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Abstract 

 

Supervisory Control and Data Acquisition (SCADA) systems play an important role in monitoring industrial 

processes such as electric power distribution, transport systems, water distribution, and wastewater collec- tion 

systems. Such systems require a particular attention with regards to security aspects, as they deal with critical 

infrastructures that are crucial to organizations and countries. Protecting SCADA systems from intru- sion is 

a very challenging task because they do not only inherit traditional IT security threats but they also include 

additional vulnerabilities related to field components (e.g., cyber-physical attacks). Many of the exist- ing 

intrusion detection techniques rely on supervised learning that consists of algorithms that are first trained with 

reference inputs to learn specific information, and then tested on unseen inputs for classification pur- poses. 

This article surveys supervised learning from a specific security angle, namely SCADA-based intrusion 

detection. Based on a systematic review process, existing literature is categorized and evaluated according to 

SCADA-specific requirements. Additionally, this survey reports on well-known SCADA datasets and testbeds 

used with machine learning methods. Finally, we present key challenges and our recommendations for using 

specific supervised methods for SCADA systems. 
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1 INTRODUCTION 

Supervisory Control and Data Acquisition (SCADA) systems have been integrated into our crit- 

ical infrastructures such as electric power generation, transport systems, water distribution and 

wastewater collection systems to control and monitor such industrial processes. Since industrial 

manufacturing and power distribution sites are geographically distant and involve potentially ex- 

treme hazards, the integration of SCADA allows operators to maximize cost-effective operations 

and safety of their personnel [22]. For example, using a Smart Grid application with SCADA tech- 

nology, power outages can be quickly diagnosed and temporarily fixed remotely and securely from 

the control center. 

A typical SCADA system is operated through a control center, consisting of a complex of comput- 

ers, networks, and databases. The databases store values gathered by Master Terminal Unit (MTU) 

from sensors, e.g., voltage, current, valve pressure, and so on. The control center sends control com- 

mands to actuators, such as Programmable Logic Controller (PLC), Remote Terminal Unit (RTU) 

or Intelligent Electronic Device (IED), to control the industrial processes [22]. A SCADA system is 

pervasive, and its components are interconnected using both wireless and wired communication. 

On the one hand, SCADA is connected to traditional IT and networking technologies (e.g., oper- 

ating systems and Internet protocols). On the other hand, it is also connected to SCADA-specific 

technologies, such as industrial devices and communication protocols such as standard protocols 

(e.g., IEC 60870-5-101 or 104, and DNP3) and proprietary protocols (i.e., Modbus RTU, RP-570, 

Profibus and Conitel) [54]. However, any disruption to SCADA systems can result in significant 

financial loss or even lead to loss of life. In the past, such systems were secure by virtue of their iso- 

lation from corporate networks and the Internet, and due to the use of proprietary hardware and 

software. In other words, they were self-contained and totally isolated from the public networks. 

This isolation created the myth that malicious intrusions and attacks from the outside world were 

not a big concern, and such attacks were expected to only come from the inside. Therefore, when 

developing SCADA protocols, the security of the information systems and the significance of loss 

due to denial of service was given little consideration. 
In recent years, SCADA systems have begun to shift away from using proprietary and cus - 

tomized hardware and software in favor of using Commercial-Off-The-Shelf (COTS) solutions [85]. 

Among the well-known vendors are ABB, Siemens, General Electric (GE), Alstom, SEL, Toshiba, 

and Schneider Electric [137]. This shift has increased their connectivity to public networks (Inter- 

net) using standard protocols, e.g., TCP/IP. In addition, there is a decreased reliance on one vendor. 

Undoubtedly, this increases productivity and profitability by reducing capital expenditure (Capex). 

However, this also now exposes such systems to more diverse, intelligent cyber attacks [87]. The 

convergence of state-of-the-art communication technologies exposes SCADA systems to all the 

inherent vulnerabilities of these technologies. According to the research result published in 2017 by 

Kaspersky Lab on the threats landscape for industrial automation systems [58], various indus- try 

sectors are affected by serious vulnerabilities that operate remotely using traditional network 

connectivity, see Figure 1. 

Vulnerabilities targeting SCADA systems have increased significantly since 2009, according to 

the Open Source Vulnerability Database (OSVDB) [7]. Different actors have different motivations 



 

 

 
     

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The number of vulnerabilities identified in various industries, published in 2017 [58]. 

 

for identifying and exploiting SCADA vulnerabilities. For example, state-based actors are inter- 

ested in vulnerabilities related to the critical infrastructure, and criminals or hackers are more 

interested in stealing intellectual property and sabotaging industrial processes. Therefore, the na- 

ture of SCADA attacks has shifted from small scale, insider-based attacks to external threat and 

large-scale attacks. For example, prior to the year 2000, the majority of the reported incidents 

impacting SCADA networks were either due to accidents or due to disgruntled insiders acting 

maliciously. Since 2009, there has been a sharp increase in the total number of reported incidents 

and most of them (above 70%) are attacks originating from the Internet [8]. 

Numerous malicious attacks have posed serious and evolving security threats to SCADA sys- 

tems. Practically, there is no security countermeasure that can completely protect a target system 

from potential threats. An Intrusion Detection System (IDS) [38] is one of the security solutions 

that has demonstrated promising results in detecting malicious activities in traditional IT systems. 

The source of audit data and the detection methods are the main, salient parts in the development 

of the IDS. The network traffic, system-level events and application-level activities are the usual 

sources of audit data. The detection methods are categorized into two strategies: signature-based 
and anomaly-based. The former searches for an attack whose signature is already known, while the 

latter searches for activities that deviate from an expected pattern or from a predefined model of 

normal behavior of the system. 

Due to the differences between the operational nature and characteristics of traditional IT and 

SCADA systems, there is a need for the development of SCADA-specific IDS. As a consequence, a 

number of IDS schemes based on machine learning approaches have been investigated, proposed, 

and developed by the research community and the networking industry over the past ten years. We 

have used Microsoft Academic search engine [109] to estimate the popularity in machine learning 

based IDS approaches since 2007. 

Figure 2 shows the growth over time in the number of publications in classification/supervised, 

clustering/unsupervised and feature selection. The researchers have made great efforts in develop- 

ing advanced supervised classification approaches—compared to unsupervised classification and 

feature selection approaches—in order to improve the accuracy of SCADA-specific IDS. This is 

due to their higher performance and accuracy compared with unsupervised classification. Thus, 

supervised machine learning techniques are widely used across a wide range of SCADA-specific 

IDS approaches. 



 

 

 

 

 

 

Fig. 2. Evolution of IDS schemes based on machine learning approaches (between 2007-2018 and ongoing). 

 
Many articles have been written that survey IDSs for critical infrastructure systems from dif- 

ferent perspectives. For example, the survey [140] emphasizes the architectures of IDS for SCADA 

systems. The research in [78] focuses on classifying IDS solutions based on detection techniques 

and audit materials. The review in [50] gathers information about the testbeds used for industrial 

control systems. In contrast to previous reviews, the focus of this article is on Supervised Learning 
for SCADA-Specific IDSs. Additionally, this article analyzes existing literature based on holistic per- 

spectives, including detection architecture, detection technique, auditing sources, and feasibility  of 

applying the proposed IDS to the various real SCADA systems. 

This survey attempts to review the field of supervised machine learning techniques used for 

SCADA-specific IDS and achieve the following objectives: 

Propose a framework that systematically groups a collection of existing SCADA-specific 

IDS techniques into appropriate categories and compares their advantages and drawbacks; 

Present a comprehensive taxonomy of supervised machine learning techniques specifically 

used for SCADA-based IDSs; and 

Propose an evaluation metric to allow theoretical analysis of the most representative super- 

vised machine learning algorithms from each category, with respect to the requirements of 

SCADA-specific IDSs. 

In summary, the proposed survey presents a taxonomy of supervised machine learning tech- 

niques used for SCADA-specific IDS and proposes a categorizing framework that covers major 

factors in the selection of a suitable technique for SCADA-specific IDS. 

The rest of this paper is organized as follows. Section 2 provides useful background for readers 

on the basics of SCADA systems. Section 3 presents a taxonomy of SCADA-specific IDSs. Section 4 

provides a brief overview and a taxonomy of supervised-machine learning-based IDSs. Section 5 

provides the evaluation of SCADA-based IDS supervised learning, and theoretically analyze the 

most representative supervised machine learning algorithms for SCADA-specific IDSs. Section 6 

discusses the research gaps. We conclude this article in Section 7 and discuss future research. 

 
2 BACKGROUND 

This section presents an introduction to the key architectural concepts of a SCADA system as  

well as the classification of SCADA-based IDSs. In order to distinguish between the SCADA and a 
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generic ICT system, we also discuss threats and vulnerabilities of the SCADA that lead to specific 

requirements for the IDS of such system. 

2.1 SCADA Systems 

SCADA is widely used in an industrial system that continuously monitors and controls many 

different sections of industrial infrastructure. Applications include but are not limited to oil re- 

fineries, water treatment and distribution systems, transport systems, manufacturing plants, and 

electric power generation plants. A SCADA system gathers measurements—collects data from the 

deployed field devices—and sends them to a central site (normally a control center) for further 

processing and analysis. The information and status of the supervised and monitored processes  are 

displayed at the base station or at the utility center. As such industrial systems are large and 

complex, a central master unit continuously and remotely monitors and controls different sections 

of the plant to guarantee their proper functioning. 

SCADA Components 

The main components of a typical SCADA system include the following: Master Terminal Unit 

(MTU), Programmable Logic Controller (PLCs), Remote Terminal Unit (RTU), Intelligent Electronic 

Device (IED), Human Machine Interface (HMI), and Communication Media [7]. 

Master Terminal Unit (MTU): This is the core of a SCADA system that gathers information 

from the distributed RTUs and analyzes it to control the various processes [7]. A plant’s data 

is analyzed through histogram generation, standard deviation calculation, and plot- ting one 

parameter with respect to another. Based on the performance results, an operator may decide 

to monitor any channel more frequently, change the limits, or shut down the terminal units. 

The software can be designed according to the applications and the type of analysis required. 

The operator may be interested in finding the best operating steps for      a plant which will 

minimize the overall operating cost. To solve this problem, engineers often employ different 

optimization techniques on the collected data to determine the best operating process. The 

operating process is then converted to appropriate operating signals and then sent to the 

remote terminal units RTUs through communication pathways (e.g., radio links, leasedline, 

or fiber optic [44]). 

