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Wildfire remote sensing with UAVs:
A review from the autonomy point of view

Rafael Bailon-Ruiz1,2 and Simon Lacroix1

Abstract— This article analyses the state of the art on
wildfire remote sensing using UAVs, an application context that
has now gained significant interest. It reviews a selection of
relevant publications, and proposes a classification scheme to
synthesize them from an autonomy perspective. Three metrics
are introduced: situation awareness, decisional ability, and
collaboration ability. A discussion about the current state and
the outlook of UAV systems for wildfire observation concludes
the paper.

I. INTRODUCTION

The most developed application of UAV technology is
remote sensing, primarily using image sensors, and more
recently LIDARs, in a variety of application contexts: terrain
mapping for mining industry, agriculture and flood risk
assessment; monitoring and surveillance of long linear struc-
tures such as power lines, roads and railway infrastructures;
large structure inspection and wildlife monitoring. In the con-
text of forestry, drones have been proved useful for canopy
mapping, forest management and wildfire tracking [1].

The consideration of UAVs for wildfire remote sensing
has risen in the recent years. A search query in the Web
of Science database including publications with contents
related to UAVs and wildfires returns 308 records for the
1990 to 2018 range. The distribution of these documents
by year, shown in Figure 2, shows an accelerating growth
since 2010 in the number of publications, with the total
accumulated publication count increasing exponentially as
a consequence. As observed by D.J. De Solla Price [2],
father of modern scientometrics, this is a clear symptom of
an emerging research topic.

To our knowledge, only two surveys about wildfire remote
sensing systems using UAVs have been published: [3] and
[4]. [3] focus on the analysis of the sensing hardware
and algorithms, including a detailed classification of image
sensor characteristics and fire detection algorithms. [4] is an
overview of the applicability of UAV technology into fire
management operations in which the authors also provide
a clear synthesis of the institutional and legal state of the
art in the USA. Because system architecture and operational
autonomy of the vehicles are secondary concerns in both
reviews, we deem interesting to discuss the usage of UAVs
in wildfire remote sensing from a robotic point of view:
studying the interactions between vehicles, control operators
and the environment. In other words, how systems are
designed to autonomously act with little or without direct
human involvement to gather information on wildfires.
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Fig. 1: Low altitude UAVs are excellent means to provide
high resolution and timely information on wildfires.

Wildfires and UAV missions

As reviewed by [4], the expansion of UAV applications in
the fire domain area mainly pertains to the domain of wildfire
remote sensing. Manned aerial wildfire monitoring is costly
and very risky, specially when dealing with uncontrolled
fires. Hence, transferring the aircraft operator from the air
to the ground improves the cost-effectiveness and efficiency
of wildfire fighting efforts [5], freeing resources for other
firefighting-related duties. Other tasks beyond remote sens-
ing can be achieved by UAVs, like the aerial ignition of
prescribed fires [6], or even firefighting [7], the latter being
yet to be developed in operational contexts, as it requires
carrying huge quantities of water and fire retardant.

The most common mission in the wildfire remote sensing
domain is fire mapping, which produces a map of an area
highlighting the locations on fire at a particular time from
geo-referenced aerial imagery. Additionally, it is possible
to process the fire maps in order to determine the current
fire perimeter and to provide an estimation of its position
in unobserved areas. When mapping is performed in a
continuous manner, for instance to track a fire perimeter to
provide regular updates of the fire map, it is referred to as
monitoring.

