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Encoding Molecular Motions in Voxel Maps

Juan Cortés, Sophie Barbe, Monique Erard and Thierry Siméon

Abstract—This paper builds on the combination of robotic path planning algorithms and molecular modeling methods for computing
large-amplitude molecular motions, and introduces voxel maps as a computational tool to encode and to represent such motions. We
investigate several applications and show results that illustrate the interest of such representation.

Index Terms—Simulation, Modeling, and Visualization; Computer Applications to Biology; Robotics.

1 INTRODUCTION

Nowadays, the dynamic nature of biological macro-
molecules, opposed to the static picture provided by X-
ray crystallography, is generally accepted. Furthermore,
it has been shown that flexibility plays key roles in
molecular interactions such as protein-ligand [1], [2]
and protein-protein docking [3], [4]. Unfortunately, and
despite great advances achieved in the last years [5],
[6], an atomic-resolution structural description of slow-
timescale (large-amplitude) molecular motions is out
of reach for currently available experimental methods
[7]. Computational methods are therefore necessary to
complement experimentation.

Molecular dynamics (MD) [8], [9] is the most widely
used computational method to simulate molecular mo-
tions. MD is an appropriate method to analyze motions
taking place in a short timescale (up to some nanosec-
onds). However, it is too computationally expensive
for routine simulations of large-amplitude motions of
macromolecules, even using coarse-grained models [10].
In some cases, MD simulations can be accelerated by
the introduction of artificial forces [11]. Nevertheless,
devising such forces may require prior knowledge of
the particular problem, and they can excessively bias
the resulting trajectories. Simulation methods based on
Monte Carlo (MC) algorithms [8], [9] have been devel-
oped to overcome the limitations of MD. Such methods
present however a major drawback for computing large-
amplitude motions since the conformational exploration
tends to get trapped into the many local minima of
the complex molecular energy landscape. Alternatives to
MD and MC simulations have been proposed using very
different methods such as iterative NMA calculations
[12], [13], or structurally constrained conformational ex-
ploration using models from rigidity theory [14].
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Our method is based on path planning algorithms
[15], [16], originally developed in the field of robotics.
Such algorithms are efficient tools for exploring con-
strained high-dimensional spaces. Applied to problems
in structural biology, they yield high-performance con-
formational search methods, able to consider a wide
range of degrees of freedom. Like MC algorithms, they
use random sampling to face the curse of dimensional-
ity. However, they hold better coverage properties, and
show less tendency to get trapped in local minima. In the
recent years, path-planning-based methods have been
successfully applied for investigating different problems
such as: protein-ligand access and docking [17]-[19],
protein and RNA folding [20]-[22], protein loop motions
[23], domain motions [24], and motions of pairs of a-
helices in transmembrane proteins [25].

This paper! recalls our approach for computing molec-
ular motions (Section 2.2) and introduces voxel maps
as a new and general computational tool to encode
these motions (Section 2.3). Section 3 illustrates the
potential interest of the method on several structural
biology problems. The presented results show how voxel
maps can effectively represent relative motions of two
molecules, as well as conformational changes in pro-
teins. The simplest application, presented in Section 3.1,
consists in using voxel maps to identify channels in
proteins, by exploring and encoding possible motions of
a single atom between the active site and the surface. The
second application (Section 3.2) addresses protein-ligand
interactions. Voxel maps permit to reflect differences
between the access/exit pathways of different ligands to
the active site of a protein. Finally, Section 3.3 deals with
the representation of conformational changes involving
loop and domain motions.

2 METHODOLOGY
2.1 Overview

The method presented in this paper builds on the two-
stage approach proposed in [19] for computing large-
amplitude molecular motions. The first and main stage

1. A preliminary version of this work was presented at the confer-
ence ICRA’09 [26].



consists in a geometric processing of the strongest molec-
ular constraints (no atom overlaps, no bond breaking).
Fast geometric computation [27] combined with efficient
path planning algorithms [28] permits our method to
generate large-amplitude motions of flexible molecules
with very low computational cost. Optionally, in a sec-
ond stage, results of the geometric exploration can be
refined and analyzed using classic molecular modeling
tools (e.g. energy evaluation/minimization), or using a
path clustering technique [29] to extract the most ener-
getically favorable motions from representative paths of
the highest-score clusters.