Field Devices (RTUs, PLCs, and IEDs): These are computer-based components deployed at a 

remote site to gather data from sensors and to control actuators [7]. Each field device may 

be connected to one or more sensors and actuators that are directly connected to physical 

equipment (e.g., pumps, valves, motors). The main function of such devices is to convert the 

electrical signals received by sensors into digital values in order to send them to the MTU 

for further processing and analysis using some specific communication protocol (e.g., 

Modbus [53]). On the other hand, they can convert a digital command message received  by 

MTU into an electrical signal in order to control actuators that are controlling some physical 

aspects of the controlled system. Different field-level devices, e.g., RTUs, PLCs, and IEDs, 

that are deployed at remote sites perform different functions. RTUs collect data from sensors 

and send it back to the MTU, and then the MTU takes a decision based on this data and sends 

commands to different actuators. In addition to the same function of RTUs, PLCs can collect 

data from sensors and based on the collected data, they can send commands directly to 

actuators using a local loop. In other words, PLCs can processes the data locally and take the 

decision without contacting MTU. IEDs are part of control systems such as transformers, 

circuit breakers, sensors, and the like, and they can be controlled via PLCs or RTUs. 
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Fig. 3. The first generation of SCADA architecture. 

 
Human-Machine Interface (HMI): This provides an efficient human-machine interface 

through which an operator can monitor/control end devices, such as sensors and actua - 

tors. An HMI graphically displays information on the current state of the supervised and 

controlled process including alerts, warnings, and urgent messages. In addition, the HMI 

allows the user to interact with the system using switches, buttons, and other controls [7]. 

Historian: This is a database that stores the different types of data gathered by the SCADA 

system, such as measurement and control data, events, alarms, and operator activities. This 

data is used for historical, auditing, analysis, and operational purposes [7]. 

SCADA Architecture 

A SCADA network provides the communication infrastructure for different field devices (e.g., PLCs 

and RTU) of a plant. These field devices are remotely monitored and controlled throughout the 

SCADA network. To make the network communication more efficient and secure, many modern 

computing technologies have evolved from a monolithic system to a distributed system and to the 

current inter-networked systems [7]. 

Monolithic Systems (1st Generation). The monolithic SCADA system is considered to be the first 

generation SCADA system [7]. At that time, networks were non-existent in general, and therefore 

a SCADA system was deployed as a stand-alone system, and no connectivity to other systems 

existed. As can be seen in Figure 3, a SCADA master used Wide Area Networks (WANs) to com- 

municate with field devices using communication protocols that were developed by vendors of field 

devices. In addition, these protocols had limited functionality—they could only do scanning and 

controlling over points within certain types of RTUs. The communication between the master and 

field devices (e.g., RTUs) was carried out at the communication bus level using proprietary 

adapters. To avoid system failures, two identically equipped mainframe systems were used: one as 

the primary and the other as a backup. The latter was designed to take over when a failure of the 

primary system was detected. Figure 3 illustrates the typical architecture of this type of SCADA 

architecture. 

Distributed Systems (2nd Generation). Figure 4 depicts a typical second generation SCADA ar- 

chitecture. With the development of Local Area Networking (LAN) technologies, the second gen- 

eration of SCADA system distributes the processing to multiple systems and assigns a specific 

function for each station [7]. In addition, multiple stations could be connected to a LAN to share 

information with each other in real time. For instance, the communication server can be set up 
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Fig. 4. The second generation of SCADA architecture. 

 

 

Fig. 5. The third generation of SCADA architecture. 

 
to communicate with field devices such as PLCs and RTUs. Some of the distributed stations can 

be an MTU, a Historian, or an HMI server. The distribution of system’s functionalities across 

the network-connected systems increases the processing power, reduces the redundancy, and im- 

proves the reliability of the system as a whole. In this generation, system failures are addressed 

by keeping all stations on the LAN in an online state during the operation time, and if one station 

(e.g., HMI station) fails, then another HMI station takes over. 

Networked Systems (3rd Generation). Unlike the second generation, a third generation SCADA 

system is based on an open system architecture, rather than vendor-controlled proprietary solu- 

tions. One of the major differences is that the third generation can utilize open standard protocols 

and products. Consequently, the SCADA functionalities can be distributed across a WAN and not 

justa LAN [7]. For instance, most field devices can be connected directly to the MTU over an Eth- 

ernet connection. This open system architecture allows  various products from different vendors  to 

be integrated with each other to build a SCADA system at low cost. In addition, a remote field 

device can be supervised and controlled from any place and at any time using the Internet. Figure 5 

shows the architecture of a typical third generation networked SCADA system. 



 

 

 

2.2 Different Types of SCADA-Based Intrusion Detection Systems 

An IDS is an autonomous hardware, software, or combination of both systems that can detect threats 

in a SCADA system by monitoring and analyzing network or device activities from both internal 

and external attackers. In traditional IT systems, IDS can be classified into network-based and host-

based IDS [34] depending on the location of the collected data and logs. However, due  to the 

different nature of SCADA systems in terms of architecture, functionalities, and operating devices, 

SCADA-based IDS, within the scope of this article, are categorized based on only the source of 

collected data: SCADA network-based IDS and SCADA application-based IDS. 

SCADA Network-Based IDSs 

A SCADA network-based IDS [48, 69, 86, 119] captures the data packets that are communicated 

between devices such as point-to-point between RTU/PLC, and between RTU/PLCs and the MTU. 

If a packet is a suspicious one, the security team will be sent an alarm for further investigation. An 

advantage of a SCADA network-based IDS is their lower computation costs, as only information in 

the packet’s header is needed during the investigation process, and therefore a SCADA network 

packet can be analyzed on-the-fly. Consequently, traffic from larger networks can be inspected 

within a short period of time [69]. When there is high network traffic however, a SCADA network- 

based IDS may experience issues in monitoring all the packets and might miss some attacks. 

However, the key weakness is that the operational behavior of the underlying SCADA processes 

cannot be inferred from the information provided at the network level (e.g., IP address, protocol, 

port,and so on). For example, if the payload of the SCADA network packet contains a malicious 

message, which is crafted at the application level, the SCADA network-based IDS cannot detect it, 

particularly when this is not violating the specifications of the protocol being used, or the com- 

munication pattern between SCADA networked devices [7, 24, 40, 41]. 

SCADA Application-Based IDSs 

SCADA data, which comprises the measurements and control data generated by sensors and ac- 

tuators, represents the majority of the information. Using this data, the operational behavior of a 

given SCADA system can be inferred [24, 41, 99, 126, 136]. In contrast to SCADA network-based 

IDSs that only inspect network level information, a SCADA application-based IDS can inspect 

high-level data (i.e., SCADA data) to detect the presence of unusual behavior. For example, SCADA 

network-based IDSs are often unable to detect high-level control attacks [124] from packet head- 

ers; which can be detected by analyzing SCADA data [99]. 

Since the information source of a SCADA application-based IDS can be gathered from different 

remote field devices, the following are the various ways to deploy a SCADA application-based IDS 

[7]: (i) It can be deployed in the historian server, as this server is periodically updated by the MTU 

server which acquires, through field devices, such as PLC and RTU, the information and status of 

the monitored system for each time period. However, this type of deployment raises a security issue 

when the information and status stored in the historian differ from the realtime   data in the field. 

This could occur when the MTU server has been compromised or the data has been changed using 

False Data Injection attacks [11, 14, 121]; (ii) It can also be deployed in an independent security 

hardened server, which from time to time acquires information and statuses from the monitored 

field devices [40]. Consequently, the large number of requests from this server might increase the 

network overheads resulting in degraded performance of the IDS; (iii) Each adjacent field device 

can be connected with a server running a SCADA application-based IDS, which is similar to the 

work proposed in [5] and [6]. However, the key issue is that SCADA data is directly/indirectly 

correlated, and therefore sometimes there is an abnormality in a parameter 



 

 

 

not because of itself, but due to anomalous value in another parameter [24, 41]. Therefore, it would 

be appropriate to identify and monitor correlated parameters, such as sensor readings related to a 

single process. 

Signature-Based vs. Anomaly-Based SCADA IDS Approaches 

Many types of SCADA-based IDS have been proposed in the literature, and these fall into two broad 

categories in terms of the detection strategy [7]: signature-based detection [26, 35] and anomaly- 
based detection [3, 48, 64, 69, 86, 119, 128]. 

A signature-based IDS detects malicious activities in a SCADA system’s network traffic or in its 

application events. It does this by using pattern matching techniques to detect telltale events against 

a database of signatures [35] or fingerprints [26] of known attacks. The false positive rate (i.e., 

incorrectly identifying a normal event as an attack) in this type of IDS is very low and can ap- proach 

zero. Moreover, the detection time can be fast because it is based only on the use of a match- ing 

process during the detection phase. Despite the aforementioned advantages of signature-based IDSs, 

they typically fail to detect new attacks (e.g., zero-day) whose signatures are not known, or which 

do not exist in its database. Therefore, the database must be constantly updated with pat- terns of 

new attacks. 

An anomaly-based IDS assumes that the behaviors of intrusive activities are noticeably distin- 

guishable from normal behavior [34]. The “normal model” is created using a realistic training set 

using advanced mathematical/statistical techniques. Any significant deviation from this model is 

flagged as an anomaly or potential attack. For example, normal SCADA network traffic can be 

obtained over a period of normal operations, and then a modeling technique is applied to build the 

normal SCADA network profiles. During the detection phase, the deviation degree between the 

current network traffic and the created normal network profile is computed: if the deviation ex- 

ceeds the predefined threshold, the current network traffic will be flagged as an intrusive activity. 

The primary advantage of anomaly-based IDSs compared to signature-based ones is that new or 

unknown attacks can be detected, although it generally suffers from a higher false positive rate (i.e., 

detecting normal behavior as malicious). 

2.3 SCADA Threats and Vulnerabilities 

When SCADA was initially suggested, the focus was on efficiency and effectiveness without con- 

sidering the potential security issues it might encounter in the future. As security concerns became 

more critical, it was discovered that it was not easy to address such issues, since an upgrade or 

replacement of a vital SCADA network in an old industrial system can disrupt the production or 

management of existing critical processes and services [54]. SCADA was also originally developed 

for isolated systems. Modern critical infrastructure has since been interconnected via the Internet 

network to increase scope and capability and we have thus seen various new attacks on the sys- 

tems. An example is the Havex malware that allows attackers to remote access and controls the 

system using a backdoor channel. Such malware affected victims in numerous industries, includ- 

ing sections of energy, aviation, and defense to name a few. The Stuxnet worm that targets PLC 

devices and gives unexpected commands to the infected control device [132]. This threat primarily 

targets Iran’s nuclear program. The SQL Slammer worm that exploits buffer overflow vulnerability 

and performs DoS on the infected system (i.e., Davis-Besse—the American nuclear power plan). 

