
HAL Id: hal-02875528
https://laas.hal.science/hal-02875528

Submitted on 19 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Floating-Point Implementation of the Probit
Function on FPGAs

Mioara Joldes, Bogdan Pasca

To cite this version:
Mioara Joldes, Bogdan Pasca. Efficient Floating-Point Implementation of the Probit Function on
FPGAs. 31st IEEE International Conference on Application-specific Systems, Architectures and Pro-
cessors, ASAP 2020, Jul 2020, Manchester, United Kingdom. �10.1109/ASAP49362.2020.00036�. �hal-
02875528�

https://laas.hal.science/hal-02875528
https://hal.archives-ouvertes.fr

Efficient Floating-Point Implementation of
the Probit Function on FPGAs

Mioara Joldes1 and Bogdan Pasca2

1LAAS-CNRS, Toulouse, France, joldes@laas.fr
2Intel Corporation, France, bogdan.pasca@intel.com

Abstract

Non-uniform random number generators are key components in
Monte Carlo simulations. The inverse cumulative distribution func-
tion (ICDF) technique provides a viable solution for generating ran-
dom variables from various distributions. Thus, the ICDF of the stan-
dard normal distribution, or probit function for short, is of particular
interest. The goal of this article is to revisit and improve a floating-
point (FP) implementation of probit, from the perspective of mod-
ern hardware resources available on FPGAs. Beside reexamining the
classical Wichura’s algorithm, we propose: (1) a single-precision im-
plementation using the embedded FP DSP Blocks available in recent
FPGA families; (2) generic custom-precision architectures that scale
up to double-precision. These present a user-selectable trade-off be-
tween tail accuracy and resource utilization. Our proposed cores out-
perform existing single-precision FPGA implementations in area, la-
tency and accuracy, and also set benchmarks for new custom and
double-precision FP implementations.

Keywords. Floating-point arithmetic, minimax approximation, FPGA,
quantile, inverse error function.

1 Introduction

The hardware-based evaluation of elementary and special functions has
recently received a lot of interest [14, Chap. 8], [16]. In this article we focus

1

on the hardware floating-point (FP) implementation of the probit func-
tion, which is the inverse cumulative distribution function for the stan-
dard Gaussian distribution, also called normal quantile. Specifically, let
the standard normal cumulative distribution function be Φ : R→ [0, 1],

Φ(z) =
1√
2π

z∫
−∞

e−
α2

2 dα. (1)

The probit function f is defined as the inverse of Φ, with f : [0, 1] → R̄,
f(x) = Φ−1(x), for 0 < x < 1 and respectively f(0) = −∞, f(1) = +∞.
Neither Φ, nor f have a closed-form in terms of elementary functions and
usually they are expressed in terms of special functions, like the so-called
error function erf, or its complementary erfc. For instance, one has:

f(x) =
√

2 erf−1(2x− 1), (2)

where

erf(x) =
2√
π

x∫
0

e−α
2

dα. (3)

Similarly to erf, erfc and their inverses, the probit function is more complex
to implement than usual elementary functions, since range reduction tech-
niques are not available and its asymptotic behavior (near 0 and respec-
tively 1, see Fig. 1) makes it more difficult to approximate by polynomials
or rational fractions. Thus, the quality of implementation of probit is often
assessed in terms of the maximum attainable standard deviation, which
occurs at the smallest non-zero value in the input range: maxσ = |f(xmin)|.

−3

−2

−1

0

1

3

2

f(x)

x

(L)

(H)

(H)

0.5 10

Figure 1: Probit Function

The main practical usage of the probit function lies in the Gaussian
random number generation (GRNG). The so-called inversion method for

2

generating non-uniform random numbers is based on the fact that a quan-
tile function monotonically maps uniform variates to variates of its cor-
responding distribution. The inversion method is thus considered as one
of the best choices for random number generation. For the normal distri-
bution, the lack of an analytical expression for the corresponding quan-
tile function means that other methods may be preferred computationally.
Several comprehensive studies already analyzed these choices and we re-
fer the reader to [17, 13] and references therein.

While probit remains a viable alternative for GRNG (for instance it is
currently the default method for sampling from a normal distribution in
the statistical package R1), an efficient and accurate floating-point hard-
ware implementation of this function is interesting in itself. The goal of
this article is to revisit and improve such an implementation from the per-
spective of modern hardware resources available on FPGAs.

1.1 Related works

Among the software-based solutions, Wichura [18] proposed a three-sub-
domain rational approximation which suits single or double-precision com-
putations and is implemented in statistics packages like R. Variations of
this approach (see for instance [12] for a survey) are implemented in most
numerical libraries, including Intel’s Math Kernel Library (MKL), Boost’s
C++ Math Toolkit, and Nvidia’s CUDA Math Library. Since modern FP-
GAs include Hardware-FP (HFP) DSP Blocks (which support single-pre-
cision multiply-add), it now makes sense to synthesize such a software-
based algorithm to hardware.

Among hardware-based solutions, several works focus on fixed-point
implementations. The thorough work of Lee et al. [3] proposes an archi-
tecture generation framework that can target arbitrary distributions. An
accuracy-driven non-uniform segmentation scheme is used for splitting
the input, and degree-2 polynomials (evaluated in fixed-point) approxi-
mate the function. For a 52-bit input, the output is on 16 bits, with last-
bit-accuracy in terms of absolute error and maxσ = 8.2. A fixed-point
implementation differs from an FP one in the sense that both the inputs
and outputs close to 0 hold very few bits of information. Since the approx-
imation accuracy goal is different between fixed and FP implementation:
absolute vs relative, the segmentation strategy also leads to different solu-
tions.