UAVs are able to generate rich and precise fire data with
high resolution cameras, that can be used to characterize
the fire geometry. Remote 3D reconstruction of a wildfire
can give a lot of information to the firefighters, who can
safely assess the fire severity in a particular location. Be-
sides, collected data help researchers to better understand
fire propagation. The work of [8] and [9] are examples
of 3D flame reconstruction algorithms from aerial stereo
footage. Aerial thermal infrared imaging can also be used in
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Fig. 2: Number of UAV and wildfire related publications by
year from 1990 to 2018.
Obtained using the search query TS=((fire OR wildland NEAR/1 fire OR
”forest fire” OR wildfire$) AND ((UAV$ OR drone$ OR ”unmanned aerial”
OR ”unmanned aircraft” OR RPAS OR ”uninhabited aerial” OR ”uninhab-
ited aircraft”) NOT(ant$ OR bee$ OR workerbee$ OR apis-mellifera OR
HIV OR gun$ OR weapon$ OR ”battle field” OR gunfire$))) in the Web of
Science database.

automated wildfire monitoring. In [10], the proposed system
is able to track wildfire perimeters from images acquired by
a UAV and use this information to improve the parameters
of a wildfire propagation simulator. Such wildfire prognosis
capability could be integrated in an automated fire decision
support tool, but means of this kind still have some way to
go before their use in real operational situations.

Outline

The next section summarizes and comments the most
relevant publications related to wildfire observation systems
using UAV technology. Publications have been selected for
the novelty of their approach and the relative importance
of the citation count, and subsequently put into two distinct
categories: systems consisting on a Single UAV, and systems
built upon Multiple UAVs. This categorization reflects a trend
in the state of the art, with systems based on fleets of
UAVs becoming more common as UAV technology becomes
more powerful. Section III introduces a classification scheme
of UAV-based wildfire remote sensing systems in terms
of autonomy levels, and synthesizes the state of the art
with respect to this taxonomy. A discussion concludes the
paper, highlighting the current research trends that we believe
relevant for UAVs in the context of wildfires.

II. RELEVANT PUBLICATIONS ABOUT UAVS AND
WILDFIRES

A. Single UAV systems

Preliminary work on unmanned aircraft technologies for
wildfire remote sensing started in the early 2000’s. This
period is characterized by the usage of remotely piloted High
Altitude and High Endurance UAVs (HALE UAVs) exploited
by research agencies as a complement to existing satellite
monitoring systems. HALE UAVs feature great capabilities:

Fig. 3: The FiRE project system architecture. A UAV cap-
tures thermal images of an ongoing fire and sends them to a
command center through satellite communication. Images are
geo-rectified as they arrive, then delivered to hazard response
teams. Excerpt from [11]

they can fly for hours at high altitude and carry significantly
heavy payloads, buy they are expensive systems and do not
provide more precise data than satellites do. Small UAVs fly
much closer to the ground potentially being able to sense
more detailed information about wildfires.

The objective of the FiRE project [11] is to demonstrate
the use of a remotely operated UAV equipped with a thermal
scanner for wildfire mapping. Images are transmitted to
the ground station via a satellite link and are then geo-
rectified to produce a fire map in real time. The system was
tested in a controlled burn site in 2001 using an ALTUS II
UAV, producing 5 geo-rectified images with a 2.5m spatial
resolution during a one hour flight. The architecture of the
FiRE system, depicted in Figure 3, is probably the first
instance of a complete wildfire monitoring system, serving as
the foundation of more capable ones to come in the following
years.

People from the same laboratory reported in [12] about
new fire imaging missions flown by NASA and the US Forest
Service with a HALE UAV between 2006 and 2010. This
time, the UAV included a hyperspectral camera and sufficient
computing power to process sensor data on-board. A fire hot-
spot algorithm running on the UAV on-board CPU was able
to detect burning areas by applying a threshold to selected
infrared bands. With the help of a digital elevation model,
image regions corresponding to fire were projected over the
ground level to obtain a geo-rectified fire map. Finally, the
fire map was sent in real time to a Wildfire Collaborative
Decision Environment that integrated multiple geospatial
sources allowing real-time collaborative manipulation of the
information.

OSIRIS [13] is a European project whose objective is to
develop a High Altitude Platform for wildfire monitoring
using a solar-powered HALE UAV. This UAV is able to



follow a predefined flight plan that can be updated at any
time from a Ground Control Station. While achieving the
mission, the aircraft is able to capture high-resolution images
that are transmitted in real time to the ground station through
a satellite link. Then, the raw images can be forwarded to
a Central Data Processing Center for additional processing,
that archives all the geo-referenced imagery that has been
produced and allows the final users to consult the informa-
tion. No automated assessment is performed on the images
to detect fire spots or propagation perimeters. We could
not assess whether this work has been validated in realistic
conditions or not.

