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Abstract

The overall context of this paper is the event-based behavior analysis
and focuses on modeling and analyzing behaviors of interest involving
time information. Any behavior of interest from any time event system
is concisely defined as a set of time constrained events that must occur
(positive behavior) and a set of time constrained events that must not
occur (negative behavior). This article proposes a formal extension of
the chronicle formalism that allows for the concise description of positive
and negative behaviors. Based on this new formalism, several criteria are
introduced, they formally characterize and compare a set of chronicles.
A fully proved implementation of the proposed criteria is then described;
it relies on the use of polyhedron techniques to solve systems of linear
inequalities.

1 Introduction
Many applications take benefit from the analysis of specific behaviors, work-
flows, processes or activities involving time information: customer behaviors in
the e-commerce, patient behaviors in health and medical centers, product flows
in smart manufacturing systems, inhabitant activities in smart home, to name
but a few. Designing and monitoring such predefined behaviors, workflows, pro-
cesses, activities have several outcomes. For instance it can be used to perform
temporal predictions about why kind of behaviors is going to happen. On the
other hand, it can also lead to determine a temporal and causal explanation, a
diagnosis, of the current situation by determining the set of events that are the
causes of the situation.

Several formalisms have been proposed to represent such behaviors stressing
on time information. Among them, the chronicle model [Dousson et al(1993)]
is a formalism that aims at concisely representing behaviors and provides effi-
cient tools for behavior recognition [Artikis et al(2012)]. Informally speaking,
chronicles are temporal patterns defined by a set of events and time constraints
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between the occurrence date of the events (i.e. time points); they implicitly rep-
resent any event flow where the pattern is present (i.e. any event flow where the
chronicle is recognized). [Ghallab(1996)], [Dousson et al(1993)] initially devel-
oped a chronicle model to represent an evolution scheme of a situation (partial
or complete) for planning reconfiguration. The proposed model relies on a rei-
fied logical formalism; it is defined as a set of predicates and a set of temporal
constraints between them. Temporal constraints are then defined as inequali-
ties between the time variables defined in the predicates. This set of temporal
constraints actually defines a temporal constraint network. Once the behaviors
of the system are described this way, one can use a chronicle recognition engine
to actually assert whether a chronicle has occurred within the event flow pro-
duced by the system at operating time [Dousson et al(1993)], [Dousson(2002)],
[Carle et al(1998)]. Chronicle recognition consists in identifying in an observable
flow of events all possible matchings between the event flow and the chronicle.
An instance of the chronicle is a full set of instantiated events and is recorded
in the set of instances.

Nowadays large systems generate a large amount of data and the problem
is not only to recognize the occurrence of a given behavior but rather to detect
the non-occurrence of a specific behavior. The non-occurrence of behaviors
also called negative behaviors is present in a large spectrum of problems and
can assert relevant situations. For instance, in the medical field, if a patient
misses an appointment with a specialist, some important prescriptions might
be missing which might aggravate the health state of the patient. In the field of
consuming, consumer trends such as the boycott of certain products are typical
negative behaviors whose detection might be of interest. One can also consider
the case where a negative behavior (lack of a limit sensor for instance) reveals
a physical failure on a system [Cao et al(2015)]. Negative patterns also play an
important role to deeply understand business applications.

Obviously, whatever the type of applications, behavioral analyses depend
on the quality of the modeling. Models, such as chronicles, have an impact on
analysis results and therefore are crucial. How to evaluate the capacity of a
chronicle to model a relevant situation? Then, a key problem is how to define
which properties are associated with a chronicle. How can we define whether
two chronicles are similar or dissimilar? capture the same positive/negative
behavior?

This paper presents three contributions. The first one is about a formal def-
inition of the chronicle model that handles negative behaviors: the prohibition
constraints extend the negative behaviors initially introduced in the chronicle
model by the noevent predicate [Dousson(2002)]. The second contribution is
about the definition of a set of formal criteria to actually compare the avail-
able chronicles at design time before their use within a recognition engine. As
opposed to the contributions of Dousson that mainly focus on the methods to
efficiently recognize chronicles online, our claim is that a pre-analysis of the
available set of chronicles (whatever they come from: expertise, modeling, auto-
mated extractions or learning) can also improve the online recognition by prun-
ing/modifying chronicles from the initial set. The last contribution is about an
effective set of algorithms and their implementation that perform the criteria
analyses on any type of chronicles that can be described with our proposed
formal definition. The proposed algorithms notably rely on polyhedron.

The paper is organized as follows. The next section of the article focuses
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on some related work. The chronicle model dealing with negative behaviors
is presented in Section 3. Then, several criteria for chronicle evaluation and
comparison are introduced in 4. Section 5 presents a set of algorithms that
implement these criteria. Finally a conclusion and some perspectives are given
in Section 6.

2 Related work
Chronicles have been initially introduced to supervise the execution of plans
and then it has been used in a wide spectrum of applications: for telecommuni-
cation systems to manage alarms [Dousson(1996)],[Cordier and Dousson(2000)]
or in production domain to monitor gas turbines [Aguilar et al(1994)]. In the
medical field also, it has been used for cardiac arrhythmia detection, where
electrocardiograms are modeled by chronicles [Carrault et al(1999)]: a sym-
bolic description with time constraints is associated with pathological situa-
tions. In [Laborie and Krivine(1997)] chronicles are used to alarm processing in
power distribution systems. More recently chronicles have been used in in-
trusion detection system. In [Morin and Debar(2003)] a chronicle approach
for alarm correlation is proposed. In video understanding a formalism very
closed to chronicles is proposed to detect suspect human behavior operators
[Rota and Thonnat(2000)]. In the field of Unmanned Aircraft Systems (UAS),
chronicles are introduced for handling breakdowns and to check the consis-
tency between the activities in UAS [Carle et al(2013)] but also for the suc-
cessful deployment of a fully autonomous unnamed aerial vehicle operating over
road and traffic networks [Heintz(2001)]. In the context of high level architec-
ture simulations [Bertrand et al(2008)], chronicle recognition is integrated into
the development of a simulation as a component to analyze on line the data.
[Cram et al(2009)] propose to use chronicles to assist users of a smart-kitchen in
a recipe realization. Another important field of application of chronicle recogni-
tion is collaborative systems notably web services [Cordier et al(2007)]. In this
case the main challenge is the distribution of the chronicles into sub-chronicles
and the communication or synchronization mechanisms between the chronicles
[Boufaied et al(2004)], [Guillou et al(2008)], [Vizcarrondo et al(2013)].