1stat.ethz.ch/R-manual/R-devel/library/base/html/Random.html

3

To overcome these relative-accuracy shortcomings of fixed-point im-
plementations, Echeverria and Lopez-Vallejo [8] adapt to hardware the
software-based FP implementation from [10]. They use a more hardware-
friendly segment-finding circuitry, to generate 256-subintervals and corre-
sponding quintic FP coefficients Hermite polynomials. The claimed rela-
tive accuracy is ≈ 2−20 for a tail accuracy of maxσ = 6.23.

Another FP implementation is presented by Schryver et al. [7]. It uses
a hierarchical segmentation from [3] adapted to the FP format. Unlike
[8], the inputs to the function are FP values in the interval (0, 0.5) with an
extra bit accounting for the symmetry. A degree 1 fixed-point piecewise-
polynomial evaluator is used, but it remains unclear whether the output
is in fixed or floating-point, since no normalization or exponent handling
is presented or discussed.

1.2 Contributions and outline

With respect to previous works, this article presents:
– a family of single-precision (SP) architectures targeting modern HFP-

based FPGAs. Generation-time architectural parameters are used for tra-
ding-off input range (affecting maxσ) and resource utilization.

– concerning higher precision formats, a generic implementation strat-
egy based on fused fixed-point piecewise polynomial approximation is
proposed. It is applied for generating efficient architectures for three float-
ing-point formats, including double precision.

To this end, after recalling some basic notions in Sec. 2, we detail sev-
eral approximation strategies for the probit function in Sec. 3: an analysis
of Wichura’s change of variable provides a more efficient segmentation
method, which is then jointly used with coefficient-constrained minimax
polynomial approximations. These are generated employing a high preci-
sion reliable golden reference implementation based on interval Newton’s
method. Piecewise polynomials, together with a generic fused polynomial
evaluator, provide hardware implementations accurate to 3 ulps. The fea-
tures of these cores are detailed in Section 4. Finally, the synthesis results
are discussed and compared in Section 5.

2 Background

Let x = (−1)s2eM be the FP input, with sign s, exponent e and mantissa
M . In this work we only focus on the regular range of the IEEE-754 [2]

4

format, where the mantissa is normalized M ∈ [1, 2). The corresponding
IEEE-754 standard binary encoding for x is:

...

exponent fractionsign

wE wF

From left to right: the sign is encoded on 1 bit {0← positive, 1← negative};
the exponent holds on wE bits, and is stored as e + bias, with bias =
2wE−1 − 1; the fraction F = M − 1 is stored on the next wF bits. The
IEEE-754 standard defines two compute-oriented formats: binary32 (sin-
gle) having wE = 8, wF = 23 and binary64 (double) having wE = 11,
wF = 52. Two other intermediary formats used by our architectures are
wE = 11, wF = 26 and respectively wE = 11, wF = 35.

It is common to express the rounding errors of "nearly atomic" func-
tions (arithmetic operations, elementary functions, etc.) in terms of ulp.
For the purpose of this article, ulp(y) is defined as the distance between
the closest two FP numbers straddling y [14, Def. 2.4]. In round to nearest,
the error is 0.5 ulp. For this probit function implementation, we target an
error budget of few ulp (say, 2 to 4, depending on the specifications).

The targeted hardware includes all Intel FPGA devices starting with the
Arria 10/ Stratix 10 FPGA[1] onward, which have the following features
relevant for this work. Firstly, their DSP Blocks that can be configured
either in fixed or FP mode, to execute: (1) in fixed-point, one 27x27-bit
multiplication, 2 independent 18x19 multiplications or one sum-of-two
18x19-bit multiplications; (2) in FP mode: one binary32 addition, multi-
plication, accumulation, or multiply-add. Furthermore, their basic logic-
element is the ALM (Adaptive Logic Module). Finally, available M20K
memory blocks can be configured either in 512 × 40-bits or 1024 × 20-bits
modes.

3 Approximations to probit function

For special functions (like erf, erfc, probit), where ad-hoc argument reduc-
tion techniques are not available and non-linear asymptotic behavior is
present, a common FP implementation technique consists in dividing the
input domain into several subdomains:
– when the behavior of the function is "sufficiently nice" for conventional
polynomial or rational approximation to hold, that we denote by (L), see
also Fig. 1;

5

– "extremal subdomains", denoted by (H), where one has to cleverly use
the asymptotic behavior of the function, together with polynomial or ra-
tional approximation.

The symmetry of the probit function:

f(1− x) = −f(x), (4)

provides a first domain subdivision: one can then focus only on the inter-
val 0 < x 6 0.5 or 0.5 6 x < 1. From the FP perspective, the grid is finer on
the range 0 < x 6 0.5, and hence, the implementation more challenging
on this interval, on which we particularly focus in the sequel.

When subdivision is performed, the coefficients of all polynomials (ra-
tional fractions) are tabulated and the hardware cost (multipliers, adders)
amounts to the evaluation of the "worst-case" among the stored polyno-
mials. At the same time, higher order approximations allow for better
accuracy or for handling larger intervals. Therefore, a trade-off is to be
found between the number of subdomains, approximation degree, accu-
racy provided and hardware resources. We analyze in what follows two
types of approximations from this perspective.

