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Learning error models for graph SLAM

Christophe Reymann1 and Simon Lacroix1

Abstract— Following recent developments, this paper investi-
gates the possibility to predict uncertainty models for monocu-
lar graph SLAM using topological features of the problem. An
architecture to learn relative (i.e. inter-keyframe) uncertainty
models using the resistance distance in the covisibility graph
is presented. The proposed architecture is applied to simulated
UAV coverage path planning trajectories and an analysis of the
approaches strengths and shortcomings is provided.

I. INTRODUCTION

We are aiming at developing an active mapping scheme
in the context of large crop monitoring missions, or more
generally for surface coverage missions with UAVs. Planning
and adapting observation trajectories requires two abilities:
compute a world model online, and estimate an associated
error model from which the information content of future
trajectories can be assessed.

The current operational solution for coverage mapping
with UAVs is to feed a bundle adjustment (BA) technique
with images acquired by an on-board camera: this requires
heavy post-processing. Progresses in visual SLAM, and in
particular in monocular graph SLAM approaches [19], [14],
let seriously consider the possibility to achieve on-line map-
ping with a precision comparable to off-line BA techniques.
Relying on such a mapping technique, one can develop active
SLAM schemes, for which both an estimation and predictive
error models are keys. Yet, defining such models remains
a difficult problem, especially for graph SLAM approaches,
where the extraction of a precise information matrix from
the result of the optimization process is not straightforward.

This paper introduces an approach to learn a SLAM
error model that explicits the errors on all the relative pose
estimates of a Graph SLAM approach, so as to yield active
information gathering strategies. Building on the seminal
work of [9], we propose an architecture to learn relative
error metrics between any pair of keyframes. The input of
the learning architecture is a set of signatures of the structure
of the covisibility graph maintained by the SLAM algorithm,
as well as features computed from statistics on each edge of
the graph. This error model also yields a prediction ability:
new observations features can be inferred by a regression
technique, from which covariance matrices can be predicted.

II. RELATED WORK

All active SLAM approaches have in common the need
to compute the utility of an action, which has to rely
on an uncertainty model of the robot pose and of the
environment [1], [3], [2]. Fortunately, both Kalman filter
and graph optimization based approaches share the property
of being probabilistic frameworks and therefore maintain a
representation of uncertainty, in the form of a covariance
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or information matrix. Computing the utility of new obser-
vations is done by using the current model as prior, and
predicting the effect on the model by computing the posterior
distribution after the integration of the new observations. In
general, this is an intractable problem and therefore several
approximations have to be made, such as assuming isotropic
Gaussian noise and using a simple fixed-variance model for
unknown locations.

Numerous issues hinder the precise computation of un-
certainties. Indeed the uncertainties produced by the SLAM
algorithms in real world scenarios are often optimistic: this
is due to imprecisions and simplifications in the observation
models, such as unmodeled correlations between observa-
tions of the same landmark (e.g. due to sensor calibration
biases) and outliers. Some of these issues have been ad-
dressed in the literature, as in [20] for EKF, where adap-
tively “inflating” the prior uncertainty matrices with some
hand-tuned parameters, and replacing EKF updates with a
covariance intersection technique that integrates a correlation
factor between measurements to lead to more conservative
estimates.

Probabilistic reasoning on topological maps introduced in
[17], [18] has shown to be helpful to maintain the global
consistency of the graph and close loops. Active SLAM
planning on topological maps has been developed [13],
reasoning on the entropy of the produced topological graph.
More recently, [12] proposes to plan on reasoning on the
topological properties of the factor graph produced by the
SLAM algorithm. It exploits the recent findings of [10], [11],
that state that the topological properties of the factor graph
is determinant of the accuracy of the estimation. It avoids
any Bayesian reasoning, and the developed criteria depends
only of the degree of the vertices is very easy to compute.

The seminal work of [9] explores the relationship between
pose graph topology and the uncertainty estimate recovered
from the information matrix of the maximum likelihood esti-
mate in the 2D pose graph SLAM problem. Reasoning on the
pose graph, with weight on edges taken as the measurement
translation and rotational covariance, the authors find three
interesting indicators linking graph topology with the SLAM
information matrix. In particular, the weighted number of
spanning trees is linked to the volume of confidence el-
lipsoids through the determinant of the Fisher information
matrix. It is shown in [11] that the determinant converges
to a pure function of the weighted number of spanning
trees when a parameter δ converges to zero. This parameter
depends only on the degree of the vertices, the sensing
range and the precision of translation measurements. These
results are proven in the case of planar SLAM, and empirical
evidences seem to indicate a linear relationship between the
log determinant of the Fisher information matrix and the tree
connectivity for 3D pose graph SLAM.