A number of other formalisms exist in the literature to represent situations
stressing on time information. [McCarthy and Hayes(1969)] introduces the sit-
uation calculus that formally models reasoning about actions and changes. A
situation represents a snapshot of the world i.e a view of the world at an in-
stant of time, and the world is a sequence of global situations connected by
actions. Situation calculus is not suited to represent concurrency moreover only
properties that change as the effect of an action can be represented. The event
calculus [Kowalski and Sergot(1986)] overcomes these limitations. It is based
upon the notions of events, relationships and the periods they start and end,
formulated within a logic programming framework. Event calculus aims to de-
termine the value of logical proposition over time. The main difference is that
the event calculus deals with local events and time periods. In other words
instead of considering actions in a given situation actions are represented in
an explicit moment of time. In this sense it is closely related to the Allen’s
Interval-based temporal logic [Allen(1983)], [Allen(1984)] providing an explicit
and intuitive representation of time information based also on time periods to
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reason about actions and changes. This temporal reasoning framework is based
on a nonempty set of time intervals and a set of thirteen basic qualitative tem-
poral relations that hold between two intervals and are mutually exclusive. It
allows to consider arbitrary complex relationships between events and effects.
In [Bauer et al(2011)], situations stressing on time information are represented
as Timed Linear-time Temporal Logic (TLTL) specifications that are checked
on-line.

The expressive framework provided by temporal logic is not always efficient
for reasoning because of the computational complexity of reasoning. Therefore,
the use of constraint satisfaction problems is an efficient alternative. These
techniques allow to formalize as a constraint satisfaction problem the possibly
indefinite or incomplete knowledge about temporal relations between temporal
objects like time points. Moreover, they provide efficient algorithms based on
constraint propagation for various temporal reasonings. Among these techniques
Temporal Constraint Networks and particularly according to the quantitative
nature of the constraints the Simple Temporal Problems (Stp) introduced by
[Dechter et al(1991)] are of particular interest. A Stp is defined by a set of vari-
ables representing time points and constraints between these time points defined
by a set of time intervals. Chronicles are part of this type of approaches consid-
ering their associated constraint networks [Dousson et al(1993)] where intervals
with numerical bounds quantify event orders.

To the best of our knowledge, the problem of chronicle analysis has not been
widely studied. In [Saddem et al(2010)] the authors consider this issue by check-
ing the consistency of a similar formalism called Causal Temporal Signatures.
The aim is to check if there exist input events leading to the recognition of sev-
eral signatures. In [Sahuguède et al(2018)] the authors propose to characterize
a chronicle with no negative behaviors by a directed vector evaluated from the
chronicle projection in a k-dimensional Euclidean space to define a similarity
distance between chronicles.

3 A formal chronicle model handling negative
behaviors

3.1 Background on simple temporal problem
[Dechter et al(1991)] proposes a general framework called Temporal Constraint
Satisfaction Problem (Tcsp) for constraints based temporal reasoning. A Tcsp
is defined by a set of variables representing time points and constraints between
these time points defined by a set of time intervals. A Simple Temporal Problem
(Stp) is one particular instance of a Tcsp where each constraint is defined by
one time interval. More formally a Stp [Dechter et al(1991)] is a finite set of
variables X = {x0, x1, . . . , xn}1 with continuous ranges and a finite set of in-
tervals T representing the temporal constraints between these variables: each
interval Tij = [aij , bij ] ∈ T , aij , bij ∈ Q represents the constraint on the admis-
sible value for the distance xj−xi. Such a constraint can also be expressed as a
set of inequalities xj −xi ≤ bij and aij ≤ xj −xi. A Stp can be represented by

1In [Dechter et al(1991)], the problem is defined over {x1, . . . , xn} and x0 is set to be the
time origin 0. Throughout this paper, x0 still denotes the time origin but x0 is not fixed as
time origin may change.
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Figure 1: Simple Temporal Problem: constraint graph (on the left) and distance
graph (on the right).

a constraint graph G = (X ,A) where the nodes X are the variables {x0, . . . , xn}
and where A is a set of edges: the edge xi → xj is associated with the Tij
constraint. A tuple T = (t0, . . . , tn) is a solution of the Stp if the assignment
{x0 = t0, . . . , xn = tn} satisfies all the constraints. The graph is said to be
consistent if it exists at least one solution.

A distance graph noted Gd = (X ,Ad) can also be associated with a Stp.
To each edge xi → xj a linear inequality xj − xi ≤ cij = bij is associated if it
exists in the constraint graph an edge xi → xj associated with Tij = [aij , bij ].
On the contrary if there exists xj → xi associated with Tji = [aji, bji] then
xj−xi ≤ cij = −aji. Each path xi = xk0

→ · · · → xkm
= xj from xi to xj in Gd

induces the following constraint on the xj−xi distance: xj−xi ≤
∑m

l=1 ckl−1kl
.

Consider now a cycle C of nodes xi = xk0
→ · · · → xkm

= xi, such a cycle is
said to be negative if summing the inequalities along C yields to xi − xi < 0.
A Stp is proven to be consistent iff its distance graph has no negative cycles
[Dechter et al(1991)]. In this case, the shortest path between each pair of nodes
(dij) can be defined. Thus, an important result is that for the Gd distance graph
of a consistent Stp, two consistent scenarios are given by S1 = (0, d01, . . . , d0n)
and S2 = (0,−d10, . . . ,−dn0). If the time origin x0 is set to 0 then S1 (resp.
S2) assigns to each variable {x1, . . . , xn} its latest possible time value (resp. its
earliest possible time value).

If there exist more than one path from xi to xj then it can be easily verified
that all the path constraints induce: xj − xi ≤ dij Therefore each Stp can
be specified by a complete directed graph called d-graph where each transition
xi → xj is labeled by the shortest path length dij from the distance graph Gd.
The d-graph yields to an explicit representation of a Stp.

Figure 1 gives an example of a Stpwith the constraint and distance graphs.
From the distance graph it is easy to generate the complete d-graph after the
determination of all the lengths of the shortest paths (see Figure 2). For this, the
Floyd-Warshall’s algorithm [Floyd(1962)] can be applied to the distance graph.
The complexity of the algorithm is Θ(n3) with n the number of vertices. Finally,
one last important result to recall about Stps is the theorem of decomposability.

Theorem 1 Any consistent Stp is decomposable relatively to the constraints
in its directed graph.

The decomposability of an Stp means that, whatever the selected variable xi
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Figure 2: Simple Temporal Problem [Dechter et al(1991)]: d-graph

is, it is always possible to initiate a solution of a consistent Stp by starting
with xi = 0 and then sequentially assign other variables with values satisfying
the constraints of the directed graph. Decomposability ensures that, regardless
of the assignment order, any partial assignment is always part of a complete
solution. The result then provides an efficient way to find solutions of an Stp.

3.2 Chronicle: concepts and definition
We propose in this section a formal definition for chronicle that handles negative
behaviors. This chronicle model is based on the framework of Simple Tempo-
ral Problems and negative behaviors are represented by specific constraints for
forbidden events.

An event is a pair (e, t) where e ∈ E is an event type and t a real denoting
the event occurrence date. An observable evolution of any time event-based
system is characterized by an event sequence. An event sequence on E is an
ordered set of events denoted S = 〈(e1, t1) . . . (el, tl)〉 where ti < (ti+1), i ∈ N,
and i = 1, . . . , l − 1 with l the size (i.e the number of events) of the event
sequence S. We first introduce a formal definition for chronicles that do not
contain negative behaviors: such a chronicle is called a positive chronicle.