3.1 Wichura’s subdivision and change of variable

Wichura [18] and related methods [12] use rational approximations on the
"sufficiently nice" (L) interval [0 + b, 0.5], where b > 0 is a tail breakpoint.
The other (H) values in (0, b), where the function is approaching the verti-
cal asymptote (see Fig. 1) are covered by at least one additional polynomial
or rational approximation, which are in terms of a computationally expen-
sive change of variable. This change of variable is related to the asymptotic
behavior and can be obtained as follows.

For z < 0, one has, Φ(z) 6 B(z), with B(z) := − e−
z2

2

z
√

2π
and, lim

z→−∞
B(z)
Φ(z)

=

1, which states that for sufficiently large |z|, for negative z, B(z) is a good
approximation for Φ(z). Hence, to solve Φ(z) = x, one can considerB(z) ≈
x, take the natural logarithm log and obtain by rewriting:√

z2 + 2 log(−
√

2πz) ≈
√
−2 log x. (5)

Thus, for z � 0,
z ≈ −

√
−2 log x. (6)

Eq. (6) provides a means for computing an approximation for f near its
asymptotics. As an example, Fig. 2 shows the linearization effect of such

6

-14

-12

-10

-8

-6

-4

-2

0

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2

y

f
p

Figure 2: Plot of f(x), on a "−
√
− log2(x)"-linear scale, for x ∈ [2−127, 2−3];

a linear approximation P with the Wichura’s variable change: P (y) :=

P
(
−
√
− log2(x)

)
.

a variable change: for x ∈ [2−127, 2−3], the values of f(x) are plotted on
a "−

√
− log2(x)"-linear scale, as well as a degree 1 polynomial P (y) :=

P
(
−
√
− log2(x)

)
, with P (y) = 0.8974609375 + 1.2421875y. The maxi-

mum absolute approximation error between P and f is less than 0.105 on
this range. To improve the approximation error, Wichura [18] considers a
higher order approximation R:

f(x) ≈ −R
(√
−2 log x

)
, (7)

for x sufficiently close to 0. From eq. (4), one has

f(x) = R
(√
−2 log(1− x)

)
, (8)

for x sufficiently close to 1. Wichura [18] tail breakpoint for performing the
change of variable is x < b = .075. After the variable change, Wichura [18]
uses two more higher order rational approximations, with a second break-
point for very small inputs

√
− log x < 5. The degree of these approxima-

tions is 3 (for both the numerator and the denominator) for single precision
and respectively 7 for double precision.

For a single-precision hardware implementation targeting HFP DSPs,
the change of variable together with a division (necessary for rational ap-
proximation) is very costly: it accounts for more than 50% of the logic
and DSP utilization. This can be seen in the first 4 rows of Table 4. For
double-precision (last 4 rows of Table 4), the relative cost decreases, but
still accounts for 35% of DSPs and latency.

Hence, our goal is to avoid the costly computation of the change of
variable like y =

√
− log2 x, as well as the division. For that, we con-

sider: in Section 3.3 a non-uniform segmentation of the input range of

7

x, which would roughly translate to uniform segmentation for the range
of y, on which piecewise polynomial approximations can be more eas-
ily performed (cf. Fig. 2); furthermore, we employ minimax constrained-
coefficients polynomial approximations, as detailed in what follows.

3.2 Polynomial Approximations

Previous approaches used either degree-2 Chebyshev approximations [11]
or quintic Hermite interpolations [8]. We consider the minimax constrained-
coefficients polynomial approximations provided by the Sollya software
tool [4]. This open-source tool is the state-of-the-art for obtaining machine-
tuned polynomial approximations and was already used in the implemen-
tation of other elementary and special functions [14, Chap. 10], [6, 16]. The
following features are used:

– The fpminimax command inputs a function f , an interval I , a de-
gree d and a list of constraints on the coefficients (e.g.constraints on FP
formats, bitwidths). It returns the coefficients of a polynomial p of degree
d, which minimizes the maximum of the (relative) approximation error
εapprox := |f − p|/|f | on the given interval I , while satisfying the coeffi-
cients constraints.

– A certified upper-bound for the approximation error εapprox can be
also obtained with Sollya; an upper bound for the floating-point or fixed-
point evaluation error εeval of the Horner scheme of p, can be obtained in a
second step with the Gappa software [5].

Unfortunately, the probit function was not implemented in Sollya. How-
ever, Sollya provides arbitrary precision, as well as certified computa-
tions (interval arithmetic) for erf (and erfc). Hence, we developed an arbi-
trary precision faithfully-rounded implementation2 for the probit in Sollya
based on inverting the erfc function, with interval Newton method [15], as
follows.

Our arbitrary precision implementation of the probit function in Sollya is
based on solving for z the equation Φ(z) − x = 0, which is equivalent to
T (x) = 0 where T and its derivative with respect to z are:

T (z) := erfc

(
z√
2

)
− 2 + 2x, (9)

T ′(z) = −
√

(2/π) exp
(
−z2/2

)
. (10)

2available at http://homepages.laas.fr/mmjoldes/probit

8

http://homepages.laas.fr/mmjoldes/probit

ALGORITHM 1: PROBITEVALNEWTON(x, I, ε).