[14] describes the results of a project devoted to wildfire
monitoring with a remote sensing system based on two
platforms: a small UAV and a two-seat airplane. Different
sensing instruments were available including thermal, multi-
spectral and hyperspectral cameras.

The work of [15] assesses the interest of using UAVs to
observe wildfires from the point of view of a firefighting
team. Once a fire is declared, the first task of the response
crew is the reconnaissance of the situation. Given that the
damage generated by a wildfire depends greatly on the
response time, the earlier firemen have an understanding
on the severity of the fire, the earliest they can apply the
best countermeasures. Hence, air reconnaissance with UAVs
being operated directly by the fire fighting crew seems for the
author the most effective way to get early information about
a starting wildfire. When the fighting efforts are concentrated
on a specific area, UAVs can be used as a decision support
tool for the least active portions of the front. After doing
a simple fire reconnaissance test with a regular commercial
UAV, the author concludes with a roadmap for three wildfire
monitoring designs that firefighting crews would benefit
from. Its last milestone consists of fleets of autonomous
UAVs including blimps, helicopters and fixed-wing aircraft.

An autonomous wildfire monitoring system is depicted
in [16], whose objective is to track a set of hot-spots as
fast as possible. Given a realistic simulation of the expected
evolution of a wildfire, a hot-spot is defined by the center of a
cluster of locations where the fire is the fastest growing. The
authors introduce a greedy algorithm that guides the UAV
towards these hot-spots. Then, the algorithm is evaluated
against a baseline strategy consisting in circling the current
fire contour. A mixed-reality experiment, with a real UAV
and a simulated fire has been performed to test the proposed
algorithm.

B. Multiple UAV systems

The use of multiple UAVs reveals new forms of operation.
The scale of a wildfire is often too large to be encompassed
by a single UAV, which fleets of UAVs can cope with. But
systems built upon multiple UAVs also imply new design
challenges, as vehicles must communicate and collaborate
in some way to exploit the full potential of the fleet. Hence,
some task allocation or distributed control algorithms are
necessary to operate the fleet.

Fig. 4: Aerial view of a wildfire from different angles (top).
Algorithms are able to locate the position of the fire if a
digital elevation map is provided (bottom). Excerpt from [20]

The interest in systems based on multiple UAVs is sup-
ported by a recent publication [17] that evaluates different
wildfire remote sensing schemes, combining land sensors,
fixed-wing and rotary-wing UAVs, and satellites. The main
interest of this work is the analysis of different sensing
strategies regarding how they fit into the fulfillment of typical
missions, i.e. fast and reliable wildfire detection and robust
monitoring. The authors retain three unique strategies: the
first one using satellite and land sensor imagery, the second
one built upon fleets of drones and the third one combining
fleets of UAVs with ground cameras. UAV-based systems are
found to be the most useful configuration overall with respect
to their criteria.

To the extent of our knowledge, the first publication
devising the application of fleets of fixed-wing UAVs as
a wildfire remote sensing platform is [18], in which the
authors conceive a remote sensing architecture using UAVs
as a foreseeable alternative to satellites. The fleet, flying at
stratospheric level, carries optical payloads and has on-board
processing capabilities. The work presented in this article is
more centered into the design of the optical payload, but the
introduction of the idea of a UAV fleet platform with on-
board processing for autonomous detection and tracking of
ground phenomena was innovative at that time.