Definition 1 (Positive Chronicle) A positive chronicle is a 5-tuple,
C = (X ,A, T , E ,M), where:

• X is a finite set of temporal variables;

• A ⊆ X × X is a finite set of edges;

• T : A → I is the application that associates a temporal interval to each
edge xi → xj: for short T (xi, xj) is denoted Tij;

• E is a finite set of event types;

• M : X → E is a surjective function that associates to each temporal
variable of X an event type of E.
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Note that this definition allows that several temporal variable may have the
same event type. The triplet (X ,A, T ) of a chronicle corresponds to a Simple
Temporal Problem (Stp) that we call the underlying Stp of a chronicle.

The semantics of a chronicle is defined by the set of event sequences in which
the chronicle is recognized at least once by a chronicle recognition engine. To
assert that a chronicle is recognized, the engine produces a chronicle instance
as an output: a chronicle instance is the result of a temporal matching between
an event flow (i.e an event sequence) and the expected events modeled in the
chronicle. An instance can then be interpreted as a chronicle occurrence in an
event sequence.

Definition 2 (Instance of a positive chronicle) An instance iC of a pos-
itive chronicle C over an event sequence S = 〈(e1, t1) . . . (el, tl)〉 is a set of
couples iC = {(ei1 , ti1) . . . (ei|X| , ti|X|)} such that there exists a one-to-one cor-
respondence f : X → {ti1 , . . . , ti|X|} such that:

1. for every x ∈ X , (e, f(x)) ∈ iC and e =M(x);

2. the set {x = f(x)}x∈X is solution of the underlying Stp of C.

The set of instances of a positive chronicle C over S is denoted IC(S). As
in [Pencolé and Subias(2009)], we can associate with a positive chronicle C a
recognition language LC

Σ over a finite alphabet Σ: suppose E ⊆ Σ then LC
Σ is the

set of event sequences S over the event types in Σ such that IC(S) 6= ∅.
Now we propose to extend positive chronicles with negative behaviors. In

this article negative behaviors are represented by prohibition constraints. A
prohibition constraint denotes the mandatory absence of any event of type e
during one or several temporal intervals what is also called a noevent constraint
as introduced in [Dousson(2002)]. The bounds of these intervals depend on
the time variables of the constraint graph. Given two non necessarily distinct
variables xi and xj these intervals are defined by J = [xi + α, xj + β]. The
upper and lower bounds represent the prohibition starting time and ending
time respectively, with α, β ∈ Q. A chronicle including negative behaviors is
then defined as follows:

Definition 3 (Chronicle) A chronicle is a 6-tuple, C = (X ,A, T , E ,M,F)
where:

• (X ,A, T , E+,M) is a positive chronicle and E+ ⊆ E.

• F : E− → 2{X×X×Q2×{[,]}2} is a function that associates to each event
type of E− (E = E+ ∪ E−) a set of prohibition constraints (see below for
details).

In a chronicle, a prohibition constraint for an event type e ∈ E− is a 6-tuple
(xi, xj , α, β, b, e) ∈ F(e). Such a constraint means that any event of type e is
forbidden in the interval bxi + α, xj + βe where α, β ∈ Q and where symbols b
and e are either the bracket [ or the bracket ].

Example 1 Let us consider a system at least composed of a motor and a switch
command and the chronicle represented in Figure 3. The system may be rather
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complex and contains other components and may produce many types of events
but the chronicle focuses on a specific temporal pattern involving observable
events of type on (switch on), off (switch off), start (the motor starts), stop
(the motor stops). The chronicle represents a pattern that expects an event on
at any time followed by the starting of the motor either simultaneously or before
5 time units. Then a switch-off is expected between time 50 and time 100 after
the motor starts. Finally, the motor is expected to stop in the time interval
[0,5] after the switch-off. Two prohibition constraints are also defined in this
chronicle. The chronicle expects that if on occurs at time t0 then no event off
should have occurred later than 2 time units before the event on. The same
prohibition constraint also ensures that the expected off event of node x2 is the
first one after on. A second prohibition constraint expects that there is no event
on between the event off and 3 time units after the event stop. The complete
formal definition of this chronicle is given below.

C1 = (X1,A1, T1, E1,M1,F1) where:

• X1 = {x0, x1, x2, x3}; A1 = {(x0, x1), (x1, x2), (x2, x3)};

• T101 = [0, 5], T112 = [50, 100], T123 = [0, 5];

• E+1 = {on, off , start , stop}; E−1 = {on, off }; E1 = E+1 ∪ E
−
1 ;

• M1(x0) = on,M(x1) = start ,M(x2) = off ,M(x3) = stop;

• F1(off ) = {(x0, x2,−2, 0, [, [)}, F1(on) = {(x2, x3, 0, 3, [, ])}

x0on x1

start

x2

off

x3 stop
[0, 5] [50, 100] [0, 5]

[−2 off 0[

[0 on 3]

Figure 3: Chronicle C1 motor start/stop with time delays.

The semantics of a chronicle with negative behaviors still rely on the notion
of chronicle instance that is extended as follows.

Definition 4 (Chronicle instance) An instance iC of a chronicle C over an
event sequence S = 〈(e1, t1) . . . (el, tl)〉 is a pair (i+C , i

−
C ) such that:

1. i+C is a set of couples i+C = {(ei1 , ti1) . . . (ei|X| , ti|X|)} such that there exists
a one-to-one correspondence f : X → {ti1 , . . . , ti|X|} such that:

(a) for every x ∈ X , (e, f(x)) ∈ i+C and e =M(x);
(b) the set {x = f(x)}x∈X is solution of the underlying Stp of C;
(c) ∀e ∈ E+ ∩ E− and every (e, f(x)) ∈ i+C , ∀(xi, xj , α, β, b, e) ∈ F(e),

f(x) /∈ bf(xi) + α, f(xj) + βe.
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2. i−C is the set of n couples (n ≥ 0) i−C = {(ej1 , tj1) . . . (ejn , tjn)} such that:

(a) for every (e, t) ∈ (S) such that e ∈ E−, (e, t) ∈ i−C iff (e, t) 6∈ i+C

(b) ∀e ∈ E− and for every (e, t) ∈ i−C , ∀(xi, xj , α, β, b, e) ∈ F(e), t /∈
bf(xi) + α, f(xj) + βe.

Informally speaking, i+C is the set of events matching with the underlying positive
chronicle and that also satisfies the prohibition constraints. i−C is the set of events
that are not involved in the positive chronicle but that satisfy at a prohibition
constraint. The set of instances of a chronicle C over S is still denoted by IC(S)
and the definition of the recognition language LC

Σ is as for a positive chronicle.