We categorize vulnerabilities of the SCADA into three aspects as follows: 

Hardware. The SCADA system is geographically distributed (i.e., covering regions of cities), 

and many low-level controllers/sensors are wirelessly interconnected. As a result, it is hard to 

prevent attackers from accessing SCADA components, wirelessly or even physically. For instance, 



 

 

 

attackers could intercept the wireless communication signal using tools like Aircrack-NG [21] to 

gain access to the network. In the field, it is even possible that attackers intrude into the station and 

direct access to the control device (e.g., using the USB drive malware). 

The physical component also has a tight relationship with its software counterpart. Hence, an 

attack with a series of malicious commands could severely affect the hardware. An example is the 

Aurora Generator Test showing the destruction of the electric generator by remotely attack from the 

network [125]. Furthermore, the inclination to use COTS devices in SCADA system makes the 

system more vulnerable. Since the COTS equipment has a generic design and protocol standards, it 

has become a target of exploitation [54]. 

Software. SCADA-specific protocols use plaintext messages to communicate between sensors- 

actuators (e.g., Modbus, DNP-3, IEC 60870-5-101, and IEC 60870-5-104). These simple communi- 

cations can be easily manipulated by false data injection attacks [10–13]. Here attackers inject (e.g., 

using man-in-the-middle (MITM) technique) a fake measurement into a closed loop control system. 

This can disrupt or even stop the critical system. 

Patching the newly discovered vulnerability can be complicated for a SCADA system. Since 

the distributed control components are mostly Windows- or Linux-based computers, inherited 

vulnerabilities are inevitable. Unfortunately, with the availability requirement and diversity  of 

system components, appropriate security patches might take several months to arrive [7]. This is 

because system components might come from different manufacturers, using various standards or 

proprietary protocols. In some cases, software/hardware is being used for the extended period of 

time after the end of the manufacturer-supported warranty [84]. 

Security Administration and Insider Attacks. Apart from the security technology, attackers could 

harvest information using social engineering to attack employees of the targeted organization.     A 

bad security practice, such as weak passwords or bad configurations, could make the SCADA 

system vulnerable. On the other hand, an angry former employee could hack into the system     and 

cause devastating damages to the system. For instance, there was an incident in Queensland, 

Australia in which a a former staff member of the Maroochy Water Services flooded millions liters 

of sewage water into parks and rivers by using a radio transmitter and a computer from his car [1]. 

 
2.4 Requirements of SCADA-Based IDSs 

SCADA is distinguished from a traditional IT system by such key characteristics as availability and 

reliability . It also includes a wide range of proprietary COTS components, i.e., the cyber-physical 

components that are tightly coupled. Hence, the key requirements for a SCADA-specific IDS can 

be listed as follows: 

(1) Availability and Robustness: According to the availability constraint, the IDS technology 

does not only require anomaly detection that covers both known and unknown attacks, 

it also requires support for a model updating mechanism that minimizes downtime. With 

regard to robustness, the IDS has to be compatible with incomplete features gathered 

from different platforms to allow components from diverse manufacturers to be used. 

Furthermore, the security system has to deal with training/detecting data that contains a 

little portion of attacks event and lots of noises [73]. 

(2) Scalability and Resilience: Despite a large number of logs that are continuously generated 

from a number of sensors/controllers, the detection module should not slow down the 

manufacturing or control process. Conversely, it should give timely automated protection 

and alarms. Since a decentralized or distributed IDS could be an answer to the scalability 

issue, the design of algorithms should also account for the possibility that detection 



 

 

 

 

Fig. 6. A taxonomy of IDSs for SCADA systems. 

 

devices may themselves be compromised or fail [46]. To extend scalability without 

scarifying availability, resilience is also an important requirement. 

(3) Information Aggregation and Correlation: Since a SCADA system has a tight cyber-physical 

relationship [7], the IDS should be able to make use of multiple attributes in detecting 

anomalies. The SCADA system integrates Operational Technology (OT), such as sensors 

and actuators, as well as Information Technology (IT), such as databases, servers, firewalls, 

and routers. As a result, the SCADA-specific IDS has to support aggregation and correla- 

tion of variables from multiple sources. Besides, manipulation of either cyber or physical 

world could affect one another. For instance, a false-data injection attack [11] that in- 

filtrates fake measurement data into the system to cause physical disruption. Hence, it     is 

important to monitor anomaly from a holistic perspective, including cyber perspective (i.e., 

network communication, application behavior) and physical perspective (e.g., signals from 

sensors/controllers). 

(4) Feasibility: As the nature of the SCADA system can be different depending on the appli- 

cation (e.g., electric power distribution, water supply system, and manufacturing process 

control system), the practicality study of the proposed system is crucial. In addition, the 

completeness of assessing the proposed model is also important for the critical infras - 

tructure system. Despite the limited research and development cost, the same system can 

act differently on different evaluation environment (e.g., tested on a simulator, SCADA 

test-bed and implementing the real system). 

3 TAXONOMY OF SCADA-BASED IDSS 

Protecting a SCADA system from intrusion is a challenging task because it not only inherits many 

of the existing ICT vulnerabilities but also includes vulnerabilities from the OT field components. 

In addition, the implementation of countermeasures suffers due to the limited computational re- 

sources on the OT side. Thus, there is a need to study IDS systems used for SCADA. Motivated by 

the work proposed in [45], [55], [78], [120], and [140], the existing approaches can be classified 

using three different categorizations based on the requirements of SCADA-specific IDSs. Figure 6 

shows our taxonomy of SCADA-based IDSs. 

Function-Centric: As part of its operations, a SCADA system generates alarms for processes 

that go beyond their operating parameters, e.g., due to an expected or unexpected change in 
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the underlying physical processes. While this may not always correspond to an attack, alert- 

based responses address inherent problems in SCADA operations, which are otherwise not 

possible to capture using traditional IT-based IDS. Based on the requirements of the strict 

availability, the IDS can respond immediately to unusual situations [56, 63, 69, 91–93, 95, 

132, 133, 135, 138, 141], or provide a delayed notification summarizing similar alarms [52, 

74, 79, 88, 100, 114, 122, 123]. 

Information-Centric: If we examine the information used for the detection, then IDS sys- 

tems can be further categorized into Host-based Intrusion Detection (HID) and Network- 

based Intrusion Detection (NID). Host-based methods detect intrusions by examining data 

gathered from hosts, such as device memory, application logs [62, 90, 94, 123, 132, 138, 141], 

the change of system configuration [79], Network-based methods collect data from either   a 

network, a hub or a router and detect anomalies at the source, destination, protocol and 

payload from network data [9, 31, 51, 63, 72, 88, 111, 113, 122]. 

Analysis-Centric: This category focuses on different analysis techniques for detecting out- 

liers. As discussed in Section 2.2, this has two subgroups, namely signature-based and 

anomaly-based approaches. The scope of this review is anomaly-based approach, which em- 

ploys various kinds of machine learning techniques. 

As three previously discussed categories classify existing literature from different perspectives, 

a single publication can be included into three categories. For instance, References [132], [138], 

and [141] are grouped as automatic response, host-based, and anomaly-based according to their 

functions, detecting sources and analysis methods. 

However, since this review focuses on supervised learning algorithm, the number of reviewing 

literature mostly consists of anomaly based approaches. This is because the anomaly-based detec- 

tion focuses on finding deviations (outliers) from the trained normal or abnormal models rather than 

using the pre-defined patterns of attacks to detect abnormal events, e.g., patterns of spoof Address 

Resolution Protocol (ARP) messages or sequence of Application Programming Interface (API) 

called by known malicious programs. A few numbers of signature-based approaches were in- cluded 

as they employed supervised learning algorithms to dynamically generate sets of signature for 

detecting suspicious incidents. 

4 SUPERVISED LEARNING TECHNIQUES 

Supervised learning algorithms use labeled training data to formulate detection models, e.g., set  of 

rules [101], separation plane [75], decision trees [39], neural network [61]. Later on, these mod- els 

are used to detect anomalies. Different classification techniques or classifiers are used to pre- dict 

anomaly, e.g., One-class Support Vector Machine OCSVM [133], the Hidden Markov Model HMM 

[138], ANN [61], to name a few. The rest of this section presents an overview of supervised 

learning-based IDSs followed by a comprehensive summary of different classification techniques. 

4.1 Overview of Supervised Learning-Based IDSs 

Although various IDS approaches have different processes, we describe the generic process in this 

section to give a general idea of how the detection model is trained and used to detect attacks. Figure 

7 depicts an overview of the implementation of the IDS approach in practice. In particular, such 

systems consist of five main processes: (A) data collection, (B) feature extraction and selection, 

(C) tagging, (D) training, and (E) anomaly detection. Data collection (see Figure 7(A)) represents 

the measurement step, where the input data is collected, e.g., logs of events or system states, traffic 

trace or Net-flow data from a network monitor and so on. Figure 7(B.1) shows the feature extraction 

and feature selection processes, discriminating features are extracted and selected into a form 

• 

• 



 

 

 

 

Fig. 7. The process of the supervised learning-based IDS approach. 
 

that is usable in the classification process. The feature selection step might not be required for some 

machine learning approaches (i.e., ANN [61], that include network pruning and contrasting 

procedures which automatically select the discriminant features). In Figure 7(B.2), each data point 

(i.e., record) is represented using a feature vector which consists of attributes x1, x2, . . .  , xn (e.g., 

behaviors or indicators). Sometimes values of features require to be normalized at this stage to 

prevent feature with a large range (e.g., payload size) to overweight feature with a relatively small 

range (e.g., binary). For instance, Min-Max normalization [4] can be used to transform the numeric 

value v of feature x to v J that ranges between [0, 1] as follows: 

v J 
= 

   v − minx     
, (1)

 

maxx − minx 

where minx and maxx are the minimum and the maximum value of the feature x. Note that, each 

data point may not always be a tuple with a specific number of features, some instances of a sample 

could also be a sequence of features. We elaborate this in more detail in Section 4.2. In Figure 7(C), 

each training record must be labeled to identify the class (i.e., normal or attack in the context of 

the IDS) that the data instance belongs to, either manually or automatically, using input from an 

analyst or expert. In several cases, the attack incident is hard to simulate or collect from the field. 

For these scenarios, IDS designers use only normal dataset to train the model (e.g., [32], [71], [81], 

[83], [123], and [133]). Figure 7(D) shows the model development process. The labeled dataset is 

used to train and evaluate the classification model. In order to improve the detection accuracy, 

parameters of the model could be adjusted, and the training/evaluation process is repeated until 

the anticipating efficiency is satisfied. 

