2. Osmosis controller ROS-nodes architecture

nisms that can be triggered by the fault tolerance mechanisms.
Another important point is that they usually do not deal with
detection and recovery mechanisms that can be implemented
at different levels of abstraction in the architecture. In an
autonomous architecture, fault tolerance mechanisms have
to deal with several levels of abstraction, from functional
layer to the decisional layer. Hence, managing consistency
between these mechanisms while dealing with different levels
of abstraction is still an open issue in autonomous systems.

III. OSMOSIS CASE STUDY

The OSMOSIS experiment [6] is inspired from the SafeAM
experiment as part of the CPSE Labs project [25]. In this
experiment, we consider an autonomous mobile robot able
to navigate on the airport like in Figure 1 in order to reach
runways, and then proceed to light inspections by driving
along the light row and grabbing light intensity data using
a specific sensor. For this experiment, we use the simulator
Gazebo, and the simulated robot Summit XL from Robotnik
[26] presented in Figure 1 running under ROS.

The proposed control architecture is shown on Figure 2,
where only nodes and data flow are presented. The complete
code and its simulator is available at [6]. The mission is
basically a description of which runway the robot has to check
(e.g., runway A and B). Two basic control modes are applied
: “taxi” when the robot has to reach the starting point of a
runway, the robot is able to avoid obstacles using a potential
field algorithm, and “light verification” when the robot is on a
runway and checking the lights, in this case the robot just stop
in case of an obstacle presence, and wait until the obstacle is
removed. The mission manager is in charge of transmitting the
objective point and the associated control mode (taxi or light-

verif), the graph planner computes the trajectory using a graph
of the airport, and send intermediary points to the Osmosis
Controller which is charge of computing the speed command
according to the current intermediary point to reach. The safety
pilot is in charge of passing commands, unless an obstacle is
too close (then the system switches to controlled stop, i.e.
a 0 speed command is sent), or a preemptive request for
teleoperation (with a joystick). The summit xl layer provides
the simulated sensors (odometry, hokuyo laser, IMU, GPS)
and actuators (in this case only a linear and angular speed
control node). In the current version we use the absolute
localization published by Gazebo instead of fusion between
IMU, Odometry and GPS as it is done on the real platform.

IV. APPROACH OVERVIEW

The basic steps of the deployment of our approach are
presented below and detailed hereafter:

1) Analyse the fault propagation chain with a fault tree;
2) Identify fault tolerance mechanisms (FTM) mitigating

the effect of the unwanted events in the fault tree;
3) Export the resulting FTM tree (FTMTree) and identify

the recovery modules partial order (RMGraph);
4) Choose the recovery strategy that will be implemented

in the FTM Manager.
Among all the risk analysis techniques, the fault tree anal-

ysis is still one of the most used in industry and research.
It basically consists of a top-down analysis, starting from the
unwanted event (also called “top event”, e.g., “unwanted stop
of the robot”), and identifying the combination of unwanted
events that may lead to this top event. This combination is
usually modeled with OR and AND gates. Note that few
concepts are required to start using it, whereas a high expertise
is required to develop effective trees.

The second step is to identify all fault tolerance mechanisms
that could mitigate the effect of the unwanted events that are
identified in the fault tree. A fault tree analysis is usually done
to find minimal cut sets in order to identify weaknesses of
the design, or to estimate the probability of the top event.
In our case, we do not investigate such a use of the fault
tree analysis, nor a complete risk analysis, but only focus on
how a fault tree could be a tool for developing fault tolerance
mechanisms. As it will be the case in next section, not all
unwanted events of a fault tree could be mitigated by a fault
tolerance mechanism, but this is out of the scope of this paper.
A fault tolerance mechanism (FTM) can be represented as a
barrier, as it is done in the left part of bow-tie diagrams [27],
to mitigate the propagation of the unwanted events. We chose
to define a FTM by its two main modules: a detection module
(DM) and a recovery module (RM). A FTM is thus defined
as FTMx “ pDMy,RMzq. A DM could be a timing or
value error detection, with basic comparisons or more complex
detection with active components such as watchdogs. For RM
we stick to the three basic ones : forward, backward, and
masking [2]. Forward recovery is usually a mission level action
(i.e. emergency stop, or controlled stop), whereas backward
recovery and masking are used at component level.



DM1

DM2
...