The voxel-map representation described below can be
seen as an intermediate layer between the two stages.
It permits to arrange the information obtained from the
exploration of a high-dimensional space (the molecular
conformational space) into a simple three-dimensional
data structure. The choice of the three dimensions and
the size of voxels depends on the application (see Sec-
tion 3). In addition to the information structuring, voxel
maps permit a visual analysis of the results of the
conformational exploration.

2.2 Exploring geometrically feasible motions

The conformational search method applied in this work
(described in more detail in [19]) is based on a mechanis-
tic modeling of molecules [30]. Groups of bonded atoms
form the bodies of the mechanism, which are linked
by articulations corresponding to bond torsions. These
torsions are the molecular degrees of freedom. The atoms
are represented by rigid spheres with (a percentage of)
van der Waals radii?>. These spheres cannot overlap.
Structural features of the molecules can be translated
into kinematic constraints in the mechanistic model. For
instance, kinematic loop-closure constraints are imposed
to keep the extremities of a flexible protein loop fixed
[23]. Additional distance and orientation constraints
can be imposed between elements of this mechanistic
model in order to simulate interactions such as hydrogen
bonds.

The technique applied to explore feasible motions
of the mechanistic molecular model is derived from
the Rapidly-exploring Random Trees (RRT) algorithm [32].
The basic principle of RRT is to incrementally grow a
random tree, rooted at a given initial conformation qinit,
to explore the search space for finding feasible paths.
The exploration process is illustrated in Figure 1-b, and
Algorithm 1 gives the pseudo-code for one iteration
of the RRT construction. At each iteration, the tree is
expanded toward a randomly sampled conformation
Qrand- This random sample is used to simultaneously
determine the tree node to be expanded and the motion
direction. Given a distance metric in the search space

2. Considering a percentage of the van der Waals equilibrium
distance ensures that only energetically infeasible conformations are
rejected by the collision checker. The value of 80% is often used in
techniques that geometrically check atom overlaps [31].

Algorithm 1: ExpandRRT

input : the current tree 7, the model M;
output :a new node gnew, a new edge pnew;
begin

Jrand < SampleConf(M);

gnear < BestNeighbor(T, rand);

(qnew < EXpaDd(qnear/ qrand)}

if not TOOSimilar(qnear, qnew) then
Prew SetEdge(qnear/ qnew);
AddNodeToTree(T, gnew);
AddEdgeToTree(T, Pnew);

end

(e.g. RMSD), the nearest node gnear in the tree is selected.
Then, qnear is expanded towards qrang by following a local
path computed from the linear interpolation between the
two points while the motion satisfies all the geometric
constraints. If the expansion is feasible (i.e. it is possible
to move more than a given ¢), it leads to the generation
of a new node qnew and a feasible local path prew. The
key feature of the RRT expansion strategy is to bias the
exploration toward unexplored regions before uniformly
covering the space.

The RRT algorithm can be extended to treat mobile
systems involving kinematic loop-closure constraints as
detailed in [33]. Such an extension requires specific sam-
pling functions that manage loop closure. An efficient
geometric algorithm for sampling protein loop confor-
mations is described in [23].

The algorithmic variant used in this work is ML-RRT
[28], which has been shown to perform better when
handling flexible molecular models. This variant con-
siders two sets of conformational parameters: active and
passive. Active parameters are essential for the system
motion, and they are directly treated at each iteration of
the algorithm, as explained above. Passive parameters,
however, only need to be treated when they hinder
the motion of active parts (i.e. the expansion of active
parameters). In the applications presented in Section 3,
the passive parameters correspond to the torsion angles
of the protein side-chains, while the active parameters
correspond to the other variables: the location and the
internal torsions of the ligand, and the torsion angles
of flexible protein backbone segments. The main ad-
vantage of ML-RRT is a much higher efficiency for
dealing with high-dimensional problems thanks to the
decoupled treatment of parameter subsets, which favors
the exploration of active parameters.