Once model training is complete, the model can be used to classify new instances of data. Fig- 

ure 7(E) shows the process of detecting an anomaly using the classification model. Each unknown 

data item is labeled as either benign or malicious (most systems will provide lower-level detail  for 

malicious points). Finally, the output of this module will be presented to the administrator to notify 

or take a response action. 

4.2 Taxonomy of Supervised Learning Approaches 

Even though there exist several machine learning classification methods/algorithms to detect 

anomalies [49], there is a lack of a taxonomy of these methods in the literature. A proper taxonomy 
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Fig. 8. Categories of classification algorithms used in SCADA-based IDSs. 

 
is not only important to develop the evaluation matrix, but this also helps the separation between 

computational and architectural complexity of SCADA IDS systems. Hence, in this section, we 

present a structured view of classification approaches based on nine (9) categories (see Figure 8). 

Below, we describe each category in detail. 

Probabilistic Method. This category predicts a class of unseen data based on probabilities. During 

the training phase, the presence of certain features of each class is used to calculate the distribution 

of joint or conditional possibility [112]. This number reflects the probability that a particular input 

falls into one of the predefined classes of objects to be classified. Examples of techniques in this 

group are Naïve Bayes (NB), Bayesian Network, Hidden Markov Model (HMM), and Conditional 

Random Field (CRF). 

A basic probabilistic method like NB [117] learns conditional probability of each feature from 

the training data based on the assumption that every feature can be seen independently (i.e., con- 

ditionally independent). NB predicts the class of the input based on the highest joint likelihood. 

Bayesian Network technique [43] generalizes NB classifier by combining Bayesian variables with 

directed acyclic graph structure. The vertex in the graph depicts the variable (i.e., features and class), 

whereas the edge represents a probabilistic relationship between these variables. The graph is used 

to compute posterior probability of each class given all evidence. 

On the other hand, some probabilistic models work on a sequence of features instead of the fixed 

number of features. For instance, HMM [111] inherits the concept of NB to predict the class of the 

datapoint based on a series of observable features over time. The assumption of HMM is that an 

observable feature is generated by the particular hidden system states. That is explained   as a 

Markov process. The hidden state at time t depends on the previous state t 1. Once the joint 

probability of the future state is calculated, the likelihood of the observable sequence is determined, 

using knowledge of the predicted hidden states. HMM is used to classify labels of events based on 

sequences of features that are traced over the monitoring period. For instance, messages from a 

communication log are considered a sequence of features. 

CRF is similar to HMM but more complicated. Instead of relying on a joint probability, the CRF 

works based on conditional probability [60]. As a result, CRF is more flexible. In other words, it 

includes a wide variety of overlapping features. However, this makes CRF less efficient in terms of 

computational complexity issue compared to HMM. Apart from that, when the newer data 
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becomes available, CRF model does not support re-training of the model. Therefore, it is not 

suitable for attacks that change over time. 

Divide & Conquer Method. The divide and conquer technique includes (but not limited to) a broad 

category of algorithms known as the decision tree. It formulates a tree-like data structure from a set 

of attributes of each training tuple. Using a decision tree a rule set is easily derived, which can be 

used to classify the input into a particular group [79, 90, 101]. There are several algorithms in the 

group, such as Classification and Regression Tree (CART), Iterative Dichotomiser (ID3), C4.5 (an 

improved ID3), Frequent Pattern (FP) Growth, Supervised Learning in Quest (SLIQ), SPRINT, and 

Random Forest (RF). 

CART consists of a set of decision rules, which is described using a set of if-else rules using a 

structure of binary tree [65]. The node of the tree represents a feature that is used to classify data 

points, while the edge represents decision paths. The path that connects more than one class is called 

a sub-tree. The path that yields only one class is called the leaf node and represents the final outcome. 

In reality, the classification node gives a mixture of instances from different categories; hence the 

feature that best discriminates the input data is chosen (so-called splitter). After that, the recursive 

process repeats at the next level of the tree until the classification reaches a leaf node. Since the 

method of finding the best splitter is based on the greedy approach (non-backtracking), the output 

decision tree might not be optimized. The tree pruning technique is the most commonly used [49] 

to reduce the size of the tree. 

The advanced decision tree techniques like ID3 and C4.5 build a decision tree in the same way, 

but C4.5 has been improved over ID3 in various aspects. Specifically, C4.5 handles both continuous 

and discrete attributes. If the attribute X   R, the splitting threshold will be used to divide the    data 

into two groups instead of the exact value of the discrete X . Apart from that, C4.5 allows   the 

training data with some missing attribute values, and it supports tree pruning after creation. 

According to the research [79], C4.5 is faster and more flexible compared to its precedent ID3; 

therefore, it is a better choice for the context of the SCADA IDS that produces variety and a large 

amount of the monitoring inputs data. Scalability is an important issue of tree based classifiers as 

the size of tree is growing when the training data is larger [76]. Advanced decision tree techniques 

improve scalability and accuracy compared to the classic methods. For instance, IBM proposes 

SLIQ [76] and SPRINT [104] algorithms, which are based on a scalable method that splits parts of 

the tree from the memory to the database on a hard drive to address the scalability issue. 

Aside from the decision tree techniques, the divide-and-conquer approach also includes a tech- 

nique that works and is based on a frequent pattern, for example, the FP-Growth algorithm. Pan  et 

al. [90] use FP-Growth to discover common communication patterns of the smart grid system. Then, 

the infrequently seen pattern is identified as an anomaly. The FP-Growth uses FP-Tree data structure 

to summarize patterns of events (i.e., nodes) that frequently occur together (i.e., edges of the tree). 

Although the FP-Growth technique is efficient, the data structure might be too large to fit in the 

main memory. 

Rule-Based Method. This method uses a set of rules to determine classes of inputs. Undeniably, 

the rule is easier for a human to understand the reason behind a decision, compared to the proba- 

bilistic and numerical models. A rule generally contains condition and conclusion parts. The con- 
clusion is the output of the classification, whereas the condition is the features of particular object 

that are being classified. The efficiency of rule-based method is measured by coverage and accuracy. 

Coverage shows how many tuples in the dataset satisfy by the condition. The accuracy determines 

the number of tuples that apply the conclusion. A definition of rules set is either specified by spe- 

cialists of the particular system or mined from the training data using various supervised learning 

techniques. 
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With respect to automate rules discovery approach, a set of rules can be extracted from the 

training data. This process can be done by sequential covering algorithms or decision tree methods 

[49]. The sequential covering approach extracts rules from training data one-by-one in sequence, 

whereas the decision tree formulates a multiple tree-like structure of decision rules. There are many 

different rules mining approaches, such as Classification Based on Associations (CBA) [70], CN2 

[27], Multiple Association Rules (CMAR) [67] and Repeated Incremental Pruning to Produce Error 

Reduction (RIPPER) [28]. 

The simple method like CBA [70] selects the most effective rules that identify a class of each 

tuple from the training set. The CBA algorithm learns a Class Association Rule (CAR) from the 

training set D, defined as xi Ci , where the feature xi implies a class Ci . The rule holds support sup% 

=  xi  / D  and confident conf % =  xi Ci / D , where  xi   depicts total number of tuples with the 

attribute xi ,   xi  Ci  means total number of attribute value xi that implies the class  value Ci , and 

D denotes total number of tuples in the training set. These are minimum thresholds (i.e., sup% and 

conf %) that determine if the rule should be selected for the classification. Although the selected 

rules are the most effective, they might not be the best discrimination. In addition,      a scalability 

issue is an important limitation. That is, the rule-based method scales poorly with   the large training 

data, especially when outliers cannot be avoided compared to the decision tree method (i.e., C4.5) 

[28]. 

The more sophisticated approaches like CMAR and RIPPER, on the other hand, aim to increase 

the robustness of the approach by eliminating impurities from the training data and reducing the 

number of rules generated from the training phase. CMAR [67] extends FP-Growth technique [90] 

to formulate a Class-Association Rules (CR)-Tree and minimizes memory space requirement (e.g., 

by using tree pruning technique); hence, CMAR has a better classification accuracy and scalability 

compared to the classic CBA and C4.5 algorithms. RIPPER [91] aims to address the impurity issue 

by proposing an iterative pruning technique for reducing error and allow a large and noisy training 

dataset to be used. More specifically, the training data is divided into growing and pruning sets. The 

growing part is used to formulate a rule-set, whereas the new set of rules is pruned immediately 

with the pruning dataset until there is no improvement from the pruning step. The new set of rules 

is integrated with a rule-set from the previous iteration. 

Lazy Learning Method. This method differs from others in terms of the learning process. The 

main idea behind the technique is to update the training model as late (hence, lazy) as possible. For 

example, the training data is stored in the memory without building a prediction model like  an 

eager learning technique. The prediction model is only built during the classification step. It offers 

both advantages and disadvantages. Even though the lazy learning method offers the best 

performance at the learning step, this advantage is a tradeoff of computational complexity when it 

is making a prediction or classification. However, it is more flexible than others because the trained 

model can be incrementally improved [108, 114]. 

The most commonly used lazy learning technique is the k-Nearest-Neighbor (k-NN) technique 

[105]. It compares the input with k data points using Euclidean distance function. An advanced 

method, like Kernel Density Estimation (KDE), implements k-NN-based approach (e.g., nearest 

neighbors, reverse neighbors, and  shared  neighbors  [102])  as  a  kernel  function  that  is  used to 
formulate the density function (i.e., multivariate Gaussian [114]) of the normal data; hence,    the 

boundary of the normal can be described using parameters of the density function. Given    that one 

data point contains n  features, the anomaly is detected by projecting the data point      into n-

dimension space of features. The data point that resides beyond the normal boundary is considered 

an anomaly. 



 

 

 

Boundary Method. Unlike the lazy learning method, this method considered an eager learner. 

Support Vector Machine (SVM) [29] is the most common technique in this category. It transforms 

the training data into a decision boundary (so-called hyperplane). The idea of hyperplane is that the 

training data with non-linear mapping is transformed into an adequate higher dimension, where 

two classes can be linearly separated by the hyperplane. Also, the algorithm aims to maximize the 

width of the separation plane. Despite the training time being very long, this approach dominates 

other methods by being less prone to over-fitting on the training data. The SVM-based solution is 

quite common for SCADA-IDS. In practice, it is combined with other techniques (such as pruning 
and kernel-trick) to archive a higher detection accuracy [75], lower false positive and negative 

alarm [92], minimize an offline learning phase [93], or to apply with environment where input 

features are limited [122]. 