DMn

FTM Manager

FTMTree RMGraph

RM1

RM2
...

RMn

Fig. 3. FTM Manager inputs and outputs

Idle

resetdetect

Active

Idle

stop

do/ do Recovery

start

Activated

Fig. 4. DM and RM state machines

The FTM tree in the third step is actually a direct translation
of the previous fault tree (where FTMs act as barriers), where
the relation order is the distance in the cause-consequence
chain to the top event. For instance, in the tree of Figure 6,
FTM1 (details are given in the next section) is the root
mechanism, whereas FTM5 and FTM7 are leaves of the
tree.

For the RMGraph, the partial order relation between RM
depends on the objective of the overall fault tolerance strategy.
For instance, let us consider only two RMs, “Emergency Stop”
(a complete shutdown of the power supply leading to block
the wheels in our case study) and “Controlled stop” (sending
a zero value for the speed command, but keep the control
loop active). In a mission-first strategy, the “Emergency Stop”
(which drastically impact the mission fulfilment) might be
ordered differently if the strategy would be safety-first. In
such a safety-first strategy, the relation order would be “is
safer than”, expressing the fact that the safety of the reached
state after activation of the “Emergency stop”, would be safer
than “controlled stop”. “Safer” would be estimated based on
potential severity and likelihood of a harm induced by the
robot in case of failure or adverse situation.

The last step is the specification of the strategy that should
be implemented, particularly when two (or more) FTM are
concurrently active. In a safety-first strategy, which has been
implemented in our case study, we manage to execute the
FTM according to the FTMTree and the RMGraph as it is
presented in Figure 3. The role of the FTM Manager is to
centralize all detections and prioritize recovery modules. Our
implementation is based on state machines to handle such
situations (see Figure 4). Basically, DMs have two states,
Idle and Active, and RMs have also two states Idle and
Activated. An FTM is said to be Active when its DM is
Active, and Activated when its RM is Activated. The FTM
Manager is responsible for controlling the situation where one

TABLE I
DETECTION MODULES DESCRIPTION

DM1 Prohibited Area A redundant device is able to detect if
the robot reach a prohibited area

DM2 Command not updated Freshness of command is assessed
DM3 Wrong command value Out-of bounds error detection
DM4 Control node crash A watchdog is associated to the main

control node
DM5 Non-control nodes
crash

A watchdog is associated to all nodes

DM6 Localization not up-
dated

Freshness of localization is assessed

DM7 Localization node
crash

A watchdog is associated to the local-
ization node

TABLE II
RECOVERY MODULES DESCRIPTION

RM1 Emergency stop A command to engage brakes at low
level is simulated

RM2 Controlled stop Linear and angular speed are assigned
a 0 value.

RM3 Respawn Control
nodes

Osmosis Control, Mission Manager,
Graph Planner are respawn

RM4 Respawn Non-control
nodes

Respawn non-control nodes (Teleoper-
ation, Localization, HMI)

RM5 Switch to teleoperation The safety pilot is activated to only
execute commands from the joystick

FTM is Activated and another FTM becomes Active.
Our objective is to deploy an architecture of the FTM

Manager allowing the developers to specify several strategies
with no modification of the implemented DMs and RMs. In
the next section, we chose to implement a safety-first strategy,
which always leads to activate only one RM, but as we are
using concurrent objects programmed with state machines
in the DM and RM abstract classes, the strategy may be
easily changed to allow an activation of simultaneous recovery
mechanisms, and each state machine could also be extended
using inheritance.

V. APPLICATION TO OSMOSIS

The experiment has been carried out on only one fault tree,
i.e. for one top event. We chose to study the top event “moving
inside a prohibited area” among the identified hazards. A
simplified fault tree is presented Figure 5. This fault tree was
analyzed to identify FTMs that could mitigate the propagation
of unwanted events that induce the previous top event.

The FTMs are presented Figure 6, where FTMx “

pDMy,RMzq is used to associate a detection module (DMy)
to a recovery module (RMz). The complete list of DMs and
RMs for this experiment are given in Table I and II. Not all
unwanted events could be mitigated in this fault tree with
FTMs, for this paper we do not address this issue, but on
how existing fault tolerance mechanisms could coexist.

