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Abstract. This paper addresses the simultaneous design and path plan-
ning problem, in which features associated to the bodies of a mobile
system have to be selected to find the best design that optimizes its mo-
tion between two given configurations. Solving individual path planning
problems for all possible designs and selecting the best result would be
a straightforward approach for very simple cases. We propose a more
efficient approach that combines discrete (design) and continuous (path)
optimization in a single stage. It builds on an extension of a sampling-
based algorithm, which simultaneously explores the configuration-space
costmap of all possible designs aiming to find the best path-design pair.
The algorithm filters out unsuitable designs during the path search,
which breaks down the combinatorial explosion. Illustrative results are
presented for relatively simple (academic) examples. While our work is
currently motivated by problems in computational biology, several ap-
plications in robotics can also be envisioned.

Keywords: robot motion planning, sampling-based algorithms, compu-
tational biology, protein design

1 Introduction

System design and path planning problems are usually treated independently.
In robotics, criteria such as workspace volume, workload, accuracy, robustness,
stiffness, and other performance indexes are treated as part of the system design
[1, 2]. Path planning algorithms are typically applied to systems with completely
fixed geometric and kinematic features. In this work, we propose an extension
of the path planning problem, in which some features of the mobile system are
not fixed a priori. The goal is to find the best design (i.e. values for the variable
features) to optimize the motion between given configurations.

A brute-force approach to solve this problem would consist of individually
solving motion planning problems for all possible designs, and then selecting
the design providing the best result for the (path-dependent) objective function.
However, because of the combinatorial explosion, only simple problems involv-
ing a small number of variable design features can be treated using this naive
approach. We propose a more sophisticated approach that simultaneously con-
siders system design and path planning. A related problem is the optimization
of geometric and kinematic parameters of a robot to achieve a given end-effector
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trajectory, usually referred to as kinematic synthesis [3]. Nonetheless, the prob-
lem we address in this work (see Section 2.1 for details) is significantly different,
since we assume that all kinematic parameters and part of the geometry of the
mobile system are provided as input. The design concerns a discrete set of fea-
tures that can be associated to the bodies of the mobile system, such as shape
or electrostatic charge, aiming to find the best possible path between two given
configurations provided a path cost function. Very few works have considered
such a hybrid design and path planning problem. One of the rare examples is a
recently proposed method for UAVs path planning [4] where the optimal path
planning algorithm considers several possible flying speeds and wing reference
areas to minimize path risk and time. Since the considered configuration space
is two-dimensional, the proposed solution is based on an extension of Dijkstra’s
algorithm working on a discrete representation of the search-space. This type of
approach cannot be applied in practice to higher-dimensional problems, as the
ones we address.

Sampling-based algorithms have been developed since the late 90s for path
planning in high-dimensional spaces [5, 6], which are out of reach for determin-
istic, complete algorithms. Our work builds on this family of algorithms, which
we extend to treat a combinatorial component in the search-space, associated to
the systems design, while searching for the solution path.

Our approach presents some similarities with methods that extend sampling-
based path planning algorithms to solve more complex problems such as manip-
ulation planning [7] or minimum constraint removal (MCR) planning [8], which
also involve search-spaces with hybrid structure. As in these other works, the
proposed algorithm simultaneously explores multiple sub-spaces aiming to find
solutions more efficiently. Nevertheless, the hybrid design problem addressed
here is different.

This paper presents the Simultaneous Design And Path-planning algorithm
(SDAP), which is based on the T-RRT algorithm [9]. As explained in Section 2.2,
the choice of T-RRT as a baseline is guided by the type of cost function we apply
for the evaluation of path quality. Nevertheless, other sampling-based algorithms
can be extended following a similar approach.

We demonstrate the good performance of the method on relatively simple,
academic examples (Section 4). These simple examples allow us to apply the
naive exhaustive method, whose results can be used as a reference to evaluate the
performance and the quality of the solutions produced by the SDAP algorithm.
Results show that SDAP is able to find the best path-design pairs, requiring
much less computing time than the naive method. This advantage increases
with the complexity of the problem.