The authors of [19] propose a fire spot detection system
in the context of the COMETS project. This system included
for the first time a fleet of heterogeneous UAVs composed of
three vehicles of two different kinds and with varying levels
of autonomy: autonomous and remote controlled helicopters,
and a remote piloted blimp. The fire spotting algorithm relies
on the collaboration between UAVs featuring IR cameras
and other UAVs carrying visible cameras to increase the
detection probability. Once a fire spot is confirmed, the
assessment is completed by observing it from different points
of view. This system has been tested on the field and authors
provide an extensive report on the results of the experiment.
More recent publications from the same authors introduce
improved results on fire contour extraction [20] and 3D fire
shape estimation from multiple ground and aerial views [8].

Other innovative work using fleets of UAVs is introduced
in [21]. This publication depicts a collaborative wildfire
monitoring system using a fleet of LASE (Low Altitude Short



Endurance) fixed-wing UAVs. The monitoring framework
relies on a decentralized algorithm that makes each UAV
track the front of a round shape wildfire to measure the
total length of the perimeter. The UAVs fly in opposite
directions and every time a vehicle meets another one, they
exchange information about the length of the perimeter they
have already tracked. Given sufficient time, the fleet agrees
on the front length, equally distributing the portion of the
front being monitored by every vehicle. The interest of the
proposed system resides in its ability to work in limited
communication scenarios, with information being sent from
one agent to another, reaching at the end the ground station.
This time, the algorithm was tested with the help of a wildfire
simulator and a 6 degree of freedom simulator for the UAVs.

[22] describes a monitoring architecture to estimate the
perimeter of a wildfire using a fleet of UAVs. Their model
defines the fire front as a set of discrete control points that
move outwards the center of the fire. Then, the border is
observed by a fleet of UAVs equipped with a binary sensor
capable of detecting whether a UAV is located over the
wildfire or not. Observations are fed into a tailored Kalman
filter that estimates the location of the perimeter control
points, and associates to each of them an uncertainty value.
A planning algorithm creates a plan for fleets of UAVs to
observe the control points prioritizing those whose location
is more uncertain.

[23] proposes an early fire detection platform with ground
sensors and a fleet of UAVs. The suggested scheme advo-
cates for the use of small quad-rotor drones for early fire
verification and a blimp equipped with a smoke detector and
a radiometer for hot-spot monitoring.

FireRS [24] is a European project to which we partici-
pated, that implements a wildfire detection and mapping sys-
tem to support the decision-making procedures of emergency
response teams. A network of land-based fire sensors, dis-
tributed across the wild land, scans the area for fire ignitions
and estimates their location. When a wildfire is detected, an
alarm is transmitted by the means of satellite communication,
to an autonomous control center that deploys a fleet of
small UAVs for continuous wildfire detection and mapping.
The control center runs an observation planning algorithm
tailoring a local search approach to plan trajectories for the
UAVs exploiting realistic models of the environment, the
wildfire and of the UAVs [25] [26].

A novel swarm control algorithm for wildfire search and
tracking is proposed in [27]. This algorithm for fleets of
microUAVs is based on a dynamic pheromone map, which
combined with a particular heuristic, makes the swarm search
for new fire spots while tracking existing ones in a distributed
manner. Each UAV carries an infrared camera capable of
detecting and geo-locating a fire. Periodically, pheromone
maps are shared between agents with the objective of collab-
oratively building a complete fire map. This wildfire tracking
algorithm has been tested in simulation over a synthetic oval-
shaped fire.

[28] proposes a distributed control framework for a fleet
of rotary-wing UAVs that spatially distributes the vehicles

Fig. 5: Due to the extension and the duration of wild-
fires, teams of vehicles, multiple sensors and communica-
tion schemes must be considered for a successful wildfire
monitoring mission. Excerpt from [17]

to observe a wildfire. The algorithm tries to maximize the
fire coverage, moving the vehicles to the most advantageous
positions while the fire keeps spreading.

[7] applies a deep reinforcement learning strategy for a
fleet of fire fighting UAVs. The purpose of the proposed
algorithm is to control the propagation of a wildfire by
commanding the UAVs to, first, detect trees close to ignition
and second, drop some retardant to stop the fire spread.