For this proof-of-concept paper, we chose to implement
recovery mechanisms of several types. RM1, RM2 and RM7
are forward recovery (the system goes in a new state). In
table II, “Control nodes” are those that contain mission data



Moving inside a
prohibited area

Erroneous graph Erroneous
command

Localization error

Error in
localization
estimation

Localization
not updated

Command
not updated

Control
node crash

Non control
node crash

Command
calculation error

Actuator failure

Fig. 5. Fault tree for the top event “moving inside a prohibited area”

FTM3=(DM3,RM2)

Moving inside a 
prohibited area

Erroneous graph Erroneous 
command

Actuator
failure

Command not
updated

FTM1=(DM1,RM1)

FTM2=(DM2,RM2)

FTM4=(DM4,RM3) FTM5=(DM5,RM4)

FTM6=(DM6,RM5)

FTM7=(DM7,RM4)

Command 
calculation error

Control node 
crash

Non-control 
node crash

Localization not
updated

Localization node 
crash

Localization 
error

Error in 
localization value 

estimation

Fig. 6. FTM as barriers added to the fault tree of the top event “Moving
inside a prohibited area”

(i.e. Mission Manager, Graph Planner, Osmosis Control in
Figure 2). “Non-control nodes” are Localization, HMI and
Teleoperation (because they are memoryless, they can easily
be restarted). The Safety Pilot node is not considered as a
functional node, because it is part of the recovery mechanism
implementation. In short, we should consider that this node
cannot crash otherwise fault tolerance is not guaranteed. RM4
is a simple restart of control nodes. RM3 could be qualified
as a backward recovery technique since “Control nodes” must
be restarted with previously checkpointed states.

A. Strategy algorithm

The proposed strategy algorithm is provided in Figure 7 and
the complete code and UML diagrams of the implementation
are available at [6].

We implement a safety-first algorithm that always select
the highest FTM (in the FTMTree) in case of concurrent
activation, but also able to manage concurrent non-ordered
FTMs using the RMGraph. In this study, we chose to use
the following partial order sets (poset) for the FTMTree “ă

FTM,ľą where FTMx ľ FTMy means “FTMx is closer
to the unwanted event in the cause-consequence chain than
FTMy”. In the same way, we define RMGraph “ă RM,ľą

where RMx ľ RMy means “RMx is safer than RMy”,
i.e. the probability and severity of potential harm after RMx
engaged, is less than for RMy (such a risk matrix is usually
done by the experts). The resulting poset is represented with
a Hasse diagram in Figure 8.

In the FTMTree we will use the dominance function
usually used in control flow, defined by: an element FTMx
dominates an element FTMy if every path from the root node
to FTMy go through FTMx. For instance, in Figure 8(a),
FTM1 “ dompFTM1, FTM2, FTM4q. If no dominant
is found, the function returns 0. The function lowest com-
mon dominant (low com dom) corresponds to the closest
parent node of a set of nodes in the tree. For instance, the
lowest common dominant of FTM4 and FTM5 is FTM2,
i.e. low com dompFTM4, FTM5q “ FTM2. This lowest
common dominance of a subset A of the set P, could be
formally defined by : a “ low com dompAq iff Ex P P, px “
dompA, xq ^ a “ dompxqq.

The dominance function is also used for the RM-
Graph, such that dompRM5, RM3, RM4q “ RM5 and
dompRM3, RM4q “ 0 (there is no dominance between RM3
and RM4).

The proposed algorithm shown in Figure 7 is following
basic steps in case of simultaneous active FTMs. Let FTM*
be the set of active FTMs. If only one FTMx is active,
then the corresponding RM is activated (noted RM(FTMx)



Input Update

Only one FTMx
active ?

dom(FTM*)=FTMy ?
(FTMTree)

dom(RM*)=RMz ?
(RMGraph)

1©
Activate RM(FTMx)

2©
Activate RM(FTMy)

3©
Activate RMz

4©
Activate RM(low com dom(FTM*))

no no no

yes yes yes

Fig. 7. Safety-first strategy algorithm

FTM1

FTM6 FTM2 FTM3

FTM7 FTM4 FTM5

RM1

RM5 RM2

RM3RM4

Fig. 8. (a) Fault Tolerant Mechanism Tree (FTMTree) (b) Recovery Module
poset (RMGraph)