Although the application of the proposed approach to problems of practical
interest is out of the scope of this paper, we note that our motivation comes from
problems in computational biology. For more than a decade, robotics-inspired
algorithms have been applied to this area [10–13]. The method presented in this
paper aspires to solve problems related to computational protein design [14,
15], which aims to create or modify proteins to exhibit some desired properties.
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Progress in this field promises great advances in pharmacology, biotechnology,
and nanotechnology. Protein design is extremely challenging, and although there
have been some considerable strides in the last years [16, 17], the problem re-
mains largely open. Current approaches focus on a static picture (i.e. search the
amino-acid sequence that stabilizes a given structure), whereas dynamic aspects
related to protein function are rarely considered. Our goal behind this work is
to develop new methods to optimize functional protein motions. In addition to
computational protein design, applications of the proposed approach in robotics
can be envisioned, as briefly mentioned in the conclusion.

2 Problem Formulation and Approach

This section defines the problem addressed in this work, along with some nota-
tion, and presents an overview of the proposed approach.

2.1 Problem Definition

Let us consider an articulated linkage A consisting of n rigid bodies, A1..An. The
kinematic parameters of A are static and are supplied as input. The geometry
of the the rigid bodies Ai can admit some variability, as well as other physical
properties (mass, electrostatic charge, ...). More precisely, a discrete set of m
design features, f1..fm, is defined and each body Ai ∈ A is assigned a design
feature fj ∈ F . We denote d as a vector of length n that represents the design
features assigned to all the rigid bodies in A, i.e. d defines a particular design.
D denotes the set of possible combinations of assignments of features for A, i.e.
D defines all possible designs. D is referred to as the design space, which is a
discrete space containing mn elements. A given configuration of A is denoted by
q. Let C denote the configuration space. Note that for each q ∈ C, only a subset
of the possible designs D can be assigned, since some designs are not compatible
with some configurations due to self-constraints or environment constraints.

The workspace of A is constrained by a set of obstacles Oi ∈ O. Cdfree denotes
all valid, collision-free configurations of A for a given vector d of design features.
A path P connecting two configurations qinit and qgoal of A with design d is
defined as a continuous function P : [0, 1] → C, such that P (0) = qinit and
P (1) = qgoal. The path is said to be collision-free if ∀t ∈ [0, 1], P (t) ∈ Cdfree.
Cfree is the union of all individual Cdfree:

Cfree =
⋃
d∈D

Cdfree .

Pfree denotes the set of all feasible, collision-free paths connecting qinit to qgoal,
considering all possible designs (∀d ∈ D).

A cost function c : Cfree × D → R+ associates to each pair (q, d) a positive
cost value, ∀q ∈ Cfree and ∀d ∈ D. Another cost function cP : Pfree×D → R+ is
also defined to evaluate the quality of paths. In this work, the path cost function
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cP is itself a function of the configuration cost function c, i.e. cP is a functional.
More precisely, we consider the mechanical work criterion as defined in [9, 18] to
evaluate paths, which aims to minimize the variation of the configuration cost c
along the path. This criterion is a suitable choice to evaluate path quality in many
situations [9], and is particularly relevant in the context of molecular modeling.
Nevertheless, other cost functions can be considered, such as the integral of c
along the path. A discrete approximation, with constant step size δ = 1/l, of the
mechanical work (MW) cost of a path P for a system design d can be defined
as:

cP (P, d) =

l∑
k=1

max

{
0 , c

(
P

(
k

l

)
, d

)
− c

(
P

(
k − 1

l

)
, d

)}
. (1)

The goal of our method is to find the best pair (P ∗, d∗) such that:

cP (P ∗, d∗) = min{cP (P, d) |P ∈ Pfree, d ∈ D} . (2)

2.2 Approach

A naive approach to solve the problem would be to compute the optimal cost
path for each design d ∈ D, and then choose the optimal design d∗ that minimizes
cP . Such a brute-force approach can be applied in practice to simple problems
involving a small number n of variable bodies and/or a few m design features
(recall that the design space is size mn). The method proposed below aims to
solve the problem much more efficiently by combining both the discrete (design)
and continuous (path) optimization in a single stage.

We assume that, for most problems of interest, the configuration space C
is high-dimensional, so that exact/complete algorithms cannot be applied in
practice to solve the path-planning part of the problem. For this, we build of
sampling-based algorithms [19, 5], which have been very successful in the robotics
community since the late 90s, and which have also been applied in other areas
such as computational biology [10–13]. We also assume that the cardinality of the
design space D is moderately high, such that a relatively simple combinatorial
approach can be applied to treat the design part of the problem.