2.3 Putting search trees into voxel maps

Nodes and edges of the RRT search tree are embedded
in a high-dimensional space (the conformational space
of the molecular model). The idea is to arrange this in-
formation into a lower-dimensional data structure for fa-
cilitating further analysis. The voxel-map representation
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Fig. 1. Two-dimensional illustration of a voxel map con-
struction. Given a geometric model of the molecules (a),
a path planning algorithm is used to explore the subset of
the conformational space that is reachable from the initial
conformation satisfying motion constraints. b) lllustration
of an expansion step of an RRT. c) Search tree resulting
from the geometric exploration. d) Voxel map associated
with the search tree.

has been chosen for different reasons: (1) it is a simple
and regular structure, which facilitates operations such
as nearest-neighbor search, (2) it is three-dimensional,
which permits a visual rendering of the information
gathered during the conformational search.

The three dimensions of the voxel map correspond
to three variables of interest for the particular problem.
These three variables may be a subset of the conforma-
tional parameters of the mechanical model (e.g. position
of the reference frame of a molecule, three selected bond
torsions). They can also be chosen to encode information
obtained from the conformation (e.g. position of one
atom, center of mass of one domain). The voxel size
also depends on the application, and on the chosen
coordinates. Indeed, the resolution is chosen depending
on the motion amplitude, and on the cost of the ul-
terior treatment (geometric and/or energetic analysis).
Typically, in the applications presented below, voxel
resolution (voxel edge length) varies from 0.1 A to 2 A.
Note that increasing the voxel resolution does not affect
computational efficiency. Most of the computational cost
comes from the conformational exploration, whereas the
generation of voxels from the resulting search tree is
almost cost-less.

The process for generating the voxel map from the
RRT search tree is very simple. Algorithm 2 gives the
pseudo-code. The process is illustrated in Figure 1-d. At
each expansion of the RRT search tree, the new node

Algorithm 2: ConstructVoxelMap

input : the model M, the initial conformation qjpit,
the voxel map coordinates vxyz, the voxel size
US/
the labeling function fi,pe|;

output : the voxel map V;

begin

T InitRRT(qinit),‘

V «+ InitVoxelMap(Qinit, Uxyz, Us);

while not StopCondition(r,V) do
gnew, Pnew — ExpandRRT(r, M);
AddNodeToVoxelMap(V, qnew);
AddEdgeToVoxelMap(V, Pnew);

LabelVoxels(V, fiabel);

end

and the new edge are inserted into the voxel map. A new
voxel is created if the projection of qnew on the voxel map
coordinates lies in a yet uncovered region. Otherwise, the
node is added to the list of nodes in the corresponding
voxel. The procedure is slightly more complex for the
edges. The new edge pnew is discretized and projected on
the voxel map coordinate space. New voxels are created
in yet uncovered traversed regions, and one intermediate
conformation along the edge is associated to each of
them. Intermediate edge conformations are also kept
into existing traversed voxels, except for the voxels
containing qnew and gnear. Thus, each voxel contains a
list of conformations corresponding to the RRT nodes
and edges that are projected on it.

The voxel map construction is iterated until a stop
condition is satisfied. This stop condition can be based
on a given size reached either in terms of the number of
generated voxels or of the number of sampled conforma-
tions stored in the voxel map. Another possible variant is
to stop if no new voxels are added after a given number
of consecutive iterations, which reflects the difficulty to
further explore new regions of the conformational space.

Once the voxel map has been constructed, voxels
can be labeled in different ways, as illustrated by the
applications described below. For instance, values can
be assigned depending on the chronological order of
generation. In this way, the voxel map can be used to
display the regions of the space that are reached first
during the conformational exploration (see Section 3.2).
Other labeling procedures can be devised based on con-
formational or geometric features, such as the distance
between catalytic residues (see the protein loop example
in Section 3.3.1). The voxel labeling can also be made
according to energy evaluation. An energetic analysis of
the conformations associated with voxels may provide
very useful information about the conformational energy
landscape (see the example of protein domain motions
in Section 3.3.2).