Example 2 Consider an observed behavior from the system in Figure 3 given
by the event sequence S = 〈(on, 2), (off , 3), (low_temp, 4), (on, 6), (start , 7),
(low_temp, 20), (off , 58), (high_temp, 60), (stop, 62), (on, 66)〉. There is a
chronicle instance in S that is IC1

(S) = {iC1
= (i+C1

, i−C1
)} where i+C1

= {(on, 6), (start , 7),
(off , 58), (stop, 62)}, i−C1

= {(on, 2), (off , 3), (on, 66)}. Suppose now that event
sequence S ′ is as S but without event (off , 3) so IC1(S ′) has two instances:
{(i+1 , i

−
1 ), (i

+
2 , i

−
2 )} where i+1 = i+C1

, i−1 = {(on, 2), (on, 66)}, and i+2 = {(on, 2),
(start , 7), (off , 58), (stop, 62)}, i−2 = {(on, 6), (on, 66)}.

Obviously any useful chronicle must be recognized in some situations so it
has to be consistent: it must exist at least one event sequence leading to the
generation of one instance of C. The results on Stps [Dechter et al(1991)] allow
to conclude that the underlying triplet (X ,A, T ) associated with a chronicle C
is consistent if and only if its distance graph has no negative cycle. By adding
prohibition constraints to Stps the consistency property is different as a pro-
hibition constraint may have an influence on the consistency of the underlying
Stps by preventing the instantiation of one or more temporal variables.

3.3 Prohibition constraints
For a prohibition constraint denoted (xi, xj , α, β, b, e) ∈ F(e), (xi + α) cor-
responds to the lower bound of the time interval where events of type e are
forbidden and (xj + β) corresponds to the upper bound of this time interval.
To ensure that the prohibition constraint interval is not empty, it is necessary
that (xi + α) ≤ (xj + β) if the interval is closed and (xi + α) < (xj + β) if it
is open. The possible values of the variables xi and xj depend on the whole
constraints of the chronicle. It is then possible that for some values of xi and
xj , the non-emptiness condition holds and for others it does not. This leads to
the following definition that ensures that the prohibition constraint is indeed
useful.

Definition 5 (Well-formed prohibition constraint) A closed (resp. open
/semi-open) interval (xi, xj , α, β, b, e) ∈ F(e) is well-formed if α ≤ (dij + β)
(resp. α < (dij + β)) where dij is the length of the shortest path from xi to xj

in the underlying d-graph.

Example 3 Back to Figure 3, any prohibition constraint is well-formed. The
prohibition constraint (x0, x2,−2, 0, [, [) ∈ F(off ) is such that α = −2, β =
0, d02 = 50 and −2 < 50+0. Suppose now that this constraint would be replaced
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by (x0, x2, 110, 0, [, [) ∈ F(off ), then it would lead to 110 6< 50+0, the prohibition
constraint would not be well-formed: the first event off would be expected between
time 50 and 105 from the event on so the prohibition constraint would forbid
any off event within the time interval [x0 + 110, x0 + 105[ which is invalid.

The aim of a well-formed prohibition constraint is to effectively express that
a given type of event e ∈ E− cannot occur within a time interval. As long
as e is not involved as an event type of a temporal variable (e 6∈ E+), the
prohibition constraint does not have any influence on the constraints between
temporal variables. However, if e ∈ E+, the prohibition constraint is influential
if it forbids a temporal variable xk such that M(xk) = e to be instantiated.

Theorem 2 A prohibition constraint (xi, xj , α, β, b, e) ∈ F(e) is not influential
in regards to xk with M(xk) = e iff 0 /∈ bdki + α, dkj + βe and 0 /∈ b−dik +
α,−djk +βe and (dki+α), (dkj +β), (−dik +α) and (−djk +β) are of the same
sign.

Proof: Suppose b= [ and e =]. Based on Theorem 1, by assigning xk = 0, we
have −dik+α ≤ xi+α ≤ dki+α and −djk+β ≤ xj+β ≤ dkj+β. Two consistent
solutions can be distinguished: the earliest one S1 : (xi = dki, xj = dkj) and the
latest one S2 : (xi = −dik, xj = −djk). xk = 0 is not influential so it means it
cannot forbid neither S1 nor S2 nor any other solution between S1 and S2, the
result follows for b= [ and e =]. The same reasoning can then be applied for
any other combination of symbols b and e. �

Influential prohibition constraints should be avoided in chronicles as they
interfere with the other constraints. In the following we suppose that a chronicle
does not contain any influential constraint.

4 Criteria for chronicles comparison
The section focuses on the definition and the formal analysis of chronicle cri-
teria. Given a set of available chronicles we aim at analyzing them in order to
filter out some of the available chronicles at design stage. For instance for the
sake of performance of the chronicle recognition engine we would consider that
a set of chronicles must be concise, that is any chronicle must be consistent,
there must be no equivalent chronicles in the set and a chronicle should not be
covered by another chronicle. However, for the sake of fault diagnosis or specific
situation recognition, it might be interesting to filter out covering chronicles as
they are not specific enough (too ambiguous). In the following, we do not make
any assumption about how the set of chronicles has been built (either designed
by experts or by machine learning techniques) but we claim that the follow-
ing criteria and resulting algorithms can be used during any modeling/learning
process to reach a relevant set of chronicles.

4.1 Chronicle consistency
Let us start with chronicle consistency. Basically a chronicle is consistent if it
is recognized on at least one sequence S.

Definition 6 (Consistency) A chronicle C is consistent if there exists a se-
quence S such that IC(S) 6= ∅.

10



We have here a straightforward result about the consistency of a positive
chronicle (noted in the following C+).

Theorem 3 A positive chronicle C+ is consistent iff its underlying Stp is con-
sistent.

Proof: By definition, there exists a sequence S = 〈(M(x0), t0), . . . , (M(xn), tn)〉
such that IC(S) 6= ∅ iff {x0 = t0, . . . , xn = tn} is a solution of the underlying
Stp. �

Consider now a chronicle C with prohibition constraints. Any minimal se-
quence where the positive chronicle C+ extracted from C is recognized is also a
sequence where C is recognized. 2 Hence the following result.

Corollary 1 A chronicle C is consistent iff its underlying Stp is consistent.

To summarize, checking consistency consists in checking the consistency of
the underlying Stp that can be performed for instance by searching for the
presence of a negative cycle in the distance graph of the underlying Stp (see
Section 3.1). Adding prohibition constraints does not generate more difficulties
for this criteria.

4.2 Chronicle equivalence
Two chronicles are equivalent if they are always recognized at the same time on
any event sequence S.

Definition 7 (Equivalence) Two chronicles C and C′ are equivalent (denoted
C ≡ C′) if C and C′ have the same set of instances whatever the observable input
flow S is: ∀S, IC(S) = IC′(S).

Here also, in the case of positive chronicles, equivalence checking is a well
known problem that can be solved using d-graphs [Dousson et al(1993)].

Theorem 4 Two positive chronicles C+ and C′+ are equivalent if their under-
lying Stps lead to the same d-graph.