1: T ← erfc
(

z√
2

)
− 2 + 2x

2: while intervalDiam(I)/2 6 ε do
3: z0 ← intervalMidpoint(I)
4: T ′ ← evaluate(T ′, I)
5: Z ← evaluate(z0 − T (z0)/T ′)
6: I ← intervalIntersect(Z, I)
7: end while
8: return intervalMidpoint(I)

These functions can be evaluated with arbitrary accuracy in Sollya and
their range on a given interval I can be tightly enclosed, using the com-
mand evaluate(T, I). This gives the interval Newton Algorithm 1, which
computes an evaluation of the probit function at x, with required accuracy
ε3, starting with an initial guess range I, s.t. f(x) ∈ I. The advantage
with respect to the classical Newton method is that the algorithm is guar-
anteed to always converge, even if the initial guess range is very wide, or
very small, provided arbitrary precision computations are available [15].
This algorithm was also easily coded in C based on the MPFR library [9]
and the monotonicity properties of erfc and its derivative. Hence, it pro-
vides a very flexible accuracy and open-source golden reference for the
probit function, allowing both for generating tuned polynomial approxi-
mations (with various coefficients constraints) based on fpminimax com-
mand and, for a posteriori rigorous testing and validation of the results.

The remaining question is how to select a suitable subdivision of the
input range, so as to balance the number of polynomials and their degree.
We consider an approach similar to hierarchical segmentation, which was
already used in [3, 7, 16] in both the fixed-point and floating-point setting.

3.3 Logarithmic subdivision

Let us focus first on the (H) part of the input interval, where the variable
change is to be avoided. The intuition is that the integer I = (−1)s(e + F)
aliased to a floating-point number x = (−1)s2eM (where F = M − 1),
is a scaled and shifted approximation of the logarithm. Hence, taking a
uniform segmentation on the aliased integer provides a non-uniform seg-
mentation of the range of x suitable for the change of variable y = log2 x.
Thus, a suitable segmentation scheme for probit can be composed by con-

3The absolute accuracy test in line 2 can be made relative by dividing with z0, pro-
vided that z0 6= 0

9

Table 1: Logarithmic segmentation scheme for single-precision and tar-
geted 2−23 relative approx error.

Exponent awF
[−3, . . . ,−26] 5
[−27, . . . ,−90] 4
[−91, . . . ,−126] 3

Exponent awF
[−3, . . . ,−34] 3
[−35, . . . ,−93] 2
[−94, . . . ,−126] 1

(a) Degree 2 (b) Degree 3

catenating the exponent e and a specific variable number of fractional bits
(depending on each binade), which are obtained function of the approxi-
mation constraints.
For a single precision target implementation Table 1 shows the minimum
required number of address fractional bits awF , depending on the expo-
nent range, when imposing degree-2 (and respectively degree 3) minimax
approximations and εapprox 6 2−23 for each corresponding polynomial. As
expected, one observes that awF decreases proportionally to

√
e, which is

in fact dictated by Wichura’s change of variable (6), and thus, this segmen-
tation roughly "simulates" it.

The remaining (L) range [0.25, 0.5) is handled in both cases by uniform
segmentation: 128 subintervals for degree-2 polynomials and 16 subinter-
vals for degree-3.
For a double-precision implementation we propose degree 8 minimax
polynomials as a good compromise: on the "nice" (L) input range x ∈
[2−2, 2−1) we proceed to a uniform subdivision as in the single precision
case, with 16 subintervals. Then, to fill in memory constraints up to 512
subintervals, we consider a budget of 496 subintervals for the (H) input
range x ∈ [2−64, 2−2). It is interesting to note the following subtle im-
provement obtained by performing a non-uniform mantissa subdivision
per binade, which is explained by an example.

Example of non-uniform mantissa subdivision. Consider 8 equally sized
subintervals of the mantissa in the binade x ∈ [2−3, 2−2). The best rela-
tive approximation error for a degree-8 polynomial approximation on the
range x ∈ [2−3, 2−3 · 1.125) is εapprox ' 2−50, which does not provide ulp
accuracy. However, by subdividing the range y = log2(x) ∈ [−3,−2), in
8 equally sized intervals and checking the resulting degree 8 approxima-
tion for x ∈ [2−3, 2−3+1/8) one obtains εapprox ' 2−54, which is ulp accurate.
Similar results are obtained for the other intervals. Thus, the more accu-
rate resulting segmentation bounds (uniform on the log2 range) are 21/8,
22/8, . . . , 27/8, 1. A simple addressing scheme is done by a lookup table,
which maps the first 6 fractional bits of each input x to one of the 8 cor-
responding non-uniform segment approximations, whose bounds corre-

10

Table 2: Logarithmic mantissa segmentation scheme: real bound vs. 6
fraction bits approximation, for double-precision.

Segment bound aF
21/8 000110
22/8 001100
23/8 010011
24/8 011011
25/8 100011
26/8 101100
27/8 110101

spond to aF from the nearest rounding of 2i/8 cf. Table 2.
This trick which again "simulates" the log2 change of variable, without

actually computing it, allows for keeping degree 8 polynomials over the
entire considered range x ∈ [2−64, 2−1) and avoid a roughly 10% overhead
by increasing the degree of the approximation to 9.

3.4 Efficient polynomial fixed-point and FP evaluations

When generating the polynomial approximations, several argument and
function scaling techniques are required for efficiency.
FP evaluation. It is preferred for SP, to take advantage of the HFP-DSP. On
the (L) domain, the reduced input argument z = 2|0.5 − x| ∈ [0, 0.5] is the
direct FP input to the polynomial evaluator q(z), which is generated with:

q(z)=fpminimax(f((1+z)/2), 2, [|24 ...|], I);

where I is obtained by uniform subdivision. For (H), which proceeds by
binade x ∈ [2e, 2e+1), potential overflow in the polynomial coefficients for
high magnitude e, is avoided by rescaling the polynomial input to z =
x/2e:

q(z)=fpminimax(f(2^(-e)*z), 2, [|24...|], I);

where I will be some subinterval of [1, 2). To obtain z, this simply trans-
lates to concatenating a new sign (0) and exponent value (0+bias) to Fx.
Fixed-point evaluation. The goal is to match the polynomial input and
output ranges for both (H) and (L) evaluation branches. The output range
is straightforwardly scaled to [0.5,2) by considering f/2max_exp, where the
maximum exponent (in absolute value) is obtained when evaluating f on
the two interval ends. For the input range, the same ideas as in the FP case
are employed, together with a further shifting and scaling. Specifically,
for (L), when z ∈ [l, r] ⊂ [0, 0.5), the evaluation is performed in zshift =
z − l, which translates for instance to 0 6 zshift < 2−5, when the input