The method has been implemented within our soft-
ware prototype BioMove3D. PyMOL [34] has been used



for viewing molecular models and voxel maps. The
computing times given in next section correspond to
tests run on a single AMD Opteron 148 processor at
2.6 GHz.

3 APPLICATIONS

The proposed approach - combining an RRT-based ex-
ploration method with the arrangement of the result-
ing conformations into a voxel map - was applied to
examine dynamic properties of three relevant biological
systems. The addressed problems involve the access/exit
of ligands to buried active sites in proteins, and protein
loop/domain motions. Note that in-depth explanations
about the considered systems and a more detailed analy-
sis of biological results are not the primary scope of this
paper. The aim of this section is to show the potential
interest of voxel maps in enhancing the understanding
of biological problems involving molecular motions.

3.1

The most straightforward application of the method
is the search and representation of channels in pro-
teins. The channels are searched using the voxel-map
technique described by Algorithm 2 to explore feasible
motions of a ball (of arbitrary radius) inside the protein
model. This algorithm permits to directly treat all side-
chain flexibility®> with a low computational cost. In this
application, the three variables used for the voxel-map
representation are the position parameters of the moving
ball. The voxel resolution is chosen in relation to the ball
size.

The benchmark for this application is cytochrome
P450. The in/out channels of this enzyme have been
recently characterized [35] using a computational tech-
nique called CAVER [36]. CAVER is based on the
construction of a vertex-weighted graph from a dis-
crete three-dimensional grid model of the protein. The
weights are computed from the distance to the protein
atoms, the lowest weights corresponding to nodes with
the highest clearance. A variant of Dijkstra’s algorithm is
applied to search for the shortest low-cost paths. CAVER
considers static structures, and performs systematic ex-
ploration of the protein interior. Molecular flexibility can
only be indirectly treated by applying the technique to a
set of structures (e.g. samples of a molecular dynamics
simulation). The results described below aim to show
some advantages of the voxel map method.

The structure represented in Figure 2 corresponds to
bacterial P450-BM3 (PDBid 1JPZ). The voxel map in the
figure represents the channels found by our method for
a moving ball of radius 1.2 A. Three of these channels,
W, 2b and 2f, were also found by CAVER. However,
channel 2d was not reported for this structure, although

Findings channels in proteins

3. The implementation of ML-RRT applied in this work only con-
siders side-chain flexibility. Note however that we are currently devel-
oping an extension of ML-RRT that permits to treat flexible backbone
regions such as protein loops.

Fig. 2. Voxel-map representation of channels connecting
the active site and the surface in bacterial P450-BMS3.
Channel identifiers follow the nomenclature in related
work [35].

it was observed in a small number of other P450-BM3
structures [35]. A further analysis of channel 2d shows
that the exit of the moving ball requires slight motions of
some side-chains, in particular those of residues Leu20
and Leu29. This result shows the interest of considering
side-chain flexibility when computing channels in pro-
teins.

Also note that very similar channels are obtained
from several runs of the voxel map computation with
the moving ball initially located at different positions
in the enzyme active site. Such a reliability shows the
low sensibility to the starting point, which is another
advantage over CAVER*.

The computing time required to construct the voxel
map representation of the channels was about 5 minutes.
This is obviously not comparable to other available soft-
ware such as CAVER [36], MOLE [37] or MolAxis [38],
which only require some seconds to compute channels,
but only treat rigid protein models. In spite of a lower
computational efficiency, the incorporation of protein
flexibility within our approach permits to identify pre-
viously closed channels in the protein model used as
input. Besides, as illustrated below, our approach is able
to consider flexible ligand models (instead of a single
atoms) to compute access/exit channels. Furthermore,
the voxel-map representation is not specially tuned for
this specific application, and can be used to represent
diverse molecular motions.