A wildfire rate of spread estimation algorithm using data
obtained by a fleet of rotary-wing UAVs is presented in [29],
and further developed in [30] and [31]. The estimation
exploits a Kalman filter that combines past knowledge about
the fire perimeter with measurements to predict the current
contour position. Thanks to a wildfire simulator, the authors
tested the algorithm inside a realistic environment.

[32] introduces an autonomous wildfire surveillance sys-
tem, using a deep reinforcement learning approach to control
a fleet of UAVs. The problem is modeled after a Partially
Observable Markov Decision Process for the UAV controller
state and actions, and a stochastic wildfire model is used to
generate the training environment. Two different strategies
for generating actions for each UAV in the fleet are depicted.
The first one directly derives actions from binarised images
of the wildfire around each UAV (burning or not burning).
A penalty system favors the aircraft to follow the fire front
while avoiding extreme bank angles and flying close to other
UAVs. The second strategy defines an ignition belief map for
the whole fire, encoding for every cell whether it is on fire
and the time elapsed since the last observation. Each time
an UAV flies over an area, the belief map is updated and the
fleet obtains a reward when a cell thought to be extinguished
is seen on fire. Deep reinforcement learning is used to train
the controllers for the two aforementioned strategies. The
authors study the pros and cons of each approach and analyze
their performance against each other under several distinct
scenarios. The results show that both approaches are able to
track wildfires, none of them outperforming the other in any
case.

III. AUTONOMY LEVEL CLASSIFICATION SCHEME

This section synthesizes the publications with respect to
the Autonomy of the systems, defined as the ability of a robot



to perform a given task with the least human involvement.
Several pieces of work have dealt with the issue of

classifying unmanned aerial systems by their Autonomy
abilities. A study by the US Air Force Research Labora-
tory [33] proposes an Autonomous Control Level (ACL)
metric divided in 10 levels, from Remotely piloted to
Fully Autonomous Swarms, based on three metrics: Per-
ception/Situational Awareness; Analysis/Decision Making;
and Communication/Cooperation. The Autonomy Levels for
Unmanned Systems (ALFUS) [34] is a popular classification
by the USA National Institute of Standards and Technology
that takes in account three aspects of the overall completion
of a mission: mission complexity, environmental complexity,
and human independence. A working group of NATO has
classified UAS autonomy in 4 levels [35]: remotely con-
trolled system, automated system, autonomous non-learning
system, and autonomous learning system.

These three classification schemes have been established
considering mostly military Unmanned Aerial Systems, and
some of their definitions are not suitable to fully describe
civil missions. The scales for the different autonomy levels
depend on specific abilities such as threat detection and
flight tactics that are not fully compatible with wildfire
remote sensing particularities. Nevertheless, the principles
that define these classifications can be adapted to the remote
sensing context.

A. Main metrics

We propose the following three following metrics to
establish a classification of UAV based wildfire monitoring
systems:
Awareness Whether the system is able to provide a global

understanding and analysis of the fire state and proper-
ties.

Decision Whether the system is able to decide which actions
to perform and achieve them.

Collaboration Whether the system components communi-
cate, share information or perform joint tasks.

An important difference with respect to previous work is
the enlargement of the analysis scope to the overall system.
The classification is no longer restricted to the elements that
are embedded into the UAVs but considers all the system
devices, protocols and algorithms that constitute the whole
system: satellites, ground sensors, ground control station, etc.

The autonomy level of a system is described by these three
main metrics, seen as mostly independent qualitative dimen-
sions. The proposed classification does not provide numerical
scores, but a qualitative synthesis of system strengths.

1) Awareness: The Awareness metric extends elementary
fire perception abilities (e.g. fire detection) to the analysis of
the observed data. It represents the ability to synthesize ob-
servations into a computerized understanding of the observed
phenomenon.

The Awareness metric is divided into three levels:
No data analysis Acquired data is disseminated with no

further analysis.

Feature extraction The system is able to detect some fea-
tures of a wildfire from sensor data – for example,
detecting fire hot-spots.