The idea is to explore Cfree to find paths between qinit and qgoal simultane-
ously considering all possible deigns d ∈ D. To reduce the number of configuration-
design pairs (q, d) to be evaluated during the exploration, it is important to ap-
ply an effective filtering strategy. The choice of the particular sampling-based
path planning algorithm and filtering strategy mainly depend on the type of
objective function cP being considered. The approach described below has been
developed to find good-quality solutions with respect to the MW path evalua-
tion criterion (1). In this work, we extend the T-RRT algorithm [9], which finds
paths that tend to minimize cost variation by filtering during the exploration tree
nodes that would produce a steep cost increase. Following a similar approach, al-
ternative algorithms and the associated filtering strategies could be developed to
optimize other path cost functions. For instance, variants of RRT* [20] or FMT*
[21] could be considered for optimizing other types of monotonically increasing
cost functions.
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3 Algorithm

This section presents the SDAP algorithm, building upon a single-tree version of
T-RRT. However, the approach is directly applicable to multi-tree variants [22].
First, the basic algorithm is introduced, followed by additional explanation on
the tree extension strategy and a brief theoretical analysis.

3.1 SDAP Algorithm

The SDAP pseudo-code is shown in Algorithm 1. A search tree, T , is created with
qinit as the root node. The tree is grown in configuration space through a series
of expansion operations. Each node s in T encodes a configuration q and a set
of designs D ⊆ D for which the configuration is valid. Each node’s set of designs
D is a subset of its parent’s designs, i.e. Designs(s) ⊆ Designs(Parent(s)).

During each iteration, a random configuration qrand is generated (line 3).
In T-RRT, a new node qnew is created by expanding the nearest node in T
qnear in the direction of qrand for a distance δ. qnew is then conditionally added
to T based on a transition test. A common heuristic for this transition test
is the Metropolis criterion, traditionally applied in Monte Carlo methods [23].
Transitions to lower cost nodes are always accepted and moves to higher costs
nodes are probabilistically accepted. The probability to transition to a higher
cost node is controlled by a temperature variable T . T-RRT dynamically controls
T , as explained below.

SDAP modifies the expansion and transition test functions of the standard
T-RRT algorithm in order to address the design and path planning problems
simultaneously. At each iteration, SDAP attempts to expand at least one node
per design in D. The process is shown in Figure 1, where each design d ∈ D is
encoded as a color on each node of the tree. During each iteration, SDAP expands
a set of nodes that covers all designs D. In other words, the NearestNeighbors

function (line 4) returns a set, Neighbors, containing the closest node to qrand
for each design. In Figure 1, qrand is shown in black and the 3 nodes in the set
Neighbors are circled in red. Each node in Neighbors is extended towards qrand
(lines 6 - 10) creating new candidate nodes which are labeled s1, s2 , and s3 in
Figure 1. All 3 designs in s1 fail the transition test, so the new node is not added
to T . For s2 the blue design passes the transition test and the node is added to
T . Finally for s3, 1 of the 3 designs (yellow) fails the transition test, resulting
in a node with 2 designs being added to T .

3.2 Controlling Tree Expansion

The transition test is governed by the temperature parameter T . T-RRT auto-
matically adjusts T during the exploration and has been shown highly effective
in balancing tree exploration and tree refinement [9]. At each iteration, T-RRT
adjusts T by monitoring the acceptance rate of new nodes. SDAP extends this
idea by maintaining a separate temperature variable T (d) for each design d ∈ D.
A given design d can appear in multiple nodes in Neighbors. For each design
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Algorithm 1: SDAP Algorithm

input : the configuration space C; the design space D; the cost function c
the start state qinit; the goal state qgoal
number of iterations MaxIter

output: the tree T
1 T ← InitTree(qinit, D)
2 while not StoppingCriterion (T , qgoal,MaxIter) do
3 qrand ←Sample(C)
4 Neighbors← NearestNeighbors(T , qrand,D)
5 TransitionTest.Init()
6 for snear ∈ Neighbors do
7 qnew ← Extend(qrand, snear)
8 D ← TransitionTest(T , snear, qnew, c)
9 if NotEmpty(D) then

10 AddNode(T , snear, qnew, D)

Fig. 1. An expansion operation for SDAP. Designs are encoded as colors within each
node. The nodes being expanded are circled in red. The expansion towards node s1
fails for all 3 designs, The expansion to s2 succeeds, and the expansion to s3 succeeds
for 2 of the 3 designs.

d, the node in Neighbors closest to qrand is identified. The temperature T (d) is
adjusted based on the success or failure of the extension operation from this
node for design d.