TABLE III
RESULTS FOR THE FAULT INJECTION CAMPAIGN

Active FTMs (DMs) Corresponding
RMs

Algorithm
action
block

Executed
RM

FTM7 RM4 1© RM4
FTM1 and FTM6 RM1, RM5 2© RM1
FTM3 and FTM4 RM2, RM3 3© RM2

FTM2, FTM6 and FTM5 RM2, RM5, RM4 4© RM1

in block 1© of Figure 7). In case of several active FTMs,
if one FTM dominates the active FTMs (i.e., dompq returns
FTMy), then it is executed (RMpFTMyq in 2©). If there
is no dominant FTM (option marked as “no”), the algorithm
checks if there is a dominant active RM. If there is one,
this leads to execute the dominant recovery mechanism in
3©. Finally, if there are no dominant in the RMGraph (dompq

returns 0), then the algorithm activates the RM of the lowest
common dominant FTM in the FTMTree 4©. Table III presents
some examples covering the four cases explained above. In
case of simultaneous FTM, with several dominant RMs, we
chose to not execute all these RMs, but to only execute the
lowest common dominant. This choice has been made by
considering that the impact of simultaneous activation of RMs
might not guarantee to put the system in a safe state. It is of
course a conservative approach which can be extended to other
strategy.

This conservative strategy can be extended to a less conser-

vative one, for mission-first strategy for instance (not presented
in this paper). For the same reason as just above, to ensure
only one RM is activated at a time, we stop every RMs
dominated by a RMx just before activating it. Yet, we have to
be careful when stopping RMs. We have to be sure the RM
to stop has finished its action or finished putting the system
into a degraded mode. Interrupting a RM makes us unable to
guarantee in which state the system is, and thus its safety.

Figure 9 is a class diagram showing the implementation
of the FTM Manager and corresponding components. Using
inheritance for DM and RM, let us define generic state
machines, which led to easily modify DM and RM behavior.
We also provide a generic implementation for the FTMTree
and RMGraph, which make them easily extendable to new
ordered sets.

B. Verification

The early validation of the approach and the verification
of the FTM implementation has been carried out through a
set of experiments, including a fault injection campaign. All
these experiments were conducted on the simulated Summit Xl
robot with Gazebo. The complete opensource code is available
online at [6].

The verification of the system implies a careful analysis of
its behavior in the presence of faults. The faults considered
here are those identified so far and belonging to the fault tree
given in Figure 8. It is clear that the verification steps depends
on the considered FTM; new faults, new FTM, imply new
verification experiments. A robot like this is subject to the
evolution of the environment and maybe weather conditions
that may lead the robot designer to consider other faults and
by the way new mechanisms. The evolution of the conditions
may be difficult to anticipate at initial design time. This
means that the heath status of the robot and surroundings
conditions should be monitored and FTM updated accordingly.
Adaptation of FTM is out of the scope of this paper, but this
issue has already been investigated in companion work, such
as in [28].



Fig. 9. Class diagram of the fault tolerance mechanism

Fig. 10. Golden Run of Osmosis with two obstacles (Start:blue, End:green)

The objective here is not to quantify error detection and
recovery coverage, but to analyse the behaviour of the sys-
tem in the presence of unwanted events, namely faults. An
experiment is organized in two steps: a golden run is done
first to observe the nominal behavior of the robot with no
faults (see Figure 10); then a number of runs are done with
unwanted events injected for which FTMs should be normally
activated. Two golden runs were considered with and without
obstacles which led to two types of faulty runs, with and
without obstacles as well.

First, regarding the effect of the implemented RMs one

by one, the results obtained are given in Table IV and V.
The first table is the test case of Osmosis without any FTM
implemented.

A run is considered successful if the mission requested
has been fulfilled by the robot. That is to say, if the robot
has gone through every points specified in the mission file
in the right order and with the right mode : “taxi” or “light
verification”. A run is considered safe if the robot never went
into a prohibited area and if it didn’t collide with any obstacles.

Table IV shows how fault injection affects the mission and
safety without any FTM implemented. Each injected fault put
the robot in an unsafe state which means it would be very
dangerous to deploy the system like this. For example, if the
robot’s localization is somehow not updated the command
computed stays the same. Thus, the robot can go in a pro-
hibited area or collide with an obstacle, which is obviously
not safe. Also, in most of cases the mission is a failure
because after fault injection the robot became non-operational
as above. Detailed effects of each injected fault are described
in Table IV.