11

Table
c2

Table
c1

Table
c0

Table
c2

Table
c1

Table
c0

OR

Enc

0 1

1

0 1 2 3 0 1 2 3 0 1 2 3

branch (H)

0.750.25

x<0.25 x>0.75

Branch
Selector

0

1exp

bias

1

frac

0

Branch (H)

Polynomial

Input

9

addr (L)

5 [22:18]3 [2:0]

8

bias−19

0 1

Address

Branch (L) Mx>>1

Branch (H)

Address

FP DSP MultAddFP DSP MultAdd

Branch (L)

Polynomial

Input

z

thwAddress
exp{−3:−18}
Branch (H)

ahfwehw

bias+eMin

eMin=−3
ehw=4
ahfw=4
twh=8

Parametric
Circuitry

Branch (H)

PCBH

eZ fZfZeZ

exp{−19:−30}

7
addr (H) {−19:−30}

[21:15] [22:16]

Reconstruction

Symmetry

R

Range Reduction

FP DSP Sub

1 00.50.5

0 1 320 1 32
2

0.5

Selector
Symmetry

x<0.5

X

PCBH−A

PCBH−B

{−31,−62/−94}

{−95,−126}

Figure 3: SP architecture of FP probit for HFP-enabled FPGAs.

is split in 16. A similar argument shift is performed for (H), which gives
for example, when 3 fraction bits are used for addressing: 0 6 zshift 6 2−3.
Then a further scaling down is employed to match 2−5. A final technicality
is that for the first interval in (L), z = 2|0.5 − x| is very close to zero, so to
account for efficient fixed-point evaluation, a final multiplication by z is
performed outside the fused polynomial evaluator.

4 Architecture

4.1 Single Precision - degree 2

A SP architecture targeting HFP DSP-Enabled FPGAs is presented in Fig. 3.
The implementation presents two distinct branches: (L) x ∈ [0.25, 0.75] and
(H) for the remaining range. The function is approximated by degree-2
piecewise polynomial approximations.

Branch (L) argument is reduced as presented in Sec. 3.4 (a). Then, a
total of 128 subintervals are used, with an approximation error less than 1
ulp. The subinterval selection can be done starting with z (floating-point)

12

x x x1 x x x x x

1 0 0 0

y

...x x x x

0 0 0000000 ...

... y yyy y y y y y y yaddress

0.25 6 x < 0.5

0.5

Figure 4: Fixed-point alignment for (L) branch address computation, when
x < 0.5. The operation is a 2 + wF -bit subtraction.

and then aligning it using a barrel-shifter. This costly operation is avoided
by addressing from x:

– for x ∈ [0.5, 0.75], the address line consists of the [21:15] bits from the
fraction of x.

– for x ∈ [0.25, 0.5), the address is obtained by selecting bits [22:16] of
the fixed-point difference 0.5 − x; the alignment of both terms is known,
as shown in Fig. 4.

Branch (H) handles inputs in the ranges (0, 0.25) and (0.75, 1). Values
corresponding to (0.75, 1) are obtained from the symmetry eq. (4). The
logarithmic segmentation (see Sec. 3.3) technique, with degree-2 polyno-
mials, requires a different number of subintervals, function of the corre-
sponding exponent as mentioned in Table 1. Based on this, the number
of exponents that can be handled is found by using the coefficient table
sweet-spot: 512 × 40-bit for the M20K blocks. Therefore, if we restrict the
total number of subintervals stored to be 512, we can store as many as
512/32=16 exponent values. This covers the range of exponents from -3 to
-18. Additionally, since the coefficient tables for branch (L) only use 128
out of the 512 address lines, an additional 12 exponents {−19, . . . ,−30}
can be handled by fully packing the branch (L) tables. The tail accuracy of
this architecture, denoted by (†) in Table 4 is maxσ = 6.

The handled exponent range can be further increased by adding auxil-
iary circuitry PCBH-A, which itself has two configurations, denoted by (‡)
and (‡‡) in Tab. 4, with tail accuracy of maxσ = 8.92 or maxσ = 11.11:

– PCBH-A1 = PCBH with eMin = −31, ehw = 5, ahfw = 4 handles
exponents from -31 to -62.

– PCBH-A2 = PCBH with eMin = −31, ehw = 6, ahfw = 4 handles
exponents from -31 to -94.

Specifically, the number of bits required to encode the exponent range
is denoted by ehw. For the range of exponents handled by PCBH-A1/2, a
total of 16 subintervals are required for meeting the approximation error
budget, hence the address is stored on 4 bits (ahfw = 4). Finally, the num-
ber of address bits is ahfw + ehw.

Circuitry PCBH-B can be used in conjunction with PCBH-A2 to increase

13

the range of handled exponents to the full range of the SP format, corre-
sponding to -126 (maxσ = 12.94, denoted by (�) in Tab. 4). The logic is
similar to that PCBH-A, with the difference that the number of subinter-
vals required for each exponent is reduced to 8, cf. Table 1, ahfw = 3 bits.