The results of this work are highly effective when dealing
with pose graph SLAM with an accurate error model on
the relative error measurements. However in the case of
feature based SLAM with indirect measurements, such as in
monocular SLAM, this information is not directly available
– and applying this approach to the full graph of poses and
landmarks is not possible, this graph being several orders of
magnitude larger than a pose graph.

III. LEARNING THE SLAM ERROR MODEL

In our UAV coverage context, we use a SLAM solution
that exploits a landmark-based graphical model formulation
solved by MAP estimation [14]. Landmarks are key points
features that are tracked in the images, and a keyframe
selection process selects the images which position constitute
vertices in the factor graph. The estimation of the locations
of landmarks and keyframes is posed as a non-linear least
square problem, and solved by an optimization method.

A. The covisibility pose graph
The landmark based graphical model formulation of

monocular SLAM builds a bipartite factor graph. Vertices
either represent keyframe poses or landmark positions (Fig.
1), and factors encode the reprojection error on the image of
landmarks, given the detected position of the landmark in the
image, the estimated pose of the camera and the estimated
position of the landmark.

We call covisibility graph the undirected graph Gα derived
from the factor graph, keeping only the camera pose vertices
and adding edges between two vertices if they share covisible
landmarks (Fig. 1). Each edge (i, j) has a weight αij , which
represents the tightness of the constraints linking i and j
camera poses.

This covisibility graph is used in [14] to prune redundant
observations while keeping the global topology intact, to
select edges involved in local optimizations when adding a
new keyframe, and to define the “essential graph” on which
optimization is performed when closing loops.

i j

l1 l2

αij

Fig. 1. A full landmark-pose constraint graph and the associated covisibility
graph. correspond to camera poses, and to landmark positions.
All edges define the factor graph, whereas only solid edges define the
covisibility graph (landmarks are not part of the covisibility graph).

B. The resistance distance
Relying on and expanding Khossoussi’s work, we aim at

instantiating the covisibility graph Gα so as to derive un-
certainty estimates between any keyframe poses. In order to
exploit this graph to plan further observations, the uncertainty
estimates must be as close as possible to the actual error, and
the graph must yield the possibility to assess the impact of
future observations. The challenge is to generate meaningful

α weights: we propose an architecture that enables the
learning of these weights from errors measured with respect
to the ground truth positions.

Khossoussi shows that the structure of the covisibility
graph is correlated to the volume of the uncertainty ellipsoids
through the (weighted) number of spanning trees in the
graph. The resistance distance measure is a well grounded
measure, used in various contexts such as Markov chains
and networking problems (for a primer on graph resistance
distance see [6], [5]). We postulate that the resistance dis-
tance between two vertices in the covisibility graph Gα is
correlated to the relative error between the estimate of the
corresponding keyframes.

The resistance distance can be computed directly from the
weighted Laplacian matrix Lα, or conductance matrix, of the
graph Gα:

Lα = A diag(α)AT (1)

where A ∈ Rn×m is the incidence matrix of G and diag(α) ∈
Rm×m is the diagonal matrix composed from the edges
weights, also called conductances.

Let Γα be the Moore-Penrose pseudoinverse of Lα. The
effective resistance distance between vertices i and j can be
computed using:

Rij = (Γα)ii + (Γα)jj − 2(Γα)ij (2)

The usage of the pseudoinverse in this definition allows for
more robustness to ill-conditioning of the Lα matrix.

As its name denotes, the resistance distance R is a distance
function, and therefore defines a metric on Gα. Intuitively,
Rij is small when there are many paths between vertices i
and j with high conductance, and high when there are few
paths with low conductance. Adding a new edge, i.e. a new
edge always lowers the resistance distance between vertices.
Thus it behaves as is expected of a relative error measure
in SLAM: adding new measurements linking robot poses
always lowers their relative localization error. Increasing the
uncertainty of relative measures, thus decreasing the amount
of information it encodes, increases the error.