Another example of the boundary method includes technique in the research [74]. The proposed 

technique is used to identify anomaly for proprietary communication (e.g., vehicle CAN bus proto- 

col). Since the communication protocol is not disclosed by manufacturer, it is challenging to detect 

attacks on those critical system. Markovitz and Wool [74] identify field boundaries based on the 

pre-defined knowledge of control variables and the actual control signals from various operations 

situations. After that, they are able to train a classifier, which is used to detect anomaly. Although 

the proposed technique is specific to the particular control system, the same principle could be 

applied when communication specification is unknown. 

Evolutionary Method. The evolution of a living organism inspires the development of artificial 

intelligent techniques. Various techniques have been proposed for SCADA-IDS (e.g., [61], [68], 

[69], and [100]). There are two well-known techniques, namely, Artificial Neural Network (ANN) 

and Genetic Algorithm (GA). ANN uses a brain-like structure (i.e., a network of neural cells) for 

classification. The neural network consists of three different layers of nodes, namely input layer, 

hidden layer(s), and output layer. The input layer can contain several nodes depending on the input 

data (e.g., number of features of each tuple). Every input node has connections with every nodes in 

the hidden layer. The connections have different weight values; these weights are fitted during the 

training period in order to provide the most accurate output according to the supervised knowledge. 

There can be more than one hidden layer of the neural network. Even though ANN gives a high 

prediction accuracy in various applications (e.g., image/voice recognition, misuse behavior and 

anomaly detection), the explanation of how ANN works is still controversial [20]. Researchers do 

not fully understand how the ANN classifies the input data, and designing of the ANN topology 

(i.e., number of nodes and hidden layers) is still trial and error. The output layer could be only one 

node in case of a binary classification problem. That is, giving output between 0 and 1, which serves 

as a likelihood of being a particular class. For multi-class classification problem, the number of output 

could be k nodes, represent the prediction of k-classes. Each output node indicates likelihood of 

each class. Important limitations of ANN technique are the requirement of a large training dataset 

and the trained model might be over-fitted to the training set; hence, it      is not applicable in some 

contexts. For example, recording all possible attack data from the real SCADA system. 

The GA algorithm [66], on the other hand, simulates the process of selective survival in the 

evolution theory. It assumes that the knowledge (e.g., anomaly detection rules) can be represented 

as a chromosome of the living things. These chromosomes can be optimized according to evalu- 
ation objectives. In context of IDS, design of evaluation function is crucial to optimize the fitness 
of the outcome. GA is well known for minimizing the effect of erroneous training sets and some- 

times overcomes the problem of multiple local optima. Other aspects of nature are also applied   in 

anomaly detection. Negative Selection Algorithm (NSA) or Immune Network Algorithm (INA) 
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[68] formulates the detector module for the classification between normal and abnormal data. The 

idea was initially derived from the organic process where immune cells detect harmful agents in our 

body. 

Unary Classification. Unary or one-class classification (OCC) solves the binary or multi-class 

classification problem by primarily learning from a training set of one class only (i.e., normal sys- 

tem states); hence, the anomaly can be detected as the class of others. This approach advantages 

other solution when one class of the training data can be clearly observed, while information of 

other classes is severely hard to record. 

The most common algorithm in this category is One-Class Support Vector Machine (OCSVM) 

(so-called Support Vector Data Description: SVDD), e.g., [32], [71], [81–83], [123], and [133]. There- 

fore, the basic principle of the SVDD technique is similar to the SVM technique, discussed previ- 

ously. Instead of separating between two classes using a linear hyperplane. In higher dimensional 

space of the data, SVDD formulates boundary function of a spherically shaped that minimally cov- 

ers the complete population of the target class [115]. Let the sphere is described by the center a and 

radius R   0, SVDD aims to minimize volume of the sphere by minimizing value of R2 described  in 

the error function as, 

minimize F (R, a) = R2, 

subject to ǁxi − aǁ2 ≤ R2, ∀i, (2) 

where xi denotes distance between the data point i and the center a. However, the perfect spherical 

shape could also include outliers from the training set (hence, not optimized). According to [115], 

the separation plane is formulated by resolving the following optimization problem: 

minimize 
1 

ǁω ǁ2 
+
 1 . 

ξi − ρ, 

subject to (ω · Φ(xi )) ≥ ρ − ξi , ξi ≥ 0, i = 1 ·· ·  r , (3) 

where xi    X  is a data point out of total r  samples in the training set X , and Φ  : X    H   denotes   the 

mapping function from raw to the high-dimensional space. The normal vector and compensation 

parameter of the hyperplane H is denoted by ω and ρ, respectively; v = (0 1) is a tradeoff parameter 

that controls proportion of support vectors in the training set. Lastly, ξi represents the slack variable 

that allows some training samples to be incorrectly classified. This optimization problem is solved 

using Lagrange multiplier, which can find detail in the further reading [115]. 

Density-Based Method. This method builds an estimate function from statistical data based on the 

training set. It can be used for both clustering and classification problems. Examples of algorithms 

in this group are Expectation Maximization (EM), Logistic Regression (LR) and Linear discriminant 

analysis (LDA). EM is an iterative approach, and it works well on incomplete training data [33]. In 

the training period, it adjusts parameters of likelihood function based on the data point from the 

previous round. The aim is to optimize settings of the likelihood function. This process repeats   on 

the next round until the stopping criteria are met (e.g., difference of output is zero or remain 

unchanged). Since the EM technique maximizes the accuracy of the classification function, the 

advanced IDS solution [135] incorporates EM technique into one-class classifier to reduce the 

outlier from the training data set in the pre-processing phase to get the more accurate classification 

model. 

Logistic regression (LR) [59], on the other hand, is mainly used for binary classification problem. 

It maps value of each feature, e.g., payload size x = (1 100) of the network traffic, with likelihood 

of the predicting class (say malicious and benign). Basically, the technique tries to fit all data 



 

 

 

points in the sigmoid curve by shifting the line and re-calculate the likelihood until the maximum 

likelihood value is found. An important limitation of LR technique is when classes have a complete 
separation. That is, some features can separate two classes; hence, the binary function cannot be 

used to classify the input. 

The more advanced technique like LDA [77] is suitable for classifying data with multiple classes 

and multiple features (so-called dimension). Data point x with n features can be plotted on a n- 

dimensional space to find a separation point, separation line, or separation plane, when n = 1, 2, 3 

respectively. In reality, data might have more than 3 dimensions. Hence, it is complicated to 

calculate the separation plane directly. LDA resolves this problem by reducing complexity of data 

dimensions. In case of binary classification, it creates a new axis and projects all data points onto 

the new axis. Regardless of the feature dimension, data points of two classes can be separated on 

the new axis. The new axis is formulated from the training data by maximizing the combination  of 

means of data points in each class and minimizing combination of between and within scatters. The 

density-based method, however, performs well only if a larger number of training data points are 

available. 

Ensemble-Based Method. The idea behind this method is to combine two or more methods to 

improve the accuracy of the individual methods. The most popular methods are Voting, Stacking, 

Bagging, and Boosting. This method requires other techniques to be used as base methods. These 

can be any of the aforementioned approaches, different algorithms, or their variations. 

Voting is the simplest technique to decide a final prediction result from multiple voters. The 

majority of the votes will be chosen as a final decision. Votes are gathered from a collection of 

classifiers. Stacking is a more advanced form of voting. Instead of taking the majority vote, it 

uses a meta-learner to justify the best result based on the supervised knowledge. In other words, 

outputs from a collection of first-level classifiers are fed to a second-level learning algorithm. The 

meta-learner is trained to optimize the final prediction [107]. 

Take the research in [47] as an example. The decision-tree-based classifier and the rule-based 

classifier are stacked to detect any anomaly from a large network traffic log efficiently. First, the 

C4.5 decision tree is used to detect known network attack events from all communication traffic. 

The attack events are classified using C4.5 technique. Meanwhile, the normal traffic is further 

examined by a CBA classifier, which is trained with normal data. Therefore, the well-known 

anomaly is quickly filtered out and the unknown log is examined at the second stage using the 

different classifier. 

On the other hand, Bagging and Boosting focus on distribution of the training data. This is be- 

cause the combination of independent bases can dramatically improve the efficiency of final pre- 

diction. Bagging (so-called Bootstrap Aggregating) obtains a data subset for different baselines by 

using the bootstrap sampling technique [36]. The different base classifiers are aggregated using the 

voting and averaging technique to improve prediction accuracy. Boosting [139] improves the 

accuracy by building the stronger classifier from an existing weak classifier. Suppose a distribution 

of data D consists of three parts X1, X2, and X3, and we only have a weak classifier that correctly 

predicts only X 1 and X 2 . Let the wrong classification X 3 be denoted by h1 . In order to correct the 

mistake made by h1 , the boosting technique derives a new distribution D J from D . For example, the 

researcher should focus more on instances in X3 and then train a classifier h2 from D J. Suppose 

that the new classifier has the correct classification in X 1  and X3 . We can now combine classifiers 
h1 and h2 to get a stronger classifier. The process is repeated by adjusting the distribution’s 
parameters until no improvement can be made. 

Despite the complexity of incorporating several methods, this technique has been used in a large 

number of works (e.g., [23], [31], [39], [62], [63], [94], [72], [106]). The algorithms included not 



 

 

 

 

Fig. 9. Paper Selection Process. 

 
only classification-based but also clustering-based techniques. The selected paper in each category 

is evaluated in Section 5 based on the proposed holistic-analytical evaluation method. 

5 EVALUATION OF SUPERVISED LEARNING APPROACHES 
FOR SCADA-BASED IDS SYSTEMS 

This section provides a detailed review of SCADA-based IDSs in each of the categories presented 

in 4.2. We describe the paper selection process, followed by the evaluation criteria of each selection. 

We collected information of proposed solutions with regard to quantity (i.e., the number of 

publications that used a similar approach) and quality (e.g., benefits, drawbacks and constraints). 

This information is used to evaluate supervised learning approaches with respect to holistic 

perspectives from each criterion. 

5.1 Paper Selection Process 

In order to select the relevant and important papers from SCADA-specific IDS research, we fol- 

lowed the literature review protocol illustrated in Figure 9. In step 1, we chose key databases in 

information technology publications to find papers, namely Association for Computing Machin- 

ery (ACM) Digital Library, IEEEXplore (IEE/IEEE), SCOPUS (Elsevier) and Web of Science. Then 

we defined keywords in three topics to locate potential papers in each database as follows: 

SCADA: SCADA, Smart grid, Critical Infrastructure, Industrial Control System, ICS 
Intrusion detection: Intrusion Detection, IDS, Anomaly Detection 

Machine Learning technique: Machine learning, ML, classification, classifier 

For each database in steps 2 and 3, we searched and selected the papers using the snowball 

sampling method [19], which starts with a small set of highly relevant papers, and then follows 

its references to build a larger pool of papers to review. The snowball sampling approach was 

chosen because some important and relevant research might not be indexed by the databases or 

the search engines that were used. As illustrated earlier in Figure 2, the number of publications 

on SCADA-specific IDS based on supervised learning solution has risen significantly since 2007, 

which reflects the renewed and increasing public interest in the protection of critical infrastructure. 