3.2 Analyzing ligand access/exit pathways

The proposed approach can be used to investigate the
access/exit pathways of ligands (or substrates/products)
to the active site of a protein. Such pathways can play

4. Results reported in [35] indicate that CAVER presents a significant
sensibility to the starting point.
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Fig. 3. a)-b) Models of the (R,S)-enantiomers of
4-methyloctanoic acid in the active site of CALB [40].
c)-d) Voxel maps representing locations of the center
of mass of the (R,S)-enantiomers reachable from the
catalytic position. Voxels resolution is 0.1 A, and colors
indicate the chronological order of generation.

key roles on the activity, specificity and selectivity of
proteins presenting a deep and narrow binding pocket.
For instance, the accessibility of substrates to the buried
active site of an enzyme may influence its enantioselec-
tivity [39].

To further analyze the relationship between the topol-
ogy of the active site access channel and enzyme enan-
tioselectivity, geometrically feasible motions of an enan-
tiomer pair into the catalytic pocket of a lipase were
explored using the voxel-map approach. The biological
system chosen for this study is Candida antarctica lipase B
(CALB), which is known to be enantioselective toward
an enantiomer pair of (R,S)-4-methyloctanoic acid. This
enzyme catalyzes preferentially the esterification of the
(R)-enantiomer [40].

Geometrically feasible motions of the R and S sub-
strates from its catalytic position [40] (Figure 3-a,b) were
explored using the ML-RRT algorithm [28] within the
voxel-map construction (Algorithm 2), which permits
to directly treat the flexibility of the substrate and all
protein side-chains with a low computational cost. The
computed voxel maps represent the feasible positions
reached by the substrate center of mass during the

conformational exploration (Figure 3-c,d). The voxel res-
olution is 0.1 A. Voxels have been colored depending on
the chronological order of generation. Dark-blue voxels
correspond to the positions that are reached first. These
voxel maps reveal significant differences between be-
haviors of both enantiomers into the enzyme catalytic
pocket. First, the root of the voxel map is notably
narrower for the (S)-enantiomer (Figure 3-d) than for
the (R)-enantiomer (Figure 3-c). This reflects the more
constrained motions that the (S)-enantiomer must un-
dergo to access and dock in a productive way at the
catalytic site. Secondly, for the (R)-enantiomer, dark-blue
voxels reach the middle-part of the map while such
voxels are concentrated in the bottom part of the map
for the (S)-enantiomer. The meaning is that, due to the
spatial geometric constraints, the acess/exit of the (R)-
enantiomer can be faster. These results tend to indicate
that the topology of CALB active site is better suited for
facilitating the reaction with (R)-4-mehyloctanoic acid,
which correlates with experimental kinetic data showing
a significant preference of CALB for this enantiomer
[40]. As indicated in previous work [39], these results
highly suggest that the accessibility of the substrate to
the catalytic site and the difficulty encountered by the
substrate in adopting a productive conformation at the
reaction site may influence enzyme enantioselectivity.

Complementarily, it is possible to do an interpretation
of the voxel maps in terms of entropy. The investigations
reported in [41] suggest that the substrate accessible vol-
ume within the active site can be correlated to transition
state entropy. Thus, since the voxel map represents the
region explored by the substrate during its access/exit
pathways to the active site, the volume of this region is
an indicator of the entropic component of the activation
free energy. In our tests with CALB, the volumes of the
voxel maps computed for the (R)- and the (S)-enantiomer
is about 25 A3 and 15 A® respectively. Thus, the largest
accessible volume for the (R)-enantiomer will tend to
indicate that its interaction with CALB is entropically
more favorable.

Concerning computational performance, the construc-
tion of the voxel map (including the ML-RRT exploration
process) took less than 7 minutes for each enantiomer.
Note that, aiming to get a very good coverage of the
space into the active site cavity, the ML-RRT search tree
expansion process yielded voxel maps with more than
25000 voxels for the (R)-enantiomer, and 15000 voxels for
the more constrained motions of the (S)-enantiomer. This
result shows that the method remains computationally
fast, even for an exhaustive exploration.