A final level of multiplexers selects the coefficients depending on the
branch enabled (H) or (L), and the signs of the different differences (bias +
eMin− eZ) that are sufficient for determining the current branch.

Degree-2 polynomial SP evaluation is based on Horner’s scheme. Two
DSP Blocks are configured in multiply-add mode, and chained as depicted
on the bottom of Fig 3. A worst case error of 2 ulps is introduced by the
FP evaluation (chain of 4 operations), leading to a maximum error of 3
ulps (combined approximation and evaluation error). The final result is
constructed by appending the symmetry bit (x<0.5) to the exponent and
fractions returned by the polynomial evaluator.

4.2 Single Precision - degree 3

A different trade-off between DSP and memory blocks can be obtained if
the polynomial degree is increased to 3. The reduced number of subinter-
vals on both (L) and (H) leads to the memory compaction shown in Fig 5.

As presented in Sec 3.3, (L) branch requires only 16 subintervals, and
thus occupies a small size of the 512 coefficient tables. Next, two subsec-
tions of branch (H) handle exponents up to -93. First, for exponent range
{-3,-34} each exponent requires 8 subintervals but for the range {-35, -93}
only 4 subintervals suffice for meeting the approximation error objective.

The addressing is detailed in Fig. 5 and is composed of a set base ad-
dress plus offset. The signs of the subtracters s0 and s1 corresponding to
bias−3−eZ and bias−35−eZ select the base address from 3 possible values
0, 256, and 256+16. The same signs also drive a MUX selecting between
the 3 local offsets. The final table address is obtained by adding the base
and the offset values.

4.3 Generic architecture

A generic architecture is depicted in Fig. 6. As proposed in Sec. 3.3, the
computation is split in two branches: (L) with a uniform interval subdivi-
sion and (H) with the logarithmic-based interval subdivision.

For the (L) branch, the argument is firstly reduced as in the SP architec-
ture. Then a number bls of subintervals are used. The addressing is done
directly from the input, as before. For that, let alw be the number of frac-

14

branch (L) 16 poly

4 subintervals

{−35, −93}

branch (H) 240 poly

branch (H) 256 poly

{−3, −34}

8 subintervals

[2
2:

20
]

8 84

023

6 2

[2
2:

21
]

5 3

bias−35bias−3

fZeZaddr (L)

9

00
01
10
11

000010001
X X X X X X X X X

0 0000000 0
1 0 0 0 0 0 0 0 0

S1,S0

Figure 5: Coefficient memory composition and addressing for a SP archi-
tecture based on a degree 3 polynomial evaluator.

Table
c(d)

Table
c(d−1)

Table
c(d−2)

Table
exp

Table
c(0)

R

1 0

...
<<1

...

2^0

0.25 0.75

x<0.25
x>0.75

branch (H)

>>1

bias−2

bias

X

bias−3+
bls/(1<<tafw)

(1<<tafw))
1+(bls/

pxL

pxHPx<0.5

0.5

pxHN

pxLPpxLN

1

1−bit

Normalize

OR

Selector
Symmetry

And

=0

1−bit

Normalize

10

Symmetry

Reconstruction

Address
Branch (L)

LZC

1 0
wF+1

Fixed−Point Horner Polynomial Evaluation

polyX

Polynomial

1 0

1 0

wFwE
alw=address width branch (L)
ahfw=fraction address width branch (H)
bls=subinterval count branch (L)

paHN=fX(wF−1:wF−ahfw)
paHP=mxHP(wF−2:wF−1−ahfw)
pxHP=mxHP(m_wF−2−ahfw:0) & 0
pxHN=fX(m_wF−1−ahfw:0)

paLN=z5mxshr2(wF,wF+1−alw)
paLP=fX(wF−1,wF−alw)
pxLP=fX(m_wF−1−alw:0) & (alw−ahfw)’0
pxLN=z5mxshr2(m_wF−alw:0) & (alw−ahfw−1)’0

Branch Selector

0.5

z5mxshr2

paLN paLP

alw

mX>>2

<<ahfwahfw

eX

fX

wF+1

Input Selector

paHP paHN

mxHP

mX>>1 Branch (H)
Address

polyAddr

10

01 01

10

1 00 10 1

Figure 6: Generic architecture based on fixed-point piecewise-polynomial
approximations

15

tional bits used. Then, when x ∈ [0.5, 0.75) the address is obtained from
the [wF−2,wF−1−alw] bits of the input fraction, whereas for x ∈ [0.25, 0.5)
the bits [wF − 1,wF − alw] from the fixed-point difference 0.5 − (mX � 2)
are used (cf. Fig. 4). Finally, the polynomial input is obtained by recover-
ing the following wF−1−alw of fX (when x > 0.5), or respectively bottom
wF− alw bits from 0.5− (mX� 2). The parameter values employed in our
higher precision cores are alw = 4 and bls = 16.

For Branch (H), let us focus on the exponent and the fraction contribu-
tion to the address. Since the address range for (H) starts at index bls, this
offset needs to be added when computing the address, but is omitted in
the following for simplicity. Firstly, the exponent contribution for x < 0.25
is obtained using bias − 3 − eX . For x > 0.75, the function input 1 − x is
computed from a fixed-point subtraction with known alignment, equiva-
lent to 0.5 − (mX � 2). The relative exponent, required for the address
computation, is obtained by counting the leading zeros of the difference.
Secondly, denote by ahfw, the number of fractional bits necessary for ad-
dressing the tables. When x < 0.25, these bits are obtained from the top
of fX. When x > 0.75 the fixed-point difference 1 − x is normalized, by
feeding the previously computed zero count together with the difference
into a left shifter. The top ahfw bits of the resulting fraction are then used.
For our cores, ahfw=3. Finally, the polynomial address is obtained by con-
catenating exponent and fractional parts.