Hence, we limited the time range from 2007 to present. We formulated search strings suitable 

for each database based on the keywords above. Next, we ran the queries, assembled the located 



 

 

 

Table 1. Evaluation Criteria for SCADA-Based IDSs 
 

Criterion Reasons 

Algorithm 

Review the most and least popular classification techniques for 

SCADA-based IDSs studied in the literature with associated benefits, 

drawbacks, and constraints. 

 
Approach 

Compare the literature from the accuracy and flexibility point of view. 

Although the signature-based method precisely detects attacks, the 

anomaly-based approach is more flexible in detecting future attacks such as 

the zero-day exploits. 

Architectural 

properties 

The architecture design directly reflects how well it is tailored for SCADA 

systems. To be specific, we examine the system based on scalability, 

availability, distribution capability, and robustness of the systems. 

Auditing 

sources 

Show how far IDS can cover the different types of attacks on the resource 

constrained environment. Some works detect the anomaly based on the 

communication behavior only, while others consider the physical state or 

multiple variables in combination. 

Application 

domain 

Indicate the holistic design of the security system that ranges from anomaly 

detection and supported decision making to investigation support.  

 
Feasibility 

Show the distance between simulation and reality. As SCADA is deployed 

on the critical infrastructure, the simulation and the actual environment are 

different. Therefore, testing on the real world situation or the 

SCADA-specific simulator is crucial. 

 

 
papers, and removed the duplicate papers. The paper abstract and keywords in the located papers 

were chosen to be related to the three main topics defined above. We then sorted the located papers 

by main supervised learning algorithms described in Section 4.2. 

In step 4, the papers were examined more closely for categorization. Key inclusion criteria  were 

relationship to SCADA security; use of IDS; use of supervised learning to train IDS; quality 

threshold—clear methodology described; technique implemented and evaluated; and paper pub- 

lished in a journal or conference proceedings that we were able to access the full text. If there were 

several papers in a particular category, the journal publications were considered with a higher pri- 

ority compared to conference proceedings. This was because the journals have less restriction on 

the number of pages and multiple revision cycles, hence they discussed the proposed approaches 

more comprehensively. The conference papers were also selected based on the relevancy and ranks 

of the conferences suggested by the Computing Research and Education Association of Australasia 

(CORE) [116]. 

5.2 Evaluation Criteria 

SCADA-specific IDSs differ in their design (i.e., auditing sources and monitoring attacks) and tar- 

geted application (i.e., topology and components); therefore, we cannot solely justify the compati- 

bility of IDSs based on the statistical metrics (i.e., accuracy, specificity, sensitivity). For this reason, 

we have used a qualitative comparison instead. 

In order to understand the challenges of SCADA-based IDS with supervised learning techniques, 

we propose some evaluation criteria to measure the effectiveness and efficiency of the proposed 

algorithms with respect to the requirements of SCADA-based IDSs discussed in Section 2.4. Table 1 

summarizes the key criterion of each measure and the reason behind its selection. 



 

 

 

5.3 Categories of SCADA-Based IDS Systems 

Rule-Based Method. As shown in Table 2, the rule-based technique is one of the most common 

technique among all categories from the selected set of publications in this survey. With respect to 

the detection approach (see Table 2 column Approach), more than half of the proposed solutions in 

the literature use signature-based approach. In most cases, experts are required to establish a set 

of detection rules, especially, to learn about the known normal/abnormal states associated with 

SCADA-specific hardware, e.g., IED [95, 130], Generic Object Oriented Substation Events (GOOSE), 

Sampled Measured Value (SMV) protocols [132], and behavior of automated process [37]. 

In general, the predefined rules are functions of normal states rather than fixed constants. Take 

the research in [95] as an example, they define misuse detection rules using multiple alert func- 

tions, namely correlation between switching devices, alarms from relay protection function, time- 

related constraints of critical control commands, and payload length detector. We observed fewer 

papers in this group (e.g., Rough Sets Classification [56] and RIPPER [91] techniques) that used au- 

tomated rules set discovery technique compared to the signature-based approach. Apart from that, 

special “honey” tokens can also be applied to detect tampers with the communication traffic [17]. 

Since rule-based method is the easiest technique to understand and customize manually by a 

human, this technique is suitable for specific environments like building an automation control 

network (i.e., a fire alarm system) [91], SCADA RTUs [30], and micro-phasor measurement units 

(μPMUs) [56]. These systems require specialists or engineers to define associated rules that de- 

scribe normal states of the system; therefore, the rule-based technique is more efficient compared 

to techniques in the other categories. Additionally, the automated detection approaches can also 

be integrated into the rule-based solution to improve flexibility in detecting unknown malicious 

incidents. 

Ensemble Method. This technique also commonly appears in the literature as ensemble ap- 

proaches build the classification model by selecting the best result from multiple classifiers. Despite 

the complexity of this method, a number of works [23, 31, 39, 62, 63, 72, 94, 106] have successfully 

used it to obtain better detection rate accuracy. Apart from accuracy, the ensemble method also has 

the advantage of prediction models that are robust and resistant to a system failure from the 

malicious cyber event [15]. Also, the research [62] overcomes the insufficient training data issue 

by combining the result from OCSVM and the k-means clustering technique to increase the detec- 

tion speed and achieve real-time performance. In [94], the network telemetry (e.g., packet size and 

time of arrival) is used instead of the actual network data. Various telemetry features are taken into 

account. The boosting technique creates a strong classifier out of several weak ones. On the other 

hand, multi-class classifiers (e.g., HMM and SVM) favor big and small classes differently. Hence, 

the bagging method can be used to find the most effective classifier for the particular class, which 

is chosen to give a label to the detecting event [106]. 

Unary Classifier. In some cases [32, 71, 83, 123], unary classifiers, such as the OCSVM, have 

outperformed other classification methods in terms of accuracy. Unary classifiers work well when 

there is only one class of data available. Since there is a lack of datasets containing real SCADA at- 

tacks, the OCSVM classifier can be used to train only using the normal data [134]. Hence, OCSVM 

is more popular than the original SVM, which requires both normal and abnormal training set [32]. 

However, a constraint of unary classifier is that the training dataset must not contain attack in- 

stances. It is possible in a real-life scenario that, there could be some 0-day attacks that remain 

undetected [97]. 

Probabilistic Method. Probabilistic classifiers are useful to provide an estimate a probability dis- 

tribution over a set of classes, rather than a single class that the observation should belong to. 



 

 

 

Table 2. Comparison of Methods for SCADA-Based IDS Groups by Classification Techniques 
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 Zhou C. et al. [138] HMM 
 Hosic J. et al. [51] Genetic Programming 
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HMM is the most popular option in this group. Although HMM is computationally efficient and 

flexible to retrain the model when the updated data is available, it cannot capture higher order 

correlation of the data. This is because of a strict states dependency assumption of HMM. For 

instance, the same sequence of features could indicate different states depending on different con- 

texts or intentions. This issue is known by researchers [88, 138, 141]. A technique like  N -gram  is 

used to preserve contextual meaning by grouping N sequence of observations together. Apart from 

that, multiple independent factors (e.g., Task and resource models, Control data flow models, and 

Critical state of critical processes) are correlated to increase prediction accuracy and decrease the 

false alerts. 

Other Methods. The remaining techniques proposed in the literature are across various cate- 

gories of algorithms, such as divide-and-conquer (i.e., [79], [90], and [101]) and boundary methods 

(e.g., SVM [75, 92, 93, 122] and Field Boundary [74]). However, lazy learning (i.e., [108] and [114]) 

and density-based (i.e., EM [135]) are occasionally used for supervised SCADA IDS. Some con- 

straints have been learned from applying these solutions. For example, the lazy learning method 

does not scale enough for the large network [108] and the density method still lacks accuracy to be 

used in the real field [135]. 

 
5.4 Approaches Used to Detect Anomalies 

Based on the approach column in Table 2, published works are categorized into three types: 

signature-based, anomaly-based and hybrid.A signature-based solution is specifically designed for 

a particular system or protocol, as discussed in Section 5.3. Due to the constraint of using the rules, 

only known attacks, such as MITM attack and ARP cache poisoning, are analyzed to evaluate the 

detection efficiency [131]. Even though these tasks require the knowledge in system protocols, 

operations, and specific characteristic of attacks, it usually offers a low false alarm rate compared 

to the machine learning solution, hence more practical for industry. Besides, the signature-based 

method requires a footprint of attacks to be updated regularly and cannot guarantee the new in- 

trusion threats such as zero-day exploits [73]. Therefore, we observed that most of the proposed 

works are anomaly-based detection. 

It is hard to keep the detection rules up-to-date as new vulnerability is emerging regularly. The 

anomaly-based approach focuses on building a model of normal/abnormal behaviors instead of 

defining rules. In constructing the model, various machine learning algorithms were used (see 

column Algorithms in Table 2). However, the decision of what algorithm should be used not only 

depends on characteristic of auditing sources (e.g., network traffic, application usage behavior, or 

physical state of the actuator; see column Auditing) but also vary by the character of data and con- 

straints of applications. With network traffic dataset from DARPA [134], different algorithms are 

applied. For instance, Onoda [88] used the HMM algorithm to focus on characteristic of sequential 

behaviors, whereas SVM is used in [75] and [92] with selected features of network communica- 

tion data (considered as a data-point) to build the optimal separation plane between the center     of 

two classes, which is used to distinguish between benign and anomaly incidents. Meanwhile, 

Sadhasivan and Balasubramaninan [63] aim to develop an adaptive IDS, which can update the at- 

tack information over time. The proposed work fuses ADA (Anomaly Detection Agent) and RBA 

(Rule-Based Agent) to detect misuse from the network traffic data. Based on the same dataset, an 

ensemble technique is considered [39] to eliminate noises from the training or testing dataset. With 

more than one classifier, the boosting technique selects the best prediction results from classifiers, 

hence accuracy is improved. 

The hybrid method combines both the system-specific signature and the behavior-based detec- 

tion model, for example, a defense-in-depth strategy in [111]. The IDS system consists of “Header 



 

 

 

subsystem” and “Data subsystem”, where the signature of abnormal Modbus protocol header is 

defined in the first module and the HMM is used to detect (in depth) attacks from traffic data in the 

second module. Combination of the signature and behaviors models helps to speed up the detection 

and highlight the specific type of attacks. Similarly, Distributed Intrusion Detection Sys- tem 

(DIDS) system in [31] handles known exploitations with signature definition while using the 

anomaly-based approach to prevent the emerging threats. Despite tight coupling to the system  and 

the complexity of combining two detection systems, the number of hybrid-methods is quite small 

compared to other approaches. 