The pseudocode for the transition test function is shown in Algorithm 2.
The Neighbors set is processed in ascending order of the distance of each node
from qrand (line 6 of Algorithm 1). For the node being expanded (snear), each
design d has its cost evaluated (line 4). Transitions to lower cost nodes are always
accepted (line 8). Transitions to higher cost nodes are subjected to probabilistic
acceptance (line 10). The set V (lines 12 and 18) tracks designs which have had
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Algorithm 2: TransitionTest(T , snear, qnew, c)
input : the input tree T ; vector of temperatures T

parent node snear; new node qnew ; the cost function c
temperature adjustment rate Trate; Boltzmann constant K

internal: set of designs V with adjusted temperatures in this iteration
output : vector of designs D that pass the transition test

1 S ← φ
2 for d ∈ Designs(snear) do
3 if CollisionTest(qnew, d) == False then
4 cnear = c(Config(snear), d); cnew = c(qnew, d)
5 success ← false
6 ∆c = cnew - cnear
7 if ∆c < 0 then
8 success ← true

9 else
10 if exp(−∆c/ (K · T (d))) > UniformRand()) then
11 success ← true

12 if d /∈ V then
13 if success then

14 T (d)← T (d) / 2(∆c/ energyRange(T ,d))

15 else
16 T (d)← T (d) · 2Trate

17 if success then D ← D ∪ d
18 V ← V ∪ d

19 return (D)

their temperature adjusted during this iteration. The function returns the set D
of designs that pass the transition test.

3.3 Theoretical Analysis

In this section we provide some theoretical analysis of SDAP algorithm’s com-
pleteness and path optimality. A theoretical analysis of the complexity of SDAP
with respect to the brute-force approach is difficult, since both are stochastic
processes. In this work, we instead provide empirical results in Section 4 that
clearly show SDAP’s efficiency versus an exhaustive search of paths for all pos-
sible designs.

Probabilistic Completeness: SDAP’s probabilistic completeness directly de-
rives from that of RRT [19], which is inherited by T-RRT under the condition to
guarantee a strictly positive probability of passing the transition test as explained
in [9]. Since SDAP maintains this property by incorporating temperatures in the
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transition test for each given design d ∈ D, it also ensures the positive transition
probability and that each Cdfree will be completely sampled, thus maintaining
the probabilistic completeness of the algorithm.

Path Optimality: The current SDAP implementation is based on T-RRT,
which has been empirically shown to compute paths that tend to minimize cost
with respect to the MW criterion [9], but without theoretical guarantee of op-
timality. Using anytime variants of T-RRT (AT-RRT or T-RRT∗) [18] would
provide asymptotic convergence guarantee. Implementing these within SDAP
remains as future work.

4 Empirical Analysis and Results

As a proof of concept, we apply SDAP to a set of academic problems. SDAP
is implemented as an adaptation of the Multi-T-RRT algorithm [22], with two
trees growing from the initial and goal configurations. The search stops when
the algorithm is able to join the two trees. For each problem, SDAP is compared
against a naive approach consisting of multiple independent runs of Multi-T-
RRT on each designs d ∈ D.

4.1 Test System Description

The test system is a 2D articulated mechanism with a fixed geometry surrounded
with fixed obstacles. The bodies A1..An are circles with radius R. The first body
A1 is a fixed base. The other bodies A2..An are articulated by a rotational joint
centered on the previous rigid body that can move in the interval [0, 2π). A
configuration q is described by a vector of n − 1 angles corresponding to the
value of each rotational joint. The features f1..fn assigned to each body are
electrostatic charges in F = {−1, 0, 1} (i.e. m = 3). The design vector d contains
n charges f1..fn associated to each rigid body A1..An of the mechanism. In the
following, d will be written as a string, with each charge (−1, 0, 1) corresponding
to N, U, and P respectively. For example, the design NPUN corresponds to the
vector d = (−1, 1, 0,−1). Obstacles O1..Ok are circles of radius R and have
electrostatic charges with predefined values gi ∈ F .

The cost function is inspired by a simple expression of the potential energy
of a molecular system. It contains two terms, one corresponding to the Lennard-
Jones potential and the other to the electrostatic potential. It is defined as:

c(q, d) = LJ(q, d) + ES(q, d) (3)
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with:

LJ(q, d) =

|A|−2∑
i=1

 |A|∑
j=i+2

(
2 ·R
‖AiAj‖

)12

−
(

2 ·R
‖AiAj‖

)6


+

|A|∑
i=1

 |O|∑
j=1

(
2 ·R
‖AiOj‖

)12

−
(

2 ·R
‖AiOj‖

)6
 (4)

ES(q, d) =

|A|−2∑
i=1

 |A|∑
j=i+2

(
fi · fj
‖AiAj‖

)+

|A|∑
i=1

 |O|∑
j=1

(
fi · gj
‖AiOj‖

) (5)

where ‖XiXj‖ represents the Euclidean distance between the centers of the
bodies/obstacles Xi and Xj .