Proof: Any instance of IC(S) corresponds to a solution of the underlying Stp
(see Definition 2). IC(S) = IC′(S) means that the underlying Stps of C+ and
C′+ have the same set of solutions. The result follows. � In this case, a way
to check the equivalence is to compute the d-graph of both chronicles (Floyd-
Warshall algorithm) and check that both graphs are isomorphic. When negative
behaviors are introduced the problem is more tricky. The previous result still
holds in the case where both chronicles have the same d-graph and the same
prohibition constraints. Nevertheless, two chronicles may be equivalent while
the prohibition constraints are not the same and their d-graphs are identical:
chronicles C2 and C3 illustrate such a case (see Figure 4).

It follows that the generic test for chronicle equivalence cannot be based
on d-graphs, another computation technique must be used. We present in the
remainder a test for chronicle equivalence based on systems of linear inequalities.
Let C = (X ,A, T , E ,M,F) be a chronicle. We denote by Ine+(C) the set of

2This is true as we assume that there are no influential prohibition constraints.
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Figure 4: Equivalent chronicles C2 and C3 with different prohibition constraints.

inequalities defined as follows: xj − xi ≤ bij and xj − xi ≥ aij for every edge
(xi, xj) from A with Tij = [aij , bij ]. The set of prohibition constraints of C is
{c ∈ F(e), e ∈ E−} so it is the image of F . In the following we will simply
denote this set by F . Let c = (xi, xj , α, β, b, e) be a prohibition constraint from
F(e), e ∈ E−. Let us denote by x−

e a temporal variable such that x−
e 6∈ X , we

denote by Ine<(c) the inequality set {x−
e − xi < α} if b is closed or Ine<(c)

is {x−
e − xi ≤ α} if b is open. Similarly Ine>(c) denotes the inequality set

{x−
e − xi > β} if e is closed and denotes {x−

e − xi ≥ β} if e is open. Finally
Ine(c) = Ine<(c) ∪ Ine>(c). We consider here that the prohibition constraints
are well-formed so it means that the system Ine+(C) ∪ Ine(c) cannot have a
solution: the variable x−

e cannot be lower than xi + α and greater than xj + β
at the same time.

Let op denote the set of comparison operators op = {<,>}. In the following,
we say that a configuration CF is the assignment of an operator from op to each
prohibition constraint c from C. For a given configuration CF among the set
of the possible configurations, we denote the set of inequalities involving the
prohibition constraints of the chronicle C: Ine−(C, CF ) =

⋃
c∈F IneCF (c)(c).

x0a x2 c

x1

b

[2, 6]

[4, 7]

[1, 1]
[1 a 5]

[−10 d 0]

Figure 5: A chronicle C4 with two prohibition constraints.

Example 4 Figure 5 presents a chronicle with 3 temporal variables x0, x1 and
x2. The set of inequalities Ine+(C4) is x1−x0 ≥ 2 and x1−x0 ≤ 6; x2−x0 ≥ 4
and x2 − x0 ≤ 7; x2 − x1 ≥ 1 and x2 − x1 ≤ 1; Chronicle C4 also has two
prohibition constraints. The first one is cd = (x0, x2,−10, 0, [, ]) ∈ F(d), d ∈ E−.
To define the associated set of inequalities Ine(cd), we first introduce a new
variable x−

d that represents the date of the occurrence of an event of type d
with Ine<(cd) = {x−

d − x0 < −10} and Ine>(cd) = {x−
d − x2 > 0} and finally

Ine(cd) = Ine>(cd) ∪ Ine<(cd). Similarly for the second prohibition constraint
ca = (x0, x0, 1, 5, [, ]) ∈ F(a), a ∈ E−, we have: Ine<(ca) = {x−

a − x0 < 1}
and Ine>(ca) = {x−

a − x0 > 5} and finally Ine(ca) = Ine>(ca) ∪ Ine<(ca);
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In this example, there are 4 possible configurations CF . For instance, suppose
that the configuration CF1 is such that CF1(ca) = < and CF1(cd) = > then
Ine−(C4, CF1) = IneCF1(ca)(ca) ∪ IneCF1(cd)(cd) = Ine<(ca) ∪ Ine>(cd) and
then Ine−(C4, CF1) = {x−

a − x0 < 1, x−
d − x2 > 0}.

Let C = (X ,A, T , E ,M,F) and C′ = (X ′,A′, T ′, E ′,M′,F ′) be two chron-
icles. The set of event types E is decomposed as E = E+ ∪ E− and the set of
event types E ′ is decomposed as E ′ = E ′+ ∪ E ′− (see Definition 3).

Theorem 5 Two chronicles C and C′ are equivalent iff

1. E− = E ′−;

2. there exists a one-to-one correspondence m between X and X ′ such that

(a) M(x) =M′(m(x)); and
(b) for every e ∈ E−, {x = tx}x∈X ∪ {x−

e = te} is solution of Ine+(C) ∪
Ine−(C, CF ) for at least a given configuration CF of the prohibi-
tion constraints of C iff {m(x) = tx}x∈X ∪ {x−

e = te} is solution of
Ine+(C′)∪Ine−(C′, CF ′) for at least a given configuration CF ′ of the
prohibition constraints of C′.

Proof:
(⇒) Let C and C′ be two equivalent chronicles, so for every sequence S,

IC(S) = IC′(S). Suppose that E− 6= E ′−, it is easy to design a sequence S
such that IC(S) 6= IC′(S), so condition 1 must hold. Let iC = (i+C , i

−
C ) =

{(ei1 , ti1) . . . (ein , tin)} denote an instance of IC(S) = IC′(S). Definition 4 en-
sures there exists a couple of one-to-one correspondences f : X → {ti1 , . . . , tin}
and f ′ : X ′ → {ti1 , . . . , tin} with for every x ∈ X , (e, f(x)) ∈ i+C and e =M(x)
and for every x ∈ X ′, (e, f ′(x)) ∈ i+C and e = M′(x). Condition 2.a thus
holds. By construction of the inequality system, iC = (i+C , i

−
C ) is an instance of

IC(S) iff there exists a one-to-one correspondence f such that for every e ∈ E−,
{x = f(x)}x∈X ∪ {x−

e = te} is solution of Ine+(C) ∪ Ine−(C, CF ) for at least
a given configuration CF of the prohibition constraints of C. As m exists by
condition 2.a, it follows that condition 2.b finally holds.

(⇐) Consider an instance iC of C. By construction of the inequality system,
for every e ∈ E− involved in i−C , there exists a configuration CF such that
{x = f(x)}x∈X∪{x−

e = te} is a solution of Ine+(C)∪Ine−(C, CF ). As conditions
2.a and 2.b hold, it implies that iC is also an instance of C′. As m is a one-to-one
correspondence, we can apply the same reasoning to show that any instance iC′

of C′ is also an instance of C. C and C′ are therefore equivalent. �

Example 5 Figure 6 presents a couple of chronicles that are equivalent. Let us
denote C5 = (X5,A5, T5, E+5 ∪E

−
5 ,M5,F5) and C6 = (X6,A6, T6, E+6 ∪E

−
6 ,M6,F6).