5.5 Architectural Design Properties 

The decision between centralized and decentralized architecture is always controversial. On the one 

hand, the centralized IDS is easy to monitor and make a decision from the central location without 

limitations of resources; hence, the more complicated detection/classification tasks can  be done. 

On the other hand, the decentralized or distributed IDS architecture is more scalable    and resilient 

compared to the centralized scheme [38]. According to the requirement of SCADA- IDS in Section 

2.4, here, the architectural perspective is discussed based on four (4) key aspects: 

(1) scalability of the algorithm, (2) real-time performance, (3) decentralization, and (4) resilience, 

as follows: 

Scalability of Algorithm. We have not observed many papers that explicitly state scalability prop- 

erty of their work. For instance, the work in [32] proposes the OCSVM-based algorithm, where the 

sub-model learns heterogeneous normal training sets to detect outliers of the large and diverse 

system. Apart from that, the cost of maintenance is important for scalability design. Pan et al. [90] 

developed a scalable stateful IDS to prevent temporal attacks. Besides, enlarging the existing com- 

plex system is a costly and difficult task. The scalable system helps to save lots of money and time 

for maintenance tasks. Hence, the hybrid approach was used. First, the signature is used to reduce 

irrelevant events. Second, the anomaly detection model examines the suspect events more closely. 

The proposed common path mining algorithm mines data from both the physical (synchrophasor) 

and the logical (system logs) algorithms to formulate signatures of attacks (common paths). This 

fusion technique identifies attacks from abnormal states which shared in the common paths. 

Real-time performance: this is a crucial property. Based on Table 2: column Architecture, it is 

clear that most of the literature focuses on real-time detection characteristics to avoid reduction   of 

a system’s availability. For instance, the critical infrastructure like railway traffic control. This 

system needs to be monitored at real-time. In [9], the traffic control data gathered from WSN 

(Wireless Sensor Network) is modeled using ARFIMA (Autoregressive Fractional Integrated Mov- 

ing Average) technique, which analyzes the deviation between parameters of the network traffic 

and creates a statistical model for the system. The MLE (Maximum Likelihood Estimation) algo- 

rithm is used to detect the anomaly in this control system. 

Parallel processing is needed to archive real-time performance. NIDS (Network Intrusion Detec- 

tion System) in [123] has been tested on the simulated Modbus/TCP system. Two OCSVM-based 

algorithms were proposed to analyze both control and process data simultaneously. The detection 

process consumed less than 27 seconds to detect attacks with a small, medium, and large num-  ber 

of abnormal function control behavior. On the other hand, as parts of the CockpitCI project, the 

Domain-specific IDS for SCADA ICS (Industrial Control System) [31] focuses on decreasing the 

false positives of OCSVM by proposing IT-OCSVM algorithm. By running several OCSVMs in 

parallel, the final outcome is chosen using the mean value method and SNA (Social Network Anal- 

ysis). They monitored three layers (data-link, network and transport protocols) to detect attacks, 

e.g., MITM and DoS (Denial of Service). 



 

 

 

Decentralization. The design of distributed IDS is arbitrary and specialized for a particular sys- 

tem. For instance, the IDS for AMI (Advanced Metering Infrastructure) in [39] distributes IDS mod- 

ules into three components: Meter-IDS, Data Concentrator-IDS, and Headend-IDS, from a small to 

a large stream of information, respectively. The IDS filters attacks from the smallest unit (Meter- 

IDS) to the largest (Headend-IDS) serially. However, the proposed system requires the whole net- 

work to be isolated and free from noise (i.e., communication between other devices in the network) 

to achieve the best detection accuracy; hence, it is suitable for Software Defined Network (SDN) 

SCADA. On the other hand, the Distributed IDS has been used in [31]. With several IDS distributed 

through the wide network, they are not only able to identify attacks from different parts of the 

system but also increase system robustness in case of failure that causes sub-networks to discon- 

nected from the central server. The DIDS breaks the whole network traffic data down to subsets  of 

the disjoint dataset. By using the IT-OCSVM technique and weighting technique (i.e., voting 

between results from the classifiers to get the best prediction outcome), the proposed DIDS is able 

to increase detection accuracy while minimizing the rate of false alarms. 
From a different angle, da Silva et al. [32] points out that the distributed NIDS processes the 

detection in parallel and is suitable for a large-scale SDN SCADA. The proposed NIDS consists of 

five (5) components SDN controller, historian server, feature selector, one-class classifier, and 

NIDS management interface. Each component is responsible for different tasks. For example, the 

SDN controller monitors anomalous flows in network switches, while the historian server stores 

snapshots of networks to be able to apply the parallel MapReduce operation. The proposed One- 

Class Classifier (OCC) works well with a large dataset, it uses only one set of normal network data 

to detect the DoS attack on Modbus protocol. 

Resilience. A formal definition of resilience is the ability of a system to recover from faults and 

return to its original state or other working states. Interestingly enough, only a limited number of 

works discussed resiliency of IDS systems. In [93], the time-out has been used to discard unrespon- 

sive classifier workers. The proposed work integrates game theory and data streaming classifiers 

(which work in parallel) to heuristically detect various type of attacks. The IDS feeds abnormal 

events into the game model to determine win conditions between attacker and defender; hence,  the 

IDS can detect the unknown threats by learning for the existing data. The result shows detec- tion 

accuracy is better than using KNN and decision trees techniques. Another example has not explicitly 

specified the resilient characteristic in this article. We assume that the distributed IDS with parallel 

detection components like [39] resists failures. Since a number of IDS components are duplicated 

and work independently, some faulty nodes would not affect the whole system. 

 
5.6 Data Sources Used for Anomaly Detection 

Several sources of information can be inspected to identify misuse or abnormal events in a SCADA 

system. Literature in this review is categorized into four (4) groups for auditing data: (1) Network 

traffic, (2) Physical state, (3) Application usage behavior, and (4) Unification of cyber-physical state. 

Since most works chose to monitor network traffic, we separate out SCADA specific protocol to 

check if the IDS uses generic communication features or SCADA specific protocols’ features. This 

is shown in column Auditing in Table 2. 

Most network-based IDS solutions were tested with SCADA-specific datasets or a combination 
of generic and SCADA-specific datasets. In [63], both types of communication data are used to 

train various functionalities detection agents (namely Sniffer Agent, Filter Agent, Rule Mining 

Agent, Anomaly Detection Agent, and Rule-Based Agent). The proposed multiagents IDS shows a 

better detection performance on the SCADA-specific dataset [80] compared to the generic KDD 

CUP 99 dataset [15]. Meanwhile, instead of extracting features from contents of packets (e.g., 



 

 

 

TCP/IP or Modbus), the researchers [94] make use of telemetry characteristic. By capturing flows 

of the transmitting packets between clients and servers, they are able to differentiate between 

PLC machine of attacker and engineer. This approach makes senses when considering contexts 

of ICS network since nodes are resource-constrained and connected wirelessly. They claimed 

the accuracy of telemetry technique is closed to other IDS approach yet harder to evade using 

encryption techniques [94]. 

On the other hand, since the SCADA protocol is based on existing Internet standards, some 

approaches (e.g., [75], [88], and [93]) used generic traffic data to evaluate the proposed IDS so- 

lutions. In [93], the pre-recorded pcap dataset, which contains various network attacks, has been 

used to verify the game-based multi-agents IDS solution. This dataset has also been used in the 

Capture The Flag contest at DEFCON event. Masduki et al. [75] focuses on the particular Remote 

to Local (R2L) attack. The generic KDD 99 Dataset [15] has been used to evaluate the detection 

accuracy. The probabilistic-based IDS in [88] randomly chose 10,000 normal packets from DARPA 

dataset [134] to train the proposed model, and they selected another 10,000 random normal and 

unauthorized connection data for testing. 

Physical control states data can be complicated to model and to detect misuse incidents. Some 

researchers [81] gathered datasets from a Gas Pipeline testbed [80] to develop and test their solu- 

tion. Various fault injection exploits on the control/sensing signals (e.g., negative pressure value 

injection, fast change response injection, bust response injection, wave pressure injection, and sin- 

gle packet injection) have been studied. The proposed model was trained by using normal control 

states, and by properly tuned free parameters for the kernel function (bandwidth of the kernel 

and the number of eigenvectors), they were able to detect both slow and burst response injection 

attacks. The IDS solution for water treatment system [57] was evaluated by injecting ten (10) types 

of attack into their proposed SWaT testbed. The attack disturbed PLC with fault sensor and ac- 

tuator signals (e.g., data of inflow/outflow rate or level of water in tanks). In their work, various 

classic classifiers have been compared in detecting the false signals (e.g., SVM, RF, NB, BRTree, 

BayesNet, and IBK). 

Software-behavior-based IDSs have a less significant number of published works compared     to 

the network-based approach. Moon et al. [79] monitors both software- and network-based behavior. 

They defined software behavior using sets of API calls. For instance, file copying action is described 

using API CopyFile, CopyFileA, and MoveFileA, whereas file deletion is defined by calling 

DeleteFileA and RemoveDirectoryA functions. On the other hand, network behaviors (e.g., 

excessive network access, changes of packet delivery on ARP/MAC/IP protocols) also been fused 

with software activities to formulate decision tree for normal and malicious behaviors.       In [123], 

the behavior of control functions has been model to detect misuse incident. Although the researcher 

extracted control commands from SCADA control packets, the detection model only focuses on 

behavior of software usage (commands issued) instead of network protocol properties. In this case, 

the models of normal behavior are learned by using numbers of commands issued  per minute. In 

the experiment, they injected 280 malicious and 720 normal commands to the simulated 

Modbus/TCP system. The OCSVM and RE-KPCA (Reconstruction Error based on Kernel Principal 

Component Analysis) classifiers are trained and used to classify anomaly in a series of control 

commands. 

The cyber-physical IDS [61] correlates digital data and physical signal to disclose anomaly. Take 

Distributed Energy Resources (DER) IDS as an example, the proposed IDS detects anomaly based 

on context. Variables from photovoltaic (PV) and meteorological data (e.g., solar, wind   and 

temperature properties) are aggregated with contextual variable (i.e., timestamp of each 

measurement).  The  ANN  classifier  is  used  to  detect  cyber  or  physical  attacks.  The research 

[61] is extended by incorporating with variables of distance between adjacent nodes in [62]. 