C. Learning the relative error with the resistance distance

The resistance distance seems an interesting proxy for the
relative error between vertices. To exploit it to precisely
estimate errors, two questions must be answered: How to
compute the weights α? How to derive the relative error
from the resistance distance?

We propose an architecture that combines neural networks
with the resistance distance to estimate the relative errors
from the full graphical representation of SLAM, illustrated
Fig. 2. The process consists of the following four steps:
1) From two keyframes i, j that share covisible landmarks
(i.e. an edge of the covisibility graph Gα), we extract a
feature vector Xij that encodes how well the two keyframes
would be colocalized from the matched landmarks.
2) We learn a function f mapping features to the weight
edges of Gα.
3) From Gα we compute the resistance distance Rkl between
any pair of vertices (k, l) ∈ V (be they connected by edges
in Gα or not).



4) Then a second learned function g maps the resistance
distance Rkl to the relative error metric êkl.

If needed w independent metrics can be learned in parallel
by using w outputs for f and inputs for g, thus computing
the resistance distance on independent Gα0

· · ·Gαw graphs.

f

R

R

g
Xij

α0

α1

(Rkl)0

(Rkl)1
êkl

(i, j) ∈ E (k, l) ∈ V 2

Fig. 2. Architecture of the function computing the SLAM error estimate
êkl for (k, l) ∈ V 2. α0..1 are the learned edge weight vectors associated
to the covisibility graph G = (V,E). The function f computes the weights
α0..1 from the feature vectors Xij ∈ Rk , Rkl computes a scalar value for
any two vertices in Gα, and g transforms the output of Rkl in a relative
error metric between vertices k and l.

Because the resistance distance is differentiable, we can
learn f and g together using neural networks. We simply
need to define a cost function relating the estimated relative
error êkl to the ground truth error ēkl, and use backprop-
agation to compute the gradients on the neural network
parameters of f and g.

IV. IMPLEMENTATION OF THE LEARNING ARCHITECTURE

A. Selecting informative features
We handpicked features capturing as best as we thought

the nature of the constraints between keyframes, while
remaining easy to compute. They represent geometric and
image-content information and are defined on the basis of
the covisible landmarks between the two keyframes:
• the number of covisible landmarks
• the total number of additional observations per landmark
(i.e. the number of other keyframes in which they are visible)
• the parallax defined by the keyframes camera poses
• the average distance between the landmark and the
keyframes positions
• the global saliency of the landmarks (defined in the
dictionary used for the bag of words place recognition of
ORB SLAM2)

Histograms are computed with the parallax, distance, num-
ber of observations and global saliency features associated to
all covisible landmarks of an image pair. These histograms,
the number of covisible landmarks and the area of the overlap
between the two considered images are aggregated in the
feature vector Xij .

B. Loss function
The definition of an appropriate loss function for the

optimization is conditioned by the definition of the error
model for ēkl that we are trying to learn. Ideally, one would
want to produce a full six dimensional error model for the
poses. However, our learning architecture rather explicits
synthetic topological information than metric information
and relationships between the variables estimated by the
SLAM. It is therefore impossible with this model to predict
the full error model defined by the covariances between the

6 pose parameters. Following the results and observations
of [8], we can however hope to learn synthetic information
about the pose uncertainty ellipsoids.

Because we can not differentiate the dimensions, we aim
at learning the norm of the position error, not modeling the
rotational error. Let p̄k be the ground truth position for vertex
k, and p̂k the SLAM position estimate for the same vertex.
We define the relative positional error norm as:

ēkl = ‖ (p̂k − p̂l)− (p̄k − p̄l) ‖ (3)

The probabilities of the relative errors are supposed inde-
pendent of each other given the model, therefore for n graph
samples with m vertices, we can write the joint probability
of the concatenated error vector ē given the model:

p(ē | θ,X) =

n∏
i=1

mi−1∏
k=1

mi∏
l=k+1

p(ēikl | θ,Xi) (4)

with θ the model parameters (in our case the network weights
of f and g) and X the feature vector corresponding to ē.
The objective of the optimization is to find the parameters
θ∗ maximizing the joint probability of the data given the
model:

θ∗ = arg max
θ

p(ē | θ,X) = arg max
θ

log p(ē | θ,X) (5)

Thus after substituting 4:

θ∗ = arg max
θ

n∑
i=1

mi−1∑
k=1

mi∑
l=k+1

log p(ēikl | θ,Xi) (6)

Assuming an unbiased Gaussian error model on the poses,
we compute the probability of observing an error as ēikl
given the learned error standard deviation σikl = êkl(θ,Xi):

p(ēkl | θ,X) = N (0, σikl) =
1√

2πσ2
ikl

e
− 1

2

(
ēikl
σikl

)2

(7)

Removing all terms not affecting the maximum, and
switching to minimizing the negative log probability:

θ∗ = arg min
θ

− log p(ē | θ,X)

= arg min
θ

n∑
i=1

mi−1∑
k=1

mi∑
l=i+1

log(σ2
ikl) +

(
ēikl
σikl

)2

(8)

with predicted standard deviations σikl = êkl(θ,Xi).
We use equation 8 to compute the loss function for

the neural network architecture. Backpropagation allows the
computation of the gradients of the loss function with respect
to θ, as all intermediary operations are differentiable. The
loss function can then be minimized using any gradient
descent algorithm.

V. RESULTS

We present results obtained by applying the learning
architecture on a simulated dataset relating to coverage path
planning of crop fields. The simulation setup allows to
generate at will datasets with precise ground truth positions,
while being faithful enough to evaluate the SLAM and error
prediction architecture. An alternate to simulated runs would



be to exploit real datasets, resorting to a full BA to define
the keyframe poses ground truth.

A. Simulation setup
The simulation setup instantiates a plan / execute / perceive

loop in the context of UAV coverage. The environment is
simulated with high resolution 20 cm orthorectified image
data1 projected on a ground plane. The scenes are rural
plains, with numerous crop parcels, tar and dirt roads, sparse
trees and bushes... Three 12×12 kilometer tiles define three
different environments.

A planning algorithm generates a Dubins trajectory cov-
ering the area to be mapped in a boustrophedon manner [7].
A value for the overlap of images on the ground is set: it
defines the distance between parallel trajectory legs.

The plan is fed to a UAV flight simulator following the
Dubins trajectory perfectly, but with added noise to introduce
variability. The camera is simulated as if stabilized in roll
and pitch, barring small perturbations of a few degrees. This
model is not perfectly realistic, but it is good enough to
evaluate the SLAM algorithm performances in the presence
of moderate perturbations to the trajectory.

The UAV flies at a constant altitude of 150m, and a
constant 15m.s−1 airspeed. During flight, the position of the
UAV is transmitted to the Morse simulator [4], where a 61◦

FoV 800×600 pixels camera observes the overflown scene at
32 Hz. The images are then processed by a modified version
of the ORB SLAM2 monocular SLAM software [15].

The dataset comprises of 5 areas to be mapped, with very
distinct shapes. Every hundred new generated keyframes,
the covisibility graph with computed features as well as the
SLAM and ground truth poses are recorded. The overflown
areas range from a half to a few km in length and width. 80
runs were performed with a ground image overlap varying
from 30 to 90%, and a turn radius between 35 and 50m.

B. Learning setup
Simulation results were aggregated and the dataset used

to test the learning architecture, adding up to about four
thousand SLAM results, with a large variety of trajectories,
thanks to the variations on the overlap and turn radius.
In addition, taking samples every hundred new keyframes
ensures diversity in the graph sizes, all the more since
ORB SLAM2 has a keyframe culling routine, which induces
strong modifications of the graph when closing loops, espe-
cially with back and forth boustrophedon trajectories.

Fully connected neural network layers with rectified linear
units were used for the f and g functions. A manual trial
and error process was used to set the hyperparameters of the
network, number of layers and units per layers. Function
f has 4 hidden layers with 700, 100, 100 and 10 units
respectively, and the g function has 2 hidden layers of 10
units each. 3 different weight sets α0 . . . α2 are learned in
parallel and the 3 resistance distances computed for each
edge kl are combined by g to produce the σkl output. To
ensure that no arcs disappear in the covisibility graph, a
minimum threshold is used on the weights, which is learned
along with the other parameters of the network. Finally

1from the french National Geographic Institute http://ign.fr

another fixed minimum threshold on the output σkl is set
to 1e95 to avoid division by 0 in the loss function (Equ. 8).