The events involved in prohibition constraints in both chronicles are the same:
E−5 = {c} = E−6 . Consider now the one-to-one correspondence m : X5 → X6 such
that m(x0) = y0, m(x1) = y1 and m(x2) = y2. The set of inequalities Ine+(C5)
is {x1−x0 ≥ 2, x1−x0 ≤ 6, x2−x0 ≥ 6, x2−x0 ≤ 20, x2−x1 ≥ 5, x2−x1 ≤ 5}.
By transitivity over the set of inequalities, it can be noticed that {x2 − x0 ≥
6, x2 − x0 ≤ 20} can be equivalently restricted to {x2 − x0 ≥ 7, x2 − x0 ≤ 11}.
Now consider the set of inequalities Ine+(C6) = {y1 − y0 ≥ 2, y1 − y0 ≤
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Figure 6: Two equivalent chronicles (C5 (left) and C6 (right)).

x0a x1 b
[5, 9] y0a y2 by1

c

[2, 3] [4, 5]

Figure 7: Chronicle C7 (left) covers chronicle C8 (right).

6, y2 − y1 ≥ 5, y2 − y1 ≤ 5}. Also by transitivity, Ine+(C6) can be rewritten
as {y1−y0 ≥ 2, y1−y0 ≤ 6, y2−y0 ≥ 7, y2−y0 ≤ 11, y2−y1 ≥ 5, y2−y1 ≤ 5} so
by definition of m: Ine+(C6) = {m(x1)−m(x0) ≥ 2,m(x1)−m(x0) ≤ 6,m(x2)−
m(x0) ≥ 7,m(x2) −m(x0) ≤ 11,m(x2) −m(x1) ≥ 5,m(x2) −m(x1) ≤ 5}. As
the prohibition constraint is not influential, it means that {x = tx}x∈X2

is a
solution of Ine+(C5) iff {m(x) = tx}x∈X2 is solution of Ine+(C6). Finally con-
sider the variable x−

c , we have Ine−(C5) = {x−
c − x0 ≤ −1, x−

c − x1 ≥ 9} and
Ine−(C6) = {x−

c −m(x0) ≤ −1, x−
c −m(x2) ≥ 4}. There are two configurations

in Ine−(C5) and in Ine−(C6). Obviously, {x = tx}x∈X2
∪ {x−

c = tc} is solution
of Ine+(C5) ∪ {x−

c − x0 ≤ −1} iff {m(x) = tx}x∈X5
∪ {x−

c = tc} is solution of
Ine+(C6)∪{x−

c −m(x0) ≤ −1}. Similarly, {x = tx}x∈X5
∪{x−

c = tc} is solution
of Ine+(C5) ∪ {x−

c − x1 ≥ 9} iff {m(x) = tx}x∈X5 ∪ {x−
c = tc} is solution of

Ine+(C6) ∪ {x−
c −m(x1) ≥ 9}. As Ine+(C6) ensures that m(x2) −m(x1) = 5,

it follows it must also be solution of Ine+(C6) ∪ {x−
c −m(x2) ≥ 4}. Hence the

equivalence between chronicles C5 and C6.

4.3 Chronicle covering
A chronicle C′ covers a chronicle C if whatever the input event sequence con-
sidered (∀S) an instance of C is recognized each time an instance of C′ is also
recognized. This notion is important as it asserts that as soon as a chronicle is
recognized, the other one will also be.

Definition 8 (Covering of positive chronicles) Let C and C′ be two posi-
tive chronicles, C′ covers C (denoted C′ � C), if for every input flow S, for every
instance iC ∈ IC(S) there exists iC′ ∈ IC′(S) such that iC′ ⊆ iC.

Example 6 Figure 7 depicts two positive chronicles C7 and C8 such that C7 �
C8. Consider one input flow S, any instance of iC8

∈ IC8
(S) is such that

iC8
= {(a, t0), (c, t1), (b, t2)} with t1− t0 ∈ [2, 3] and t2− t1 ∈ [4, 5] which follows

that t2 − t0 ∈ [6, 8] ⊂ [5, 9]. Therefore iC7 = {(a, t0), (b, t2)} is also an instance
of IC7(S): iC7 ⊆ iC8 .

Theorem 6 A positive chronicle C+ covers a positive chronicle C′+ iff the d-
graph of C+ covers the d-graph of C′+.
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Figure 8: Chronicle C9 (left) covers chronicle C10 (right).

Proof: We say that a d-graph dg covers another d-graph dg′ if the set of
variables of dg is a subset of the variables of dg′ and for every edge from xi to
xj in dg it holds a distance that is greater or a equal to the distance between xi

to xj in dg′. It follows that given a solution of dg′, a solution of dg is obtained
by only keeping the values of the variables involved in dg. Theorem 6 follows.
�

Proposition 1 Let C and C′ be two positive chronicles, C and C′ are equivalent
iff C � C′ and C′ � C.

Proof: Straightforward from Definition 8. �

Definition 9 (Covering) A chronicle C′ covers a chronicle C: C′ � C, if for
every input flow S, for every iC = (i+C , i

−
C ) ∈ IC(S) there exists an instance

iC′ = (i+C′ , i
−
C′) ∈ IC′(S) such that:

1. i+C′ ⊆ i+C ;

2. E ′− ⊆ E−

3. for every e ∈ E ′−, {(e, t) ∈ i−C } ⊆ {(e, t) ∈ i−C′}

Example 7 Figure 8 shows a chronicle C9 (on the left) that covers a chronicle
C10 (on the right): C9 � C10. Chronicle C9 is an extension of chronicle C7
with a prohibition constraint for event type d (see Figure 7). Chronicle C10
is an extension of chronicle C8 added with a couple of prohibition constraints
for the same event type d. Now consider an input flow S and an instance
iC10

= (i+C10
, i−C10

) ∈ IC10
(S), we show there exists iC9

= (i+C9
, i−C9

) ∈ IC9
(S)

as defined in Definition 4. As prohibition constraints are not influential, it is
obvious that i+C9

= {(a, t0), (b, t2)} ⊆ i+C10
= {(a, t0), (c, t1), (b, t2)} (see Figure 7).

Now regarding the prohibition constraints, they are on the same event type d in C9
and C10. Suppose now that on input flow S, we have i−C10

= {(d, td0), . . . (d, tdn)}
then we know that ∀tdi , i ∈ {0, . . . , n} either tdi < t0 − 2 or tdi > t2 + 30 so
tdi < t0 − 1 or tdi > t2 + 10 which means that {(d, td0), . . . (d, tdn)} ⊆ i−C9

.

Theorem 7 Let C and C′ be two chronicles, the chronicle C′ covers the chronicle
C (i.e C′ � C) iff

1. E ′− ⊆ E−;

2. there exists a one-to-one correspondence m between X ′ and a subset Xm

of X , ∀x ∈ X ′ such that

(a) M′(x) =M(m(x)); and
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(b) for every e ∈ E ′−, if {m(x) = tx}x∈X ′ ∪ {x−
e = te} belongs to a

solution of Ine+(C) ∪ Ine−(C, CF ) for at least a given configuration
of the prohibition constraints of C then {x = tx}x∈X ′ ∪ {x−

e = te}
is also a solution of Ine+(C′) ∪ Ine−(C′, CF ′) for at least a given
configuration CF ′ of the prohibition constraints of C′.