Situation assessment The system is able to exploit sensor
data and models to provide additional insights about the
wildfire, such as estimation of missing data or prediction
of wildfire evolution.

2) Decision: The Decision metric defines level of inter-
vention of the users on the definition of the actions to be
carried out by an UAV.

This metric presents two distinct stages of increasing
levels of autonomy, depending on whether the UAV adapts
its actions with respect to the environmental or not. At
the first stage, UAVs are able to navigate by themselves
following a human-made plan specifying how to perform
the mission. For instance: ”Take off, then go over point A,
take a picture, and land at point B”. At the second stage,
the mission plan is not fully specified by an operator: it
is automatically generated from high-level requirements and
constraints provided by the users. For example: ”Find fires
in this region” or ”monitor this fire perimeter”.

These two stages are detailed in the following four auton-
omy levels of the decision metric:

Remotely piloted The UAV is directly piloted by an oper-
ator.

Manual planning The UAV is able to navigate au-
tonomously given a plan provided by a human operator.

Autonomous planning The UAV is able to navigate au-
tonomously a trajectory generated by a computer taking
in account the current or expected environment.

Adaptive autonomous planning The UAV is able to nav-
igate autonomously a planned trajectory and modify it
while flying according to changes in the environment.

3) Collaboration: The Collaboration metric evaluates
the existence and the autonomy level of interaction between
several UAVs. Given the spatial and time extents of wildfires,
the benefits of multiple vehicles for observation missions
are clear. Nevertheless, having a fleet of vehicles inevitably
requires taking in account a collaboration dimension in the
design, as the control algorithms must be adapted to this
configuration. In this respect, two classes of designs can
be found: one approach is to have a fleet of UAVs with
independently allocated tasks executing actions in parallel
to achieve the mission. For instance, the monitoring of
a 10 km2 region can be done with 10 UAVs patrolling
areas of 1 km2. Another design approach is to make UAVs
work together, exploiting synergies to achieve a common
objective. Good examples of this strategy are [21] and
[19]. The first is an instance of swarm design, that yields
the estimation of a fire perimeter length with a fleet of
vehicles having limited sensing thanks to local information
exchange. In the second case, UAVs carrying different
sensors observe the same fire from different locations to
increase the accuracy of the detection.



This metric is divided into the following three levels:

One vehicle No collaboration.
Distributed task Multiple UAVs achieve independently al-

located tasks.
Cooperative task Multiple UAVs for which one vehicle

task execution requires the interaction with one or more
other vehicles.

B. Secondary concerns

There are other aspects playing a complementary role
into the characterization of wildfire remote sensing systems.
These concerns do not take part directly of the autonomy
definition, but are still worth to be mentioned as they help
put those designs into context.

1) On-board versus off-board data processing: On-board
processing means that the vehicles are capable to process
sensor data and to produce a synthesis of the information on
their own. On the contrary, off-board processing defines a
vehicle that only acts as the carrier of a sensor, transmitting
raw data or storing it for further retrieval. The distinction
between on-board and off-board computation is not sharp, as
data processing efforts may be shared between the vehicles
and the ground station.

The choice of a data processing configuration comes out as
a technical consequence of multiple combined factors: 1) The
ratio between the performance of the communication link
and the size of the data that needs to be transmitted, 2) The
computing power that can be embedded into the UAVs, and
3) Mission-specific requirements.

2) UAV airframe type: UAVs may be classified by their
structure and method of lift, some airframes being more
suitable for specific types of mission than others.

Lighter-than-air vehicles are able to fly during long periods
of time and can control their trajectories, but they navigate
very slowly and are prone to winds. This kind of vehicle
is suitable for static surveillance missions as used in [20],
taking pictures from a high point, and long term observation
of extinguished areas like in [23], but not for wildfire
perimeter tracking when wind is one of the main cause of
the fire propagation.

Rotary-wing aircraft can take off and land vertically and
hover, but they require the continuous action of the rotors
to fly, reducing their endurance. Quadrotors, and multirotor
aircraft in general, have recently gained some popularity
thanks to the introduction of relatively cheap commercial
off-the-shelf models.