C. Qualitative analysis

We depict here 3 representative examples, using models
learned on the whole dataset, excluding all the trajectories
from the same mapping mission as the considered example.

a) Trajectory A: This first example is a simple bous-
trophedon trajectory. Fig. 3(a) shows the covisibility graph:
there are many loop closures between the trajectory first four
legs, and a larger gap at the end.
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(a) Covisibility graph (coordinates in km). Every keyframe is marked
with , while marks the reference keyframe and marks every
hundredth keyframe. Covisibility edges showing the learned weights
are drawn in shades ranging from solid blue (highest weights) to pale
grey (lowest weights.)
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(b) Relative errors with respect to keyframe 0 ( above).
Ground truth ē0l is drawn in black, the shaded orange
area covers the predicted 1-σ standard deviation σ0l.
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(c) Matrices of the relative errors between keyframes k and l. Left: nor-
malized ground truth relative error ēkl, right: normalized predicted standard
deviation σkl.

Fig. 3. Trajectory A results

Errors relative to the first keyframe are shown in Fig. 3(b),
along with the 1-σ predicted uncertainty. One has to keep
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(a) Normalized Gα0
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(b) Normalized Gα1

Fig. 4. Weighted adjacency matrices Gα0,1 for example A (normalized
weight encoded in colors).

in mind that the observed error is only one realization of
the predicted probability distribution, and is hence not ne-
cessarily representative of the quality of the prediction. One
can however see interesting topological results. As expected,
the error grows with the distance to the reference keyframe,
and loop closures (near keyframes 75 and 150) bring the
predicted error down. We can also observe the growth of
the predicted uncertainty in the part weakly connected to
the other parts (indices > 175), as well as an observed error
peak in the same region. Here the predictions globally follow
the same pattern as the actual errors – of course they are
probabilistic in nature, and there may be deviations with the
actual error, as we will see in other examples.

Fig. 3(c) shows the whole relative error matrices, measured
and predicted (Fig. 3(b) actually plots the first line of
these 2 matrices). We find the same global structure in the
uncertainty estimate as in the ground truth error, with the
prediction seemingly being more conservative in the error
estimate. We find again the error peak in the band around
index 215, which correspond to the last turn of the trajectory
(x = −0.7km, y = −0.3km) that is topologically the far-
thest away from the well connected regions of the beginning.
Local maximums and minimums seem to correlate well with
the back and forth motions that close numerous local loops.

Finally we can observe the intermediate learned weighted
adjacency matrices of the covisibility graph Gα0 and Gα1 in
Fig. 4. In (a), we can clearly see that a variety of weights
have been learned, however (b) shows for the second learned
weight matrix a purely topological adjacency: all weights
have the same value which corresponds to the lowest possible
value given the threshold. Adding more intermediate Gα
seem to always produce only one informative weight matrix,
the other being (or very close to) a simple adjacency matrix
multiplied by the value of the threshold. We conjecture this
indicate that the structure of the problem as posed only needs
one distance metric to perform the prediction without adding
redundant information, at least given the input features that
were used in our implementation. Indeed, using only one
intermediate Gα produced very similar results in the values
of the loss function, and this applies to all explored examples.

b) Trajectory B: This sample exhibits a single, long
back and forth trajectory that links to a well connected area,
resembling the shape of a hammer (Fig. 5(a)). Here we
expect the largest relative errors between the hammer head
and the base of the shaft.

In this instance, the errors relative to the starting keyframe
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(a) Covisibility graph (coordinates in km). The trajectory starts at the
meeting point of the shaft and the head of the hammer, goes forth
and back along the shaft, and then maps the head along back and
forth motions.
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(b) Relative errors with respect to keyframe 0 ( above)
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(c) Normalized relative error matrices (ground truth ēkl and predicted σkl)

Fig. 5. Trajectory B results

barely fit in the predicted 1-σ envelope, as shown Fig. 5(b).
The predicted uncertainty is as expected at its maximum
at the base of the shaft, around index 100. However, due
to its random walk nature, the error exhibits two peaks
corresponding to a maximum error in the middle of the shaft.