3.3 Representing loop/domain motions

The RRT-based conformational search method can also
be applied to compute large-amplitude internal molec-
ular motions such as loop and domain motions [19],
[23], [24]. Integrating the voxel-map representation in
this approach provides a new tool for analyzing such
conformational transitions.



3.3.1

The example illustrated in Figure 4 concerns the “WDP
loop” in Yersinia protein tyrosine phosphatase (PTPase).
The movement of the WDP loop plays a central role in
the PTPase-mediated catalytic process [42], [43]. An open
conformation of this loop permits the substrate access to
the protein active site. Then, the WDP loop has to adopt
a closed conformation that brings the catalytic residue
Asp356 to a specific location for protein-substrate inter-
action. Starting from the open conformation of PTPase
[42] (PDB ID: 1YPT), the voxel-map construction algo-
rithm was applied to explore the mobility of the WDP
loop (residues 352-361). In this case, the backbone torsion
angles of the residues in the loop are the active param-
eters for the conformational exploration conducted by
ML-RRT, while all the protein side-chain torsion angles
are the passive ones. A voxel map obtained from the
conformational exploration is represented in the right
part of Figure 4. It displays the positions reached by
the Ca atom of the middle loop residue Glu357. Vox-
els resolution is 0.5 A, and colors have been assigned
depending on the distance between the referred atom
and the Ca of Val407, which is located on the bottom
of the binding pocket. These atoms were also chosen in
a related work [43] to measure the WDP loop gating
during molecular dynamics simulations. The distance
in the initial crystal structure is 17 A. The minimum
and maximum distances obtained through the confor-
mational exploration are 11 A and 22 A respectively.
The WDP loop reaches conformations very similar to the
one in the closed structure [42] (PDB ID: 1YTN), with
Ca RMSD below 1 A. Besides, the voxel map shows
that the loop can adopt more open conformations, as
also suggested by molecular dynamic simulations [43].
Interestingly, the voxel map presents a marked pipe-like
shape. Such a shape indicates that the WDP loop in
PTPase is “mechanically” designed to perform opening-
closure motions, while lateral-motions are not likely.
This mechanical predisposition may explain the rapid
opening-closure WDP loop motions reported in [43].
Finally note that constructing the voxel map required
about 5000 iterations of Algorithm 2, with a computing
time of 5 minutes.

Loop motions

3.3.2 Domain motions

Similarly, the proposed method can be applied for ana-
lyzing protein domain motions. The example presented
here concerns the POU domain of N-Oct-3 transcription
factor. This DNA binding domain recognizes numerous
AT-rich DNA sequences. The structure of the molecule,
represented in Figure 5, comprises two distinct, highly
conserved sub-domains, termed POUs and POU, con-
nected by a flexible linker [44]. Due to its remarkable
plasticity, the N-Oct-3 POU domain can adopt differ-
ent conformations and corresponding homodimeriza-
tion patterns, based on different relative positionings of
POUs and POUh sub-domains, and depending on the

\

Distance GIn357-Val407 (A) 11.0 16.5 22.0
Fig. 4. (Right) Structure of PTPase (PDB ID: 1YPT), with
the WDP loop in black color. (Left) Detail of the WDP
loop and voxel map displaying the explored locations of
the Ca atom of Glu357. Voxel colors indicate the distance
between Ca atoms of Glu357 and Val407. The most open
and closed loop conformations are represented in red and
blue respectively.

linker

Fig. 5. Structure of N-Oct-3 POU domain.

type of DNA target [45]. The free N-Oct-3 POU domain
is also in a different conformation. Previous studies [46]
suggested the existence of a continuous running from
free to “pre-bound” N-Oct-3 POU conformations, and
that regulatory DNA regions likely select pre-existing
conformers. Therefore, this domain represents a relevant
model-system to study macromolecular flexibility.