In contrast, fixed-wing planes have to be continuously
moving forward, they are not able to hover and are non-
holonomic. Nevertheless, they are very useful as their air-
speed and endurance are high. These two reasons make
them the airframe of choice for fire mapping and tracking
missions.

New UAV designs with hybrid airframes are capable of
vertical take-off and landing, and horizontal flying, combin-
ing the advantages of rotary-wing and fixed-wing aircraft
designs, but are not yet widespread.

3) Mission type: In the context of wildfires, UAV mis-
sions are devoted to information gathering, be it detection,
mapping, monitoring or tracking of either hot-spots or fire
perimeters (also referred to as fire front). Fire suppression,
one of the objectives of [7], is the sole mission that does not
fall into the remote sensing category.

Detection missions consist in finding the existence of fire
and its coordinates. The objective of a mapping mission,
typically performed during the early stages of a wildfire,
is to build a map of the fire extent. Depending on the
kind of sensor used, visible or thermal, this can be for the
fire front or hot-spots. When mapping is done continuously
for a region as a whole, the mission type is monitoring;
or tracking, if a particular feature of the wildfire is being
followed. Surveillance is a variant of the monitoring mission
type where UAVs are used to observe an area before or after
a fire is declared.

4) Field tests: The maturity of research and development
can be assessed on whether it has been tested in real
conditions or not. Among all the systems reviewed, those
that have been field tested have single vehicle configurations
(with [19] as the sole exception). This fact is consistent with
the analysis of [1] relating current legal issues of UAV usage.
It can be expected that in the coming years there is going to
be a push for the authorization of multiple UAV operations,
as technology gets more mature.

IV. DISCUSSION

Table I synthesizes the work reviewed in section II with
respect to the metrics introduced in section III. Publications
are sorted by year and grouped into one record when they
describe parts of the same system. Additionally, Figure 6
shows a condensed pairwise comparison of the most com-
mon wildfire remote monitoring system configurations with
respect to the defined autonomy level metrics. The charts
highlight the most frequent levels and those that are not
popular.

As expected, we observe an overall increasing level in
autonomy in the recent years. In particular, every publication
after [20] in 2012 describes a system featuring some kind
of Situation Assessment, that is either creating some sort of
map of the wildfire location, or recovering the fire geometry:
Situation Assessment is naturally the first step to autonomous
wildfire monitoring. Furthermore, most of recent work in
the literature reach the autonomous planning decision level
with multiple UAVs. This is a consequence of the nature
of wildfires, which extend both in space and time, and of
the requirements of the operators, who need information as
timely and as complete as possible. As a result, it is likely
that fleets of autonomous UAVs are going to be the standard
for future wildfire remote sensing developments.

If the recent trend in publications shows that using mul-
tiple UAVs are possibly the best fit to observe wildfires,
such technology is not completely ready yet. There is a
general lack of extensive field experiments that may be due
to a couple of overcoming challenges. The first is legal:
flight restrictions require a dedicated safety pilot for every



vehicle, which is an issue for fleets of autonomous UAVs.
The second may be due to autonomy challenges: reaching
the collaboration level of autonomy requires an advanced
level of decisional autonomy. As illustrated in Figure 6c, no
system with multiple UAVs is remotely piloted.

Besides, Figure 6b illustrates well that autonomous plan-
ning systems must rely on situation assessment algorithms.
Finally, one can state that the future of wildfire remote
sensing is dependent on a general increase in the auton-
omy of UAV technology. Additional field testing will be
required in order to certify collaborative UAV activities, for
which system-oriented designs that explicitly account for the
ground control station and operator involvement are deemed
necessary.
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Fig. 6: Examination of the wildfire remote monitoring systems reviewed in this survey. Charts provide aggregated pairwise
comparisons of the awareness, decision and collaboration autonomy levels highlighting the most common configurations.
The size and the color of the circles indicate the number of contributions.
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