 

 

 

Table 3. Description of Dataset 
 

Dataset Data Type Description Reference 

DARPA Raw TCP/IP dump 

files 

The dataset published by Defense Advanced 

Research Projects Agency (DARPA) initiative for 

evaluation of network-based intrusion detection 

system. 

[134] 

KDDCup99 The feature 

extracted from 

DARPA raw 

network data 

dump. 

The dataset based on network communication 

data has been widely used to test the network 

intrusion detection system. It originally used for 

the Data Mining Tools competition. 

[15] 

NSL-KDD The improve 

version of 

KDDCup99 

The improved version of KDDCup99 which 

removes a number of duplicated records. 

[16] 

A control system 

testbed to validate 

critical infrastructure 

protection concepts 

TCP/IP data 

communication in 

various control 

system 

Data is measured from a laboratory-scale gas 

pipeline, a laboratory-scale water tower, and a 

laboratory-scale electric transmission system. It 

is a pre-processed network transaction from 

100,000 to 5,000,000 records. 

[80] 

AIS dataset Marine vessel 

movement 

characteristics 

The kinematic and non-kinematic vessel 

characteristics dataset is a location-based marine 

movements information collected by U.S. Coast 

Guard Services. The example of features is 

latitude, longitude, ground speed, course over 

ground, rate of turn, and vessel type. 

[118] 

Behavior-Based Attack 

Detection and 

Classification in Cyber 

Physical Systems Using 

Machine Learning 

Physical state of 

sensors and 

actuators. 

The states are collected from the physical state of 

sensors and actuators every second for 28,800 

records in total. The state can be used to analyze 

the effects of cyber-attacks on the physical states. 

[57] 

Water supply system 

dataset 

Water supply 

control system 

status 

It contains log files of multiple features such as 

inflow, outflow, water level, temperature, and 

running status of water stations. The data was 

collected from 2011 to 2014 at city of Surrey in 

BC, Canada. 

[141] 

BOCISS dataset Physical state of 

control system 

Physical state of critical control system is 

simulated from the Siemens Tecnomatix Plant 

Simulator. 

[52] 

 
Furthermore, the holistically monitoring solution in [132] combined knowledge from three 

(3) sources: (1) physical states, e,g., critical switching signal correlation and key analog signal 

comparison, (2) protocol specifications, e.g., parameters from Generic Object Oriented Substation 

(GOOSE) and Simple Measure value (SMV) protocols, and (3) behaviors, such as, Substation 

Configuration Description (SCD) files and IEC 61850 packet contents. The research [132] aims to 

detect exploits from malware, namely Havex and Stuxnet. 

Table 3 summarizes available datasets referred to by literature in this survey. Various data types 

are included, namely network traffic, location, physical states, sensors/actuator logs, and states of 

control devices. 

5.7 The Feasibility of the Proposed Work 

Table 2 column Application compares coverage of IDS design from perspective of security suited, 

i.e., Security Information and Event Management (SIEM) tools [2, 103]. Despite system’s avail- 



 

 

 

ability being crucial, only a few researchers included information about their decision support 

strategies to help system administrator preventing the system from being attacked [96]. Most of 

the work offers only feature detection in their design. 

On the other hand, from aspect of practicality, researchers used various techniques to verify 

feasibility to deploy the system in the reality range from simulation to physical testbed. Indeed, the 

simulated software could lack fidelity, especially the physical signal, which is hard to simulate the 

actual signal from different hardware devices [50]. However, the physical testbed does not scale 

enough to verify the system, as the physical testbed scale down the real control system. According 

to Table 2 column feasibility, only four (4) out of fifty (50) approaches have deployed in the field 

[9, 74, 106, 133]. Twelve (12) papers are tested on SCADA-specific testbed or implemented as a 

testing prototype, whereas the rest are evaluated using various machine learning framework (e.g., 

MATLAB [100], WEKA [101], ACCORD [111]) or a generic network simulator (e.g., hardware in 

the loop testbed [90]). 

Table 4 lists available testbeds that were used by the literature surveyed in this review including 

both physical and simulated testbed. As referred to by the papers in this survey, the  evaluation 

testbed includes both SCADA-specific and general-purpose systems. 

6 KEY OPEN PROBLEMS 

This section presents key research gaps and future research directions of SCADA-based IDSs that 

use supervised machine learning approaches. 

Testbeds and test datasets need further research and development: since it is not practical to 

train and evaluate a supervised IDS system on a real SCADA system, testbeds and test datasets are 

crucial for developing a security solution. However, SCADA is widely applied on various control 

systems, and each of them has the different constraints (e.g., power/water/gas distribution system, 

manufacturing processes, or railway control system). This makes the construction of high fidelity 

testbeds costly. Furthermore, some of them are unable to reuse in different contexts of applications. 

We found that some testbed solutions/datasets in Tables 3 and 4 are either for the general IT system 

(e.g., [15], [16], [110], and [134]) or are too specific (such as [57] and [118]). Thus, the fidelity can 

be low compared to the real-world system or not reliable to be used with different settings and 

scale. With respect to the development cost, the direction of research should focus on developing 

a high-fidelity simulation testbed and not the more expensive hardware-based solution. 

Resilience and Validation of the Security Design Have not Yet Been Sufficiently Explored. Since 

SCADA is designed for critical control systems, system availability is crucial. Although several ar- 

ticles focused on real-time performance in detecting threats and scalability of the system, resilience 
—which allows the recovery of the security system after the faults (e.g., attacks or natural disaster) 

to its original or useful state—is often ignored. Besides, most of the research detects anomalies 

solely based on network traffic from a single source only. Thus, a single point of failure could eas- 

ily stop the whole security system. For distributed solutions—SCADA DIDS, e.g., [9], [31], [32], 

[39], [62], [63], [72], [93], [113], [131], and [141], the validation of security and system resilience 

is a complex task. The formal method, which is used to design the critical system, could also be 

used to verify the security system (e.g., using the recovery model [18]) and further develop an 

optimization solution from security and resilience perspectives. 

Prevention and Investigation Are not Yet Well Studied. Although the proposed IDS solutions serve 

as parts of an overall security system, an active SCADA system should rely on a more holistic 

solution. Some of the research work [56, 63, 69, 91–93, 95, 132, 133, 135, 138, 141] covers both 

detection and prevention by including automatic critical incident response. However, there is only 

one work [92] that includes forensic solution in the selected literature, which helps to record and 



 

 

 

Table 4. Description of Testbed 
 

Name SCADA-Speciftc? Approach Description Reference 

Fire Alarm 
System testbed 

Y Physical Building Automation and Control (BAC) 
networks or BACnet testbed simulate the 
operation of fire alarm system using BACnet 
protocol monitoring module 

[91] 

SCADA testbed Y Physical It simulates a small SCADA system which 
composed of Human-Machine Interface (HMI) 
Station, managed switch and two PLCs. This can 
be used to simulate the network attack such as 
TCP port scanning, ARP cache spoofing and 
denial of service attack. 

[72] 

CSIT SCADA 
IDS 

Y Simulated The testbed consists of SCADA nodes (e.g., HMI, 
historian, IED), protocols (i.e., IEC 60870-5-103) 
and malicious host to simulate attacks incident, 
such as MITM attacks. However, details of the 
software used in the simulate is undisclosed for 
security purposes. 

[131] 

Gas pipeline 
testbed 

Y Physical This testbed simulates typical SCADA control 
units, namely Master Terminal Unit (MTU), 
Remote Terminal Units (RTU) and Human 
Machine Interface (HMI). 

[81] 

Secure Water 
Treatment 
(SWaT) 

Y Simulated This testbed scales down water treatment system. 
It is designed to develop a security solution for 
Cyber Physical System (CPS), such as water 
treatment, electric power generation and 
distribution. It is composed of networking layers, 
PLCs, HMIs, SCADA workstation and Historian 
unit. 

[57] 

SCADAsim Y Simulated Based on OMNET++, it emulates the network 
communication of simulated and real devices to 
analyze the impact of attacks on the devices on 
SCADA network. 

[97] 

Cyber-physical 
test-bed 

Y Simulated This is based on Cyber-physical build for IEC 
61850 based smart substations. The testbed 
consists of six (6) layers from simulation to 
substation layer. It supports a number of 
network-based attacks, such as malformed packet, 
MITM, address resolution protocol (ARP) 
spoofing. 

[129] 

Accord 
Framework 

N Simulated Accord provides a well-tested and documented 
library for constructing various types of 
algorithms 

[110] 

CONPOT 
ICS/SCADA 
Honeypot 

Y Simulated It can be used to simulate the network of 
programmable logic controllers (PLC) units to 
analyze network telemetry of honeypots and the 
packages generated by intruders. 

[98] 

 

reconstruct the attack event to identify system vulnerability. It is still an open question, how to 

incorporate these three areas of security measures to deliver the resilience and robustness to the 

SCADA system. 

Distributed IDS Collaboration for the SCADA System Is Still in an Early Age of Development. The 

DIDS collaborates multiple IDSs to enable scalability to the large network as well as mitigating 

with the massive parallel attacks. The research [25, 42] shows that aggregation and correlation 



 

 

 

between various data sources have potential to detect distributions of malware or exploit. However, 

the more challenging problem of collaborative IDS is how can the distributed network of IDSs share 

their knowledge and efficiently improve the detection efficiency. The result from the new research 

[127] illustrates a potential of improving DIDS efficiency by introducing a distributed learning 

model. That is, multiple learners (or IDSs) share information about malicious events to improve 

their own detection models. However, this is still in an early stage of the work of the distributed 

learners and needs further study. 

 
7 CONCLUSIONS 

This survey article looked at emerging research into the application of supervised-learning-based 

approaches to implementing SCADA-based IDS systems. We have reviewed the development of 

such systems from research and industry perspectives and provided a comprehensive study of 

supervised-learning approaches for SCADA-based IDS systems using specific criteria and prop- 

erties. We have discussed additional issues and challenges for SCADA-based IDS systems using 

supervised-learning techniques and illustrated the trends to develop such systems. 

To identify the future directions in developing new algorithms and to guide the selection of algo- 

rithms for SCADA-based IDS systems, we propose a categorizing framework to classify a number 

of supervised-learning algorithms. This framework is designed from a theoretical viewpoint both to 

evaluate IDSs of SCADA systems on supervised learning as well to theoretically analyze the most 

representative supervised machine learning algorithm for SCADA-based IDS systems. Thus, even 

future SCADA-based IDS systems could be incorporated into the framework according to the 

proposed criteria and properties. In future work, we will focus on the unsupervised learning 

algorithms and feature selection for SCADA-based IDS systems. 
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