For instance, to fill 512 table entries on (L)+(H), since bls = 16 is used
for (L), and ahfw = 3 bits are required for the fractional part (H) (uniform
segmentation for each binade), a total of (512− 16)/23 = 62 exponents can
be handled, which results in a 6 bits exponent addressing.

In Section 3.3 we have also described a more fine-grain selection of
the subintervals corresponding to a binade, using a non-uniform mantissa
segmentation. Although not depicted in Fig. 6, for our cores, this consists
of using the top 6 fractional bits to index a 3-bit wide table storing the
corresponding new segment address, based on Table 2.

Then, the polynomial input is obtained from the bottom wF − ahfw of
fX for x < 0.25 (and respectively those of the normalized difference 1− x,
when x > 0.75). Furthermore, as mentioned in Sec. 3.4 (b) x − l (l for
"left" interval bound) is needed for the evaluation: an additional 6-bit wide
LUT6 stores l and the subtraction is in fixed-point. Note that its result can
be 1-bit wider in the case of the non-uniform mantissa segmentation.
Fused fixed-point polynomial evaluator. To create a single polynomial
evaluator, the worst case of formats across the entire set of coefficients
has to be considered. For our cores, they are presented in Table 3. Note
that, as explained in Sec. 3.4 (b), a final multiplication is performed outside

16

Table 3: Polynomial coefficient formats: signed(width,fraction). Number
of polynomials is 512. Approximation accuracy 1ulp.

wF deg. Coefficients Formats: Fused (L)+(H)
26 4 (31,30), ±(38,32), (31,29), ±(30,25), (27,22)
35 5 (40,39), ±(47,41), (40,38), ±(39,34), (35,30), ±(34,27)
52 8 (57,56), ±(64,58), (57,54), ±(56,51), (52,47), ±(51,43),

(49,41), ±(47,36), (43,32)

the fused polynomial evaluator. Moreover, since the evaluator’s output in
[0.5, 2), a single-bit normalization is required. The final exponent is recov-
ered function of this bit and an additional stored relative exponent for each
polynomial.

5 Results

The synthesis results for our proposed architectures are presented in Ta-
ble 4. These were obtained using Quartus 19.3.0, targeting Intel Arria 10,
fastest speedgrade. First, for SP the most relevant implementation of the
FP Probit function is [8]. We propose a family of architectures offering
trade-offs between resource utilization and the tail accuracy maxσ. For
comparable maxσ, our proposed architecture outperforms [8], especially
in terms of logic utilization. Moreover, our architectures are accurate to 3
ulps, whereas [8] reports 20 fractional bits of accuracy, which translates to
8 ulps.

Wichura’s algorithm was implemented using Intel DSP Builder Ad-
vanced (both the single and double-precision). For SP architectures, which
have comparable tail accuracy with Wichura, our proposed cores outper-
form the Wichura’s one, despite the availability of FP DSP Blocks. More-
over, our SP implementation d = 3,4 based on the generic architecture,
which does not use HFP DSPs, is less efficient but remains a good choice
on devices without HFP capabilities.

Beyond single, we have not found any prior works, therefore, our only
comparison point is our adaptation of Wichura to these custom formats
(all internal operations performed in the (wE,wF) format). The degree 7
rational polynomial approximation can likely be reduced for (11,26) and
(11,35) so the Wichura results for these two formats could potentially be
improved. It is clear however that in terms of resource utilization and la-
tency, our proposed architectures will significantly outperform the Wichura
adaptations. However, we chose to limit our architecture to maxσ = 9.08,
with 3 ulp relative accuracy (which seems reasonable in several applica-

17

Table 4: Synthesis results for the proposed cores.
wE, wF Algorithm Lat. Resource Utilization

maxσALMs Regs DSPs M20K FMax

8, 23

Divide 17 206 625 3 3 549MHz -
Sqrt 11 101 309 2 3 530MHz -
Log 26 321 842 8 3 483MHz -
Wichura 87 1134 3108 25 10 483MHz 12.94
[8] 55 2022 15 5 185MHz 6.23
Ours d=2 † 18 225 590 3 6 483MHz 6
Ours d=2 ‡ 18 263 607 3 9 483MHz 8.61
Ours d=2 ‡‡ 18 270 608 3 12 483MHz 10.86
Ours d=2 � 18 324 547 3 14 483MHz 12.94
Ours d=3 23 329 658 4 4 483MHz 11.18
Ours d=34 30 453 1293 5 5 481MHz 9.08

11, 26 Ours d=4 34 532 1427 7 6 481MHz 9.08
Wichura 206 8000 18928 26 17 446MHz -

11, 35 Ours d=5 55 1115 2878 13 8 549MHz 9.08
Wichura 291 13398 31115 42 20 449MHz -

11, 52 Ours d=8 87 2797 7855 36 21 474MHz 9.08
Wichura 351 18574 47389 83 45 392MHz 37.51
Divide 38 888 3055 11 11 549MHz -
Sqrt 33 674 2210 8 8 549MHz -
Log 51 1500 4311 11 20 475MHz -

tions [13]), whereas the Wichura algorithm has full tail accuracy.