This structure can be found again in the relative error and
uncertainty prediction matrices (Fig. 5(c)). We clearly see the
bands corresponding to the shaft, as well as the dual peaks
in the ground truth error.

c) Trajectory C: This example shows a case with
very high errors, quite quickly accumulated, resulting in the
prediction failing to produce probable results. The executed
trajectory can be guessed by the covisibility graph Fig. 6(a).
In this case the relative errors to the first keyframe attain
higher than average values, with peaks around 10m due to
a 3 km long motion without loop closure, and with rapidly
varying errors (Fig. 6(b)). In contrast, the prediction never
rises above 2m, which results in errors deviating by more
than 5σ from the model. Here the model seems to be unable
to cope with very high and rapidly changing errors.
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(b) Relative errors with respect to keyframe 0 ( above).
Prediction deviations wrt. the maximum ground truth error
attains up to 5σ.

Fig. 6. Trajectory C results
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Fig. 7. Histograms of the ground truth error ē (in meters), the predicted
standard deviation σ (in meters) and the deviation of the ground truth error
from the predicted standard deviation ē/σ across 400 random samples, or
about 10% of the dataset.

D. Quantitative results

We now examine statistical results computed on 400
trajectory samples, or about 10% of the dataset, for a total of
about 59 millions data points. Three histograms of the ground
truth error values ē, of the predicted standard deviation σ,
and of the deviations of the error from the predicted standard
deviation ē/σ are shown Fig. 7.

As can be seen in Fig. 7(a) the maximum error lies around
20 meters, while the maximum predicted standard deviation
is under 8 meters (7(b)). The peak of standard deviation
prediction is around 1.5 meters and almost no predicted
standard deviations lie under 1m. Looking at the error, we
see a slight bias: the peak is shifted around 25− 50cm. As
well, the peak of the deviation ē/σ (7(c)) is shifted around
0.25 − 0.5σ. In the absence of bias the peak should be at
zero in a normal distribution.

The maximum event is over five but under six sigma.
Events over 5σ are expected (approximately 1 every 1.7
millions), but events over 6σ would not be (approximately 1
every 506 millions). Fractions of the population lying inside
the n9σ range, as well as the expected fraction value in a
normal distribution are compiled in table 8. These indicate a
slight overconfidence tendency of the uncertainty model, as
well as a distribution with heavier tails. Possible explanations

Range Realized fraction Expected fraction
1σ 0.57 0.68
2σ 0.86 0.95
3σ 0.96 0.997
4σ 0.992 0.99993
5σ 0.9995 0.9999994

Fig. 8. Fraction of the errors lying in the n9σ range of the predicted
distribution and expected fraction according to the normal distribution.
Statistics computed across 400 samples (about 10% of the dataset), on
59 millions data points.

include the aforementioned bias, as well as the failure to
predict very large and rapid deviations, as in trajectory C.

VI. DISCUSSION

We have presented a novel approach to learn a relative
error model for a monocular SLAM algorithm, using mostly
topological information from the weighted covisibility graph
through the resistance distance, which shows promising
results. Although slightly overconfident, the learned model
captures well the error variations caused by the graph topol-
ogy, especially large scale topological features, whereas finer
variations seem less precisely modeled.

This work is only a first step in the direction of mix-
ing topological and metric information to predict SLAM
uncertainties. Even with simplified simulations (no harsh
rotations, flat ground), predictions are not perfect. The model
fails to capture the larger uncertainties, especially with rapid
variations, and sometimes smoothes too much the structure
of the errors in the graph. As proven in [8] in the case of 2D
SLAM, topological information and sensor precision alone
are not sufficient to completely explain the volume of the
uncertainty ellipsoids: metric information (e.g. the distance
between keyframes) are also necessary. In our work, the few
metric information included in the features are probably too
rudimentary, and the reliance on the SLAM solution for the
computations of these features introduces bias.

Besides the need to engineer better features, other factors
should be considered. In particular, the observed bias of the
ground truth error seems to indicate a deviation from the
zero-mean Gaussian distributed error (which we use in our
model), that grows with the relative distance: this may be
related to the lever effect of angular errors on the pose errors,
which our model does not account for.

An interesting direction for future work would be produce
richer models, with a more complex architecture, integrating
more metric information to predict a full error model (on
each coordinate, including rotation angles). One of the dif-
ficulties is to engineer a loss function that enables to mix
positional and rotational errors with widely different scales.
A possibility is to drive the learning so as to minimize the
errors on the landmarks poses. The rotation errors having a
strong non linear effect, integrating the error projection in
the loss function is however not trivial. An alternate solution
is to exploit the loss function based on a matrix Lie groups
approach, as introduced in [16].
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