Proof: (⇒)Condition 1 holds from Definition 9. Let iC = (i+C , i
−
C ) denote an

instance of IC(S) and consider that i+C = {(ei1 , ti1) . . . (ein , tin)}. As C′ covers C,
there must exist an instance iC′ = (i+C′ , i

−
C′) such that i+C′ = {(ej1 , tj1) . . . (ejm , tjm)}

⊆ {(ei1 , ti1) . . . (ein , tin)}. By applying the same type of reasoning as in the proof
(⇒) of Theorem 5, conditions 2.a and 2.b hold (the only difference is that m is
a one-to-one correspondence between a subpart of X and X ′).
(⇐) Let iC be an instance of C, by applying the same type of reasoning as in the
proof (⇐) of Theorem 5, we can show that iC is also an instance of C′, hence
the result. �

Example 8 The set of inequalities Ine+(C9) is {x1 − x0 ≥ 5, x1 − x0 ≤ 9}.
Chronicle C9 has only one prohibition constraint c9d that leads to the set of
inequalities Ine<(C9) = {x−

d − x0 < −1} and Ine>(C9) = {x−
d − x1 > 10}. The

set of inequalities Ine+(C10) is {y1−y0 ≥ 2, y1−y0 ≤ 3, y2−y1 ≥ 4, y2−y1 ≤ 5}.
Chronicle C10 has two prohibition constraints. The first one, denoted c101d , leads
to the set of inequalities Ine<(c101d ) = {x−

d − y0 < −2} and Ine>(c101d ) =
{x−

d − y1 > 1}. The second one, denoted c102d leads to the set of inequalities
Ine<(c102d ) = {x−

d − y1 < −2} and Ine>(c102d ) = {x−
d − y2 > 30}. So for

chronicle C10 there are four possible configurations:

1. Ine−(C10, CF1) = Ine<(c101d ) ∪ Ine<(c102d ) = {x−
d − y0 < −2, x−

d − y1 <
−2};

2. Ine−(C10, CF2) = Ine<(c101d ) ∪ Ine>(c102d ) = {x−
d − y0 < −2, x−

d − y2 >
30};

3. Ine−(C10, CF3) = Ine>(c101d )∪Ine<(c102d ) = {x−
d −y1 > 1, x−

d −y1 < −2};

4. Ine−(C10, CF4) = Ine>(c101d )∪Ine>(c102d ) = {x−
d −y1 > 1, x−

d −y2 > 30}.

Now consider the one-to-one correspondence m : X9 → {y0, y2} ⊂ X10 such
that m(x0) = y0,m(x1) = y2 where X9 and X10 are the set of variables of C9 and
C10 respectively. Suppose now that {m(x0) = t0,m(x1) = t1}∪{x−

d = td} belongs
to a solution in Ine+(C10) ∪ Ine−(C10, CF1) so it means that {y1 − m(x0) ≥
2, y1−m(x0) ≤ 3,m(x1)− y1 ≥ 4,m(x1)− y1 ≤ 5, x−

d −m(x0) < −2, x−
d − y1 <

−2}. As 2 +m(x0) ≤ y1 ≤ 3 +m(x0) it means that if x−
d −m(x0) < −2 then

x−
d − y1 < −2 also holds and can be removed from the inequality set. Moreover,

we also have m(x0) + 6 ≤ m(x1) ≤ m(x0) + 8. So {m(x0) = t0,m(x1) =
t1} ∪ {x−

d = td} is also a solution of Ine+(C9) ∪ Ine<(C9). Noticing that
Ine−(C10, CF2) and Ine−(C10, CF3) are both inconsistent, it follows that, if
{m(x0) = t0,m(x1) = t1} ∪ {x−

d = td} belongs to a solution that is not in
Ine+(C10)∪Ine−(C10, CF1) then it must be in Ine+(C10)∪Ine−(C10, CF4) which
implies that m(x0) + 6 ≤ m(x1) ≤ m(x0) + 8 and x−

d −m(x1) > 30 so it is a
solution of Ine+(C9) ∪ Ine>(C9). Theorem 7 then ensures that C9 � C10.
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5 Implementation of the chronicle comparison
criteria

All the results presented here above have been fully implemented within a C++
toolkit called TiPaDiag (Time Patterns for Diagnosis) and all the presented
examples have been generated with this tool. The aim of this toolkit is to provide
a tool-chain for modeling, analyzing and learning chronicles [Subias et al(2014)].
In particular, TiPaDiag also embeds a chronicle recognizer, called Yacre (Yet
Another Chronicle Recognition Engine) that is a C++ clone of the initial CRS
engine from [Dousson et al(1993), Dousson(2002)] that is able to recognize the
chronicles as defined in Definition 3. Both engines rely on clock propagations
to compute on-the-fly the set of chronicle instances by managing a set of partial
instances (partially assigned instances). When the engine receives an event,
it checks for every partial instance whether the date of the received event is
consistent with the time constraints involved in the instance by updating their
clock. If the chronicle is positive, this operation is in O(|X |2) where |X | is the
number of nodes in the chronicle [Dousson et al(1993)]. In the general case,
the engine also needs to check the consistency with the prohibition constraints
so the operation is in O(|X |2 + |F|) where |F| is the number of prohibition
constraints. From a complexity viewpoint, the advantage of using prohibition
constraints is that it aims at reducing the set of current partial instances to
handle by the engine.

Regarding the chronicle comparison criteria, their implementation is detailed
below. As explained in Section 4.1 for the consistency criteria, we build the dis-
tance graph of its underlying Stp and check for negative cycles (see Corollary 1).
To implement the equivalence and covering tests, we always first distinguish the
type of chronicles that are involved in the tests for performance issues. If both
chronicles are positive, all the tests then consist in building the d-graphs. If
both chronicles involve prohibition constraints, it is then also preferred to start
by building the d-graphs to analyze the positive part of the chronicle and then
structurally analyze the prohibition constraints if it is possible. The last case
is the generic one that can implement all the tests by the use of inequality sys-
tems. We implement the different inequality systems of the chronicles involved
in these criteria with not necessarily closed polyhedra (NNC for short) as defined
in [Bagnara et al(2002)]. Polyhedra are mostly used to analyze software pro-
grams efficiently. We have used the up-to-date C++ Parma Polyhedra Library
(PPL).3

Algorithm 1 describes a sketch of the implementation of the equivalence
criteria in TiPaDiag. In the case of positive chronicles (lines 1-4), the equiva-
lence test is implemented by building both d-graphs and checking whether they
are isomorphic (see Theorems 4) which relies on the Floyd-Warshall algorithm
that is in O(n3) with n the number of variables in a chronicle. The function
checkIsomorphicDGraphs performs this analysis and returns the set of possible
one-to-one correspondences between the two graphs. This set must be non-
empty if the equivalence holds. Then, in the general case, we also first attempt
to solve the problem with checkIsomorphicDGraphs and a structural analysis
of the prohibition constraints to check whether they are all isomorphic (a pro-
hibition constraint (x1, x2, t1, t2) of C is isomorphic to a prohibition constraint