SDAP is empirically tested using a 4 body and a 10 body scenarios described
below. The objective is to find the path-design pair (P ∗, d∗) that minimizes cP .

Small 4 Body System: The first system consists of four bodies and five ob-
stacles as shown in Figure 2. qinit and qgoal correspond to fully stretched config-
urations, to the left and to the right, represented with solid and dashed outlines
respectively. The design space consists of 34 = 81 possible combinations and
the configuration space is 3 dimensional. This scenario favors designs with a
negatively charged end-effector. The uncharged obstacles at the top and bottom
of the workspace create a narrow passage that all solutions must pass through.
Figure 3 shows a projection of the configuration-space costmap for two designs
along with a solution path. One design has a negatively charged end-effector
(UUUN) and one has a positively charged end-effector (UUUP). Angles 1 and 2
are projected onto the x and y axis respectively, with angle 3 being set to min-
imize the cost function. For the UUUN design, the costmap is highly favorable
to the desired motion, starting at a high cost and proceeding downhill to a low
cost area. The costmap associated with the UUUP design shows a non-favorable
motion between the two states.

Larger 10 Body System: A larger system with 10 bodies and six obstacles is
shown in Figure 2. The design space D contains 310 = 59049 possibilities, which
cannot be exhaustively explored within a reasonable computing time, and is also
challenging for SDAP because of memory issues (see discussions in Section 5).
For that reason, two simplified versions of this scenario are constructed. The
first one fixes the design for the first seven bodies A1..A7 as UUUUUUU. The
remaining bodies (A8, A9, and A10) can be designed, resulting in a design space
of 33 = 27 designs. The second version expands the design space to the last 4
bodies (A7..A10), resulting in a design space of 34 = 81 designs. It both cases,
the configuration space is 9 dimensional. Both versions of the 10-body system
are constrained with the same obstacles. They were chosen so that designs with
strongly positively or negatively charged end-effectors will be trapped at local
minima resulting from attractive or repulsive forces generated by the bottom
obstacles.
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Fig. 2. A 4-body
(top) and 10-body
(bottom) scenario.
Obstacles with pos-
itive charges are
shown in solid red,
negative in solid
blue, neutral in gray.
The initial state is
shown in green with
a solid line, a transi-
tion state shown in
blue, and the goal
state is shown in red
with a dashed line.

4.2 Benchmark Results

We compare SDAP to a naive approach (solving individual problems for each
design d ∈ D) using the same Multi-T-RRT implementation. In other words,
we compare one run of the SDAP algorithm against |D| runs of a single-design
path search. Multiple runs are performed (100 for the 4-body scenario, 50 for
the 10-body scenario with 3 designed bodies, and 20 for the 10-body scenario
with 4 designed bodies) to avoid statistical variance inherent with stochastic
methods. The single-design explorations can spend time trying to escape local
minima associated with the costmaps of unfavourable designs, causing very long
execution times and high-cost paths. As we are not interested in finding a solution
path for every possible design but only for the designs with low-cost paths, a
timeout is enforced for the single-design explorations of 300 seconds for the 4-
body scenario and 1,200 seconds for the 10-body scenarios. The SDAP algorithm
was considered unsuccessful if it did not find a solution within 2,400 seconds.
In all the cases, the T-RRT parameter Trate was set to 0.1, being the initial
temperature T = 1 and K = 0.00198721 (note that T and K do not have much
physical meaning in the present context). During the exploration, the maximal
values reached by T were around 100, being slightly lower for SDAP compared
to the naive approach.



11

0 1 2 3 4 5 6
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0.25

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0 1 2 3 4 5 6
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0.25

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Fig. 3. Configuration-space costmap of the 4-body system projected onto the first two
DOFs of the system expressed in radians. The initial configuration is indicated by the
red dot on the left, and the goal by the green dot on the right. The plot on the left is
for the UUUP design, the one to the right for UUUN. Each cell’s cost is computed by
finding the value of the third angle that minimizes the cost.

All the runs were performed in a single threaded process on a Intel(R)
Xeon(R) CPU E5-2650 0 @ 2.00GHz processor with 32GB of memory.