6 Conclusion

In this work we have proposed two sets of architectures for the FP Probit
function: (a) for SP targeting the HFP DSP Blocks, and (b) a generic ar-
chitecture based on a fixed-point polynomial evaluation kernel that can be
implemented for any custom FP format. On one hand we have showed
that our proposed architectures both outperform existing FP SP works in
terms of resource utilization for comparable tail accuracy, but also provide
a level of customization regarding the tail accuracy maxσ that results in a
resource-utilization tradeoff - potentially exploitable at application level.
On the other hand, proposed generic parametrizable architectures work
for custom FP formats with a tail accuracy of maxσ = 9.08. These have a
low resource utilization for double-precision compared to an FPGA imple-
mentation of the Wichura algorithm. This is due to the proposed custom
segmentation scheme, which "mimics" the asymptotic behavior and the
corresponding Wichura’s change of variable. For instance, for the double
precision implementation, this allowed for a reduction of the polynomial
degree by 1 (and thus a 10% resources saving), compared to a classical log-
arithmic segmentation. Another feature is that the proposed architectures
are sufficiently generic, such that higher maxσ can easily be obtained by

18

choosing a different polynomial degree and/or number of subintervals.
We intend to further explore the argument reduction techniques. This in-
cludes non-uniform segmentation schemes for all architectures, as well
as analyzing the trade-off between pure piecewise polynomial approxi-
mations and composite ones, which make some intermediary use of the
asymptotic behavior.

References

[1] Intel Arria R©10 Device Overview, 2018. https://www.intel.
com/content/dam/altera-www/global/en_US/pdfs/
literature/hb/arria-10/a10_overview.pdf.

[2] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Re-
vision of IEEE 754-2008), pages 1–84, July 2019.

[3] R. C. C. Cheung, D. Lee, W. Luk, and J. D. Villasenor. Hardware
generation of arbitrary random number distributions from uniform
distributions via the inversion method. IEEE Transactions on VLSI
Systems, 15(8):952–962, 2007.

[4] S. Chevillard, M. Joldeş, and C. Lauter. Sollya: An environment
for the development of numerical codes. In International Congress on
Mathematical Software, pages 28–31. Springer, 2010.

[5] M. Daumas and G. Melquiond. Certification of bounds on expres-
sions involving rounded operators. ACM Transactions on Mathematical
Software (TOMS), 37(1):1–20, 2010.

[6] F. De Dinechin, M. Joldes, and B. Pasca. Automatic generation of
polynomial-based hardware architectures for function evaluation. In
IEEE International Conference on Application-specific Systems, Architec-
tures and Processors, pages 216–222. IEEE, 2010.

[7] C. De Schryver, D. Schmidt, N. Wehn, E. Korn, H. Marxen, and
R. Korn. A new hardware efficient inversion based random num-
ber generator for non-uniform distributions. In Intl. Conf. on Reconfig.
Comp. and FPGAs, pages 190–195. IEEE, 2010.

[8] P. Echeverria and M. López-Vallejo. FPGA gaussian random number
generator based on quintic Hermite interpolation inversion. In 2007
50th Midwest Symposium on Circuits and Systems, pages 871–874. IEEE,
2007.

19

https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/arria-10/a10_overview.pdf
https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/arria-10/a10_overview.pdf
https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/arria-10/a10_overview.pdf

[9] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann.
MPFR: A Multiple-Precision Binary Floating-Point Library with Cor-
rect Rounding. ACM TOMS, 33(2), 2007.

[10] W. Hörmann and J. Leydold. Continuous random variate genera-
tion by fast numerical inversion. ACM Trans. Model. Comput. Simul.,
13(4):347–362, Oct. 2003.

[11] D.-U. Lee, R. C. Cheung, J. D. Villasenor, and W. Luk. Inversion-
based hardware gaussian random number generator: A case study
of function evaluation via hierarchical segmentation. In 2006 IEEE
International Conference on Field Programmable Technology, pages 33–40.
IEEE, 2006.

[12] T. Luu. Fast and accurate parallel computation of quantile functions for
random number generation. PhD thesis, UCL (University College Lon-
don), 2016.

[13] J. S. Malik and A. Hemani. Gaussian random number generation: A
survey on hardware architectures. ACM Comput. Surv., 49(3), Nov.
2016.

[14] J.-M. Muller, N. Brunie, F. de Dinechin, C.-P. Jeannerod, M. Joldes,
V. Lefèvre, G. Melquiond, N. Revol, and S. Torres. Handbook of
Floating-Point Arithmetic. Birkhäuser, 2018.

[15] N. Revol. Interval Newton iteration in multiple precision for the uni-
variate case. Num. Alg., 34(2-4):417–426, 2003.

[16] D. B. Thomas. A general-purpose method for faithfully rounded
floating-point function approximation in FPGAs. In 2015 IEEE 22nd
Symposium on Computer Arithmetic, pages 42–49, 2015.

[17] D. B. Thomas, W. Luk, P. H. Leong, and J. D. Villasenor. Gaussian
random number generators. ACM Comput. Surv., 39(4), 2007.

[18] M. J. Wichura. Algorithm as 241: The percentage points of the normal
distribution. Journal of the Royal Statistical Society. Series C (Applied
Statistics), 37(3):477–484, 1988.

20

	Introduction
	Related works
	Contributions and outline

	Background
	Approximations to probit function
	Wichura's subdivision and change of variable
	Polynomial Approximations
	Logarithmic subdivision
	 Efficient polynomial fixed-point and FP evaluations

	Architecture
	Single Precision - degree 2
	Single Precision - degree 3
	Generic architecture

	Results
	Conclusion