3http://www.cs.unipr.it/Software/
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(x3, x4, t3, t4) of C′ iff m(x1) = x3,m(x2) = x4, t1 = t3, t2 = t4), this analy-
sis is in O(|F|2) (lines 5-8). If, however, these isomorphisms do not hold, it
is not sufficient to conclude and a further investigation with the help of poly-
hedra is required as in the latter case. In the general case (lines 9-22), the
algorithm basically searches for a correspondence m between the variables of C
and C′ so that the set of possible instances of C is the set of possible instances
of C′ (see Theorem 5). To do so, for each chronicle and for any of its config-
urations CF , the algorithm converts the corresponding inequality system to a
polyhedron and stores this polyhedron in a specific polyhedron set of PPL (see
Algorithm 2). Each polyhedron set then implicitly represents the set of possi-
ble instances of each chronicle. Then we take advantage of a PPL operator,
called geometrically_equals that checks whether two polyhedra sets represent
the same solution space. To look for such a correspondence m, either we test
the ones in the set of compatible correspondences M if checkIsomorphicDGraphs
has previously been called (lines 10-14) or we search for it directly (lines 16-21).
Back to the complexity analysis for this last case, let nmax be the maximal
number of variables that are labeled with the same event type in C, the num-
ber of correspondences m to deal with is then in O(nmax!). The complexity
of Algorithm 2 is the complexity of geometrically_equals (line 12) that is in
O(2n) where n is the maximum between the number of variables involved in the
inequality systems of C and C′.

Data: Chronicles C, C′
Result: true iff C, C′ are equivalent

1 if Both chronicles are positive then
2 M ← checkIsomorphicDGraphs(C, C′);
3 return M 6= ∅
4 end
5 M ← checkIsomorphicDGraphs(C, C′);
6 if ∃m ∈M, isomorphicProhibitionConstraints(C, C′,m) then
7 return true;
8 end
9 if M 6= ∅ then

10 for m ∈M do
11 if polyhedra_equals(C, C′,m) then
12 return true
13 end
14 end
15 else
16 for every one-to-one correspondence m of C, C′ do
17 if polyhedra_equals(C, C′,m) then
18 return true
19 end
20 end
21 end
22 return false

Algorithm 1: Algorithm of the equivalence criteria

As far as the implementation of the covering criteria is concerned, to check
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1 Function polyhedra_equals(C, C′,m);
Data: Chronicles C, C′
Data: one-to-one correspondence m of C, C′
Result: true if the test succeeds
// phs1 is a polyhedra set of PPL

2 phs1← ∅ ;
3 for every configuration CF of C do
4 ph← getPolyhedron(Ine+(C) ∪ Ine−(C, CF ));
5 phs1← phs1 ∪ {ph};
6 end

// phs2 is a polyhedra set of PPL
7 phs2← ∅ ;
8 for every configuration CF of C′ do
9 ph← getPolyhedron(Ine+(C′) ∪ Ine−(C′, CF ));

10 phs2← phs2 ∪ {ph};
11 end
12 return geometrically_equals(phs1, phs2);

Algorithm 2: Polyhedra equivalence test.

whether C � C′ or not, the implementation follows exactly the same sketch as
Algorithm 1. There are only few differences. checkIsomorphicDGraphs(C, C′)
is replaced by checkCoveringDGraphs(C, C′) that searches for correspondence
such that the d-graph of C covers the one of C′ (see Theorem 6). The call
of the function isomorphicProhibitionConstraints is replaced by the call of the
function coveringProhibitionConstraints that checks whether a prohibition con-
straint (x1, x2, t1, t2) of C covers a prohibition constraint (x3, x4, t3, t4) of C′, (i.e.
m(x1) = x3,m(x2) = x4, t1 ≥ t3, t2 ≤ t4). And the call of polyhedra_equals
is replaced by polyhedra_covers, the function polyhedra_covers is defined as
polyhedra_equals (Algorithm 2) where the call of geometrically_equals (line
12) is replaced by the PPL operator geometrically_covers.

Computing the covering criteria is simpler in practice than computing the
equivalence criteria, but from a complexity point of view in the worst case, the
results are the same. Proposed algorithms have been fully implemented within
the TiPaDiag platform. Table 1 presents a selection of our tests. For each test,
we randomly generate a couple of chronicles with the same configuration based
on three parameters: number of nodes |X |, number of events types |E+|, and
the number of prohibition constraints |F|. Then we compute the equivalence
tests between both chronicles and between the first chronicle and itself (i.e. the
first test is very likely false, the second is always true). Each configuration has
been tested 2000 times each. Table 1 presents the mean/minimal/maximal time
for each configuration 4 (on the left are configurations for positive chronicles,
on the right are the ones for chronicle with at least one prohibition constraint).
While prohibition constraints clearly improve the expressivity of chronicles, the
results show their impact on the computation complexity.

4Tests performed on a AMD Ryzen 7 1700X (3.4 GHz) with Linux.
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Config. Mean/Min/Max (ms) Config. Mean/Min/Max (ms)
5,3,0 0/0/1 5,5,5 60/5/210
5,5,0 0/0/1 5,3,5 90/22/2049
10,5,0 6/5/9 10,8,2 235/29/4545
10,10,0 6/5/11 10,8,3 581/82/26657
50,50,0 1675/1609/1793 10,10,5 2424/38/61121
50,25,0 1676/1607/1892 10,8,6 11736/504/455221
100,50,0 22865/22355/24226 15,15,1 21099/109/4617238
100,100,0 22865/22310/24292 16,16,1 87199/233/21138419

Table 1: Equivalence test: computation time on random chronicles.

6 Conclusions and perspectives
The context of the current work is event-based behavior analysis and more pre-
cisely of behaviors involving time information. The research presented in this
article is motivated by the need for modeling and analyzing any behavior of
interest by succinct pieces of information combining timed positive constraints
(timed events that must occur) and timed negative constraints (timed events
that must not occur). To do so, we propose a formal extension of chronicles
by the use of prohibition constraints which aims at increasing the expressivity
of positive chronicles to include negative behaviors. Beside its use for behavior
modeling, the new chronicle formalism proposed in this paper allows the defini-
tion of several criteria to formally characterize and compare a set of chronicles.
An implemented solution is also proposed allowing to check chronicle consis-
tency and to compare chronicles with the equivalence and covering tests. The
proposed implementation relies on the solving of systems of linear inequalities
by polyhedra techniques. As a future work, we plan to extend the proposal
by considering other criteria to compare chronicles with the main objective to
improve the quality of a chronicle database and therefore the quality of their
recognition in any type of application, notably in the field of diagnosis where
chronicles can be used to model normal behaviors as well as faulty ones as
observable timed patterns.
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