Small Scenario Results: The runtimes for the small scenario are shown at
the top in Figure 4. For the single-design approach, the sum of the 81 runs to
cover D are plotted versus the SDAP runtime. The figure shows that SDAP is
twice as fast as the single-design approach. Although the variance in execution
time for SDAP seems much larger than for the naive approach, recall that each
complete run of the latter involves 81 runs of the Multi-T-RRT algorithm, which
attenuates the overall variance. However, the computing time variance for a spe-
cific design can be much larger. Figure 5 (top) compares the solutions found by
the two methods. SDAP successfully identifies the designs corresponding to the
lowest-cost paths. Recall that the current implementation of SDAP terminates
when one valid path is found. Asymptotic convergence to the global optimum
could be guaranteed by implementing an anytime variant of the algorithm such
as AT-RRT [18] (this remains as future work). The high density of nodes cre-
ated by the SDAP algorithm (19,784 nodes on average compared to 698 for
each single-design search) could be well exploited to improve the path cost by
incrementally adding cycles.

Larger scenario results: The runtimes for both versions of the larger sce-
nario are shown in Figure 4 (middle and bottom). In both cases, the difference
in computing time between the two approaches increases significantly compared
to the 4-body scenario. In the 3-designed-body version, SDAP is 26 times faster
than the single-design search on average. In the 4-designed-body version, SDAP
is 46 times faster. Note that, while the cardinality of design space D is multi-
plied by 3 between the two versions of the large scenario, the execution time
of SDAP is only multiplied by 2.5 on average. The variance of the execution
times is now lower for SDAP compared to the naive approach. The reason is
that the performance of Multi-T-RRT highly depends on the roughness of the
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Fig. 4. Run times comparisons for the 4-body scenario (top), 10-body scenario with
3 designed bodies (middle) and 4 designed bodies (bottom). SDAP (green line) is
compared against an exhaustive search using single-design explorations (blue line).
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not exhaustively search). SDAP discovers the same low-cost designs as the exhaustive
single-design searches.
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configuration-space costmap. In a smooth costmap, Multi-T-RRT will be quite
fast with a low variance, whereas the time required to find a solution in a rugged
costmap will be higher and will have a larger variance. SDAP’s computing time
is only dependent on the difficulty to find the best designs, which typically have
a smoother costmap, whereas the single-design search has to find a solution for
every design, including those with a very rugged costmap. The 4-body scenarios
is relatively simple, and thus even for very bad designs, a solution was found
in close-to-constant time. But for the 10-body scenario, the problem is more
complex, and the 27 (resp. 81) runs are not enough to attenuate a very high
variance.

The single-design search reached the timeout 4 times over the 27 runs on
average for the 3-designed-body version of the 10-body scenario, and 19 times
over the 81 runs on average for the 4-designed-body version of the problem. The
SDAP algorithm always found a solution before the timeout.

Figure 5 (middle and bottom) compares the solutions found by the two
searches. Once again, SDAP successfully identifies the designs that yield the
best path cost.

5 Conclusion

In this paper, we have presented an original formulation of a challenging problem
combining system design and path planning, and have proposed a new approach
to solve it building on sampling-based algorithms. The current implementation
of SDAP is still preliminary, but it already shows significant gains in efficiency
and accuracy compared to a brute-force approach.

The actual motivation of this work concerns computational biology. We are
currently applying SDAP to help understand the effect of mutations in antibod-
ies, which is a preamble to protein design (publication in preparation).

Several applications of SDAP in robotics can also be envisioned. In addi-
tion to the design of some robot’s features to optimize its motion in a given
workspace, it would also be possible to apply the proposed method to optimize
the workspace layout for a given robot. One can also imagine applications for
helping to the design of modular self-reconfigurable robots. We aim to imple-
ment SDAP within robot motion planning software in order to investigate these
potential applications.

For future work, in addition to the implementation of a variant of SDAP with
asymptotic optimality guarantees based on AT-RRT [18], we aim to introduce
further improvements. The exploration of very-high-dimensional configuration
and design spaces implies computer memory issues (the resulting tree/graphs
are very large). A solution to this problem would be to introduce pruning stages
during the exploration, as is done in the SST* algorithm [24]. Larger design
spaces will also require SDAP to employ more sophisticated filters and heuristics,
such as those that incorporate statistical learning of the structure of the space,
to explore it more efficiently and control the size of the search tree.
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