In order to keep the robot in a safe state we added FTMs and
the results can be observed in Table V. We can easily see that
every run is now safe no matter which fault was injected. Once
again, the implemented FTMs are safety-first oriented so their



TABLE IV
OSMOSIS BENCHMARK WITHOUT THE FTM

Injected Fault Obstacles Mission result Safety result Description
(Yes - No - Both)

None Both Success Safe Golden Run
The erroneous command can move the robot into a

Command out of bounds (DM3) No Success Unsafe prohibited area and the real system’s hardware could have
been damaged. But once the temporary fault is gone the

robot finishes its mission
If it happens during an avoidance manoeuvre a collision

can occur. If the robot is too close to an obstacle for
Command out of bounds (DM3) Yes Fail Unsafe an avoidance manoeuvre it stops, so after a collision due

to the injected fault there are high chances that the robot
stops (mission failed).

Localization not updated (DM6) Both Fail Unsafe Without localization updates the last one received is kept.
Thus, the command is the same : collision, prohibited area

Command not updated (DM2) Both Fail Unsafe The last command is kept so same consequences as above
HMI or Teleoperation node crash doesn’t have much effect

Non-control node crash (DM5) Both Fail Unsafe but a Localization node crash leads again to the same
consequences as localization not updated

Effects differ according to which node actually crashed.
If MissionManager or GraphPlanner crashes the controller

Control node crash(DM4) Both Fail Unsafe will simply have no new orders to follow so robot will
reach the point it was targetting then eventually stop.

In the case of OsmosisControl no more command will be
computed so it’s equivalent to command not updated.

TABLE V
OSMOSIS EXPERIMENT WITH FAULT TOLERANCE MECHANISM

Injected Fault Obstacles Mission result Safety result Description
(Yes - No - Both)

None Both Success Safe Golden Run
Command out of bounds (DM3) Both Fail Safe Robot stopped in a safe area and before any collision
Localization not updated (DM6) Both Fail Safe Robot stopped and switched to

teleoperation before any collision
Command not updated (DM2) Both Fail Safe Robot stopped in a safe area and before any collision
Non-control node crash (DM5) Both Success Safe All missing non-control node are restarted instantly

Control node crash (DM4) Both Fail Safe Node restarted but mission progress is lost so the
robot either reaches its current goal or stops

activation is all about ensuring the safety and not fulfill the
mission. That’s why, now, when a “command out of bounds”
occurs the mission always fails because the robot is ordered to
stop, but since it wasn’t into a prohibited area before the fault
it is safe. However, now when a non-control node crashes
it is restarted, in particular the localization node. So after
being restarted the robot’s localization is again updated and the
mission can be completed. Thus, the FTM made the run both
safe and successful. Moreover, for control nodes, backward
recovery should be done but it hasn’t been implemented yet.
These nodes should often save their state in order to be
restarted in the same one and continue the mission. Currently,
the nodes are restarted anyway despite losing the mission
progression. Since they start in an idle state where the robot is
stopped, the mission is failure but the run is safe. Also, to avoid
collision when an information isn’t updated we calculated the
watchdogs values according to the robot maximum velocity
and the obstacle detection distance. So the FTM is activated
before a collision can occur. Therefore, FTMs significantly
improved the safety of the system. The last step is to see how
the system reacts with concurrent FTMs.

As a proof of concept, we did not focus on the results
in terms of detection latency, or overhead induced by FTMs
(which should actually be done in a real implementation with a
dedicated layer for fault tolerance mechanisms), but we focus
on the logical part of robot behavior in case of concurrent acti-
vated FTMs, to observe if the safety-first strategy is practically
efficient. Test cases given in Table III enable the four action
blocks of the algorithm to be executed, see Figure 7 (denoted
noted as 1© 2© 3© 4©). “Active FTM” are FTMs where their DM
is active, and “Executed RM” is the resulting RM run by the
FTM Manager. This table confirms the logical behaviour of
the robot and thus the efficiency of our strategy.

VI. CONCLUSION

The proposed FTM framework relies mainly on two trees
(FTMTree and RMGraph), and an FTM strategy using these
trees.

We described in this paper a first implementation of this
framework as a proof of concepts. The combination of detec-
tion mechanisms and recovery mechanisms in a flexible way
offers the opportunity to adjust the objectives and extend the
framework easily. In our case, ”safety first” was the objective.