The computational approach presented in this paper
was applied in order to explore the conformational
space of the N-Oct-3 POU domain, and to analyze
the molecular mechanisms involved in the transitions
between free and pre-bound conformations. The aim of
the molecular modeling study was to explore possible
locations of POUh sub-domain with respect to the POUs
sub-domain. The conformational search was carried out
by considering the flexibility of the long linker between
both sub-domains (18 residues were considered to be
fully flexible and 13 had limited flexibility), and all
the protein side-chains being potentially flexible (i.e.
their conformation changes if they hinder backbone
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Fig. 6. Two views of the voxel map representing geomet-
rically feasible motions of POUh with respect to POUs.
The voxels display the relative position of the centers of
mass of both domains. Voxels resolution is 2 A, and colors
have been assigned depending on the energies of the
associated conformations. The black voxel indicates the
initial conformation.

motions). Maximum and minimum values of the ra-
dius of gyration (data derived from SAXS experiments
coupled to molecular modeling [46]) were integrated as
constraints during the conformational exploration. The
computed voxel map (Figure 6) represents the relative
positions of the centers of mass of POUh with respect to
POUs, thereby displaying possible locations of both sub-
domains. This voxel map construction required about
25000 iterations of Algorithm 2, with an overall comput-
ing time of 15 minutes. The 25000 sampled conforma-
tions were arranged in 5673 voxels of 8 A? (voxel edge
length = 2 A). Conformations associated with each voxel
were clustered into significantly different sets. Then, one
conformation of each cluster was energy minimized®
imposing constraints on the backbone atom positions
in order to remain within the voxel. The voxel color
was assigned according to the resulting lowest-energy
conformation. Contrarily to the previous examples in
which the computational cost of voxel labeling was
very low, this energy-based labeling procedure is quite
expensive. Indeed, the whole process required about 40
hours. Note however that, such a process is very easily
parallelizable, and that voxel labeling can be restricted to
regions of interest in order to avoid unnecessary waste
of computational resources.

The volume of the computed voxel map, which repre-
sents reachable positions of POUh with respect to POUs,
surpasses 45000 A®. Such a wideness of the explored
conformational space reflects the high flexibility of the
linker joining the sub-domains. This agrees with the
critical importance ascribed to the linker with regard to
the moulding of specific regulatory POU conformations
to the target DNA [48], [49]. In addition, the voxel map
enables the rapid identification of low-energy conforma-
tions attainable from the initial structure, and possible

5. AMBER ff03 force field [47] has been used for the energetic
analysis.

transition pathways between them. Bearing in mind the
efficiency of the method, we plan to investigate a variety
of domain descriptors and knowledge-based filters to
optimize the biological relevance of the search.

4 CONCLUSIONS

We have presented a general framework for computing
and representing molecular motions. The basic princi-
ple of the approach is to apply path-planning algo-
rithms, originating from robotics, to explore feasible mo-
tions of mechanistic molecular models. The efficiency of
such conformational exploration permits to attain large-
amplitude motions with low computational cost. The
voxel-map representation facilitates ulterior treatment of
the explored conformations and permits direct visual
interpretation of results. Besides, voxel maps could be
used to bias or to focus the exploration to specific regions
of the conformational space, and could permit to device
more accurate metrics, considering motion feasibility, for
improved conformational search algorithms.

In the presented work, 3D voxel maps have been
mainly chosen for permitting visual display and analy-
sis. However, the approach would be generalized to any
dimension. In some cases, a more significant arrange-
ment of structural information generated during the
search could be done by choosing an arbitrary number of
dimensions (and the associated parameters), which will
be provided by dimensionality reduction methods such
as PCA [50]. We consider this possibility for future work.

First results highlight the potential of the ap-
proach. Voxel maps can represent relative motions
of two molecules. Such a representation displays the
geometric suitability of a protein presenting a narrow,
deep binding site for interacting with different ligands.
It could be used to develop a predictive tool of enzyme
enantioselectivity that would help to select a catalyst
for a given racemate resolution. When applied to ex-
plore molecular deformations, voxel maps can provide
a global representation of the conformational space of
protein loops and protein domains undergoing large-
amplitude motions. Such a representation would be very
useful for the analysis and the prediction of macromolec-
ular docking.

In conclusion, voxel maps can be seen as a general
tool that, combined with other computational and exper-
imental methods, will help to investigate the importance
of flexibility and motion in molecular interactions.
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