The set of mechanisms defined to this aim were verified by
fault injection, considering a representative set of faults that
may impair the behavior of the robot and violate safety.

A first important result is the genericity of the implementa-
tion, where any extension of new FTM, DM or RM is easily
done with few code modification. Moreover, our approach
allows to integrate more complex FTM rules, using logical
gates (e.g., FTM “ pDM1 ^ DM3, RM2 ^ RM4q). All
nodes (including DM, RM and FTM Manager) are based
on generic state machines, which also makes it more easily
extendable to complex behaviors. However, the experiments
also reveals open issues requiring more investigation. The first
one is the choice of the relation order that could be extended
to more complex definitions. For instance, the “safer” relation
could also be mixed with an assessment on the autonomy
impact, or any other mission performance property. We also
do not investigate how the FTM Manager communicates with
the Mission Manager, in order to replan, repair a plan, or
cancel the mission, which may have an impact on the FTM
Strategy. Finally, some additional features must be added
to the framework, such as a stable storage feature enabling
checkpointing to increase recovery mechanisms performances.
However, in this paper we did not study the overhead cost in-
duced by the whole FTM (including RM, DM and FTManager
algorithm), as we only focus first in a proof of concept of the
FT mechanism, implemented in a ROS architecture. This issue
is of paramount importance for a complete deployment, and
we plan to use a dedicated layer to implement the FTM. A
preliminary study was performed using ROS for the functional
part, and the framework MAUVE [29] for the fault tolerant
mechanism, and it will be deployed for future experiments.

REFERENCES

[1] J. Guiochet, M. Machin, and H. Waeselynck, “Safety-critical advanced
robots: A survey,” Robotics and Autonomous Systems, vol. 94, pp. 43–
52, Aug. 2017.

[2] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Trans.
Dependable Secur. Comput., vol. 1, no. 1, pp. 11–33, Jan. 2004.

[3] Z. Zhao, J. Wang, J. Cao, W. Gao, and Q. Ren, “A fault-tolerant archi-
tecture for mobile robot localization,” in 2019 IEEE 15th International
Conference on Control and Automation (ICCA), July 2019, pp. 584–589.

[4] M. Machin, J. Guiochet, H. Waeselynck, J.-P. Blanquart, M. Roy, and
L. Masson, “SMOF - A Safety MOnitoring Framework for Autonomous
Systems,” IEEE Transactions on Systems, Man, and Cybernetics: Sys-
tems, vol. 48, no. 5, pp. 702–715, May 2018.

[5] D. Crestani, K. Godary-Dejean, and L. Lapierre, “Enhancing fault
tolerance of autonomous mobile robots,” in Journal of Robotics and
Autonomous Systems. Elsevier, 2015.

[6] C. Lesire, F. Ingrand, and J. Guiochet, “Osmosis : Open-source material
for safety assessment of intelligent systems,” https://osmosis.gitlab.io,
Accessed: 2020-03.

[7] SPARC, “Robotics 2020 multi-annual roadmap for robotics in europe,”
Horizon 2020 Call ICT-2017 (ICT-25, ICT-27 & ICT-28), Release B
02/12/2016, 2016.

[8] M. L. Visinsky, I. D. Walker, and J. R. Cavallaro, “Layered dynamic
fault detection and tolerance for robots,” in [1993] Proceedings IEEE
International Conference on Robotics and Automation, May 1993, pp.
180–187 vol.2.

[9] M. L. Visinsky, J. R. Cavallaro, and I. D. Walker, “A dynamic fault
tolerance framework for remote robots,” IEEE Transactions on Robotics
and Automation, vol. 11, no. 4, pp. 477–490, Aug 1995.

[10] S. Zaman, G. Steinbauer, J. Maurer, P. Lepej, and S. Uran, “An integrated
model-based diagnosis and repair architecture for ROS-based robot
systems,” in Robotics and Automation (ICRA), 2013 IEEE International
Conference on, 2013, pp. 482–489.

[11] B. Durand, K. Godary-Dejean, L. Lapierre, R. Passama, and D. Crestani,
“Fault tolerance enhancement using autonomy adaptation for au-
tonomous mobile robots,” in International Conference on Control and
Fault Tolerant Systems (SysTol), 2010, pp. 24–29.

[12] A. Bouguerra, L. Karlsson, and A. Saffiotti, “Monitoring the execution
of robot plans using semantic knowledge,” Robotics and Autonomous
Systems, vol. 56, no. 11, pp. 942 – 954, 2008.

[13] O. Pettersson, “Execution monitoring in robotics: A survey,” Robotics
and Autonomous Systems, vol. 53, no. 2, pp. 73 – 88, 2005.

[14] J. P. Mendoza, M. Veloso, and R. Simmons, “Mobile robot fault
detection based on redundant information statistics,” in Workshop at
IROS’12 on ”Safety in human-robot coexistence and interaction: How
can standardization and research benefit from each other?”, Vilamoura,
Portugal, 2012.

[15] P. Ertle, D. Gamrad, H. Voos, and D. Soffker, “Action planning for
autonomous systems with respect to safety aspects,” in IEEE Interna-
tional Conference on Systems Man and Cybernetics (SMC), 2010, pp.
2465–2472.

[16] S. Gspandl, S. Podesser, M. Reip, G. Steinbauer, and M. Wolfram, “A
dependable perception-decision-execution cycle for autonomous robots.”
in International Conference on Robotics and Automation (ICRA), 2012,
pp. 2992–2998.

[17] B. Lussier, M. Gallien, J. Guiochet, F. Ingrand, M.-O. Killijian, and
D. Powell, “Planning with diversified models for fault-tolerant robots,”
in Proc. of The International Conference on Automated Planning and
Scheduling (ICAPS07), Providence, Rhode Island, USA, 2007, pp. 216–
223.

[18] ——, “Fault tolerant planning for critical robots,” in 37th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN07), Edinburgh, UK, 2007.

[19] I. R. Chen, F. B. Bastani, and T. W. Tsao, “On the Reliability of AI
Planning Software in Real-Time Applications,” IEEE Transactions on
Knowledge and Data Engineering, vol. 7, no. 1, pp. 14–25, February
1995.

[20] J. Guiochet, D. Powell, É. Baudin, and J.-P. Blanquart, “Online Safety
Monitoring Using Safety Modes,” in Workshop on Technical Challenges
for Dependable Robots in Human Environments DRHE08, PASADENA,
United States, May 2008, pp. 1–13.

[21] M. Machin, F. Dufossé, J. Blanquart, J. Guiochet, D. Powell, and
H. Waeselynck, “Specifying safety monitors for autonomous systems us-
ing model-checking,” in The 33rd International Conference on Computer
Safety, Reliability and Security (SAFECOMP). Springer International
Publishing, 2014, pp. 262–277.

[22] M. Machin, F. Dufossé, J. Guiochet, D. Powell, M. Roy, and H. Waese-
lynck, “Model-checking and game theory for synthesis of safety rules,”
in 16th IEEE International Symposium on High Assurance Systems
Engineering, HASE 2015, Daytona Beach, FL, USA, 2015, pp. 36–43.

[23] D. Powell, “Distributed fault tolerance: lessons from delta-4,” IEEE
Micro, vol. 14, no. 1, pp. 36–47, Feb 1994.

[24] R. Guerraoui and A. Schiper, “Fault-tolerance by replication in dis-
tributed systems,” in Reliable Software Technologies — Ada-Europe ’96,
A. Strohmeier, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
1996, pp. 38–57.

[25] CPSE-Labs, “CPSE Labs - Cyber-Physical Systems Engineering Labs,”
http://www.cpse-labs.eu/, Accessed on 2020-03.

[26] Robotnik, “Robotnik summit xl robot specification,”
https://www.robotnik.eu/mobile-robots/summit-xl/, Accessed: 2020-03.

[27] A. de Ruijter and F. Guldenmund, “The bowtie method: A review,”
Safety Science, vol. 88, pp. 211 – 218, 2016.

[28] M. Lauer, M. Amy, J.-C. Fabre, M. Roy, W. Excoffon, and M. Stoicescu,
“Resilient computing on ros using adaptive fault tolerance,” Journal of
Software: Evolution and Process, vol. 30, no. 3, p. e1917, 2018.

[29] D. Doose, C. Grand, and C. Lesire, “Mauve runtime: A component-
based middleware to reconfigure software architectures in real-time,” in
2017 First IEEE International Conference on Robotic Computing (IRC),
2017, pp. 208–211.


