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Abstract

This paper deals with the stability analysis of a mass-spring system subject

to friction using Lyapunov-based arguments. As the described system presents

a stick-slip phenomenon, the mass may then periodically stick to the ground.

The objective consists in developing numerically tractable conditions ensuring

the global asymptotic stability of the unique equilibrium point. The approach

proposed merges two intermediate results: The first one relies on the charac-

terization of an attractor around the origin, in which converge the closed-loop

trajectories. The second result assesses the regional asymptotic stability of the

equilibrium point by estimating its basin of attraction. The main result relies

on conditions allowing to ensure that the attractor issued from the first result

is included in the basin of attraction of the origin computed form the second

result. An illustrative example draws the interest of the approach.
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1. Introduction

Friction appears in many mechanical systems such as drill-strings [1, 2], car

steering [3] or also machine positioning [4, 5]. This is a nonlinear force which

is responsible of many undesirable effects such as stick-slip or hunting [4]. The

first challenge was then to propose a model which was generic enough to be5

easily adapted to a new situation and able to reproduce these phenomena.

Many models were investigated in the last century of different complexities

with a relatively good correlation with empirical data. The first model was

proposed by Guillaume Amontons and Charles Augustin de Coulomb [6] during

the eighteenth century. Then, it was studied more precisely by Stribeck [7] who10

experimentally observed a decrease of the friction force at low velocity. Then

many models arose trying to fit with the experiments conducted by Stribeck

such as the Dahl model [8], the LuGre model [9] or Leuven friction model [10].

The survey [4] and the paper [11] draw comparisons on several models from

simulation and experimental points of view.15

Before designing controllers (see [5, 12, 13]) which were able to reduce the

undesirable effects, it was needed to provide analysis tools to quantify the am-

plitudes of the induced oscillations [14]. This challenge gave rise to many tech-

niques quantifying the nonlinear behavior introduced by the nonlinear term. For

an empirical analysis, one can refer to [15]. An approximation based method20

like the describing method is studied in [2, 16]. An investigation of the analyti-

cal solution is conducted in [17] and Lyapunov methods are used in [18]. Few of

the previous cited works are providing an exact stability test which is reliable

with a low computational burden, and, to the best of our knowledge, there does

not exist any regional (local) stability analysis.25

This paper deals with the stability analysis of a mass-spring system subject

to friction by taking into account that the described system presents a stick-

slip phenomenon, meaning that the mass is periodically stick to the ground.

This paper focuses on deriving numerically tractable conditions ensuring the

global asymptotic stability of the origin. The approach proposed to attain30
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this objective follows an alternative route to that one developed in [12], [19].

Indeed, the idea is to combine two intermediate results, the first one relying

on a global convergence property to an attractor around the equilibrium point,

whereas the second one focuses on the estimation of the basin of attraction of

the equilibrium point. Hence, the first result concerns the characterization of35

an attractor around the equilibrium point, in which converge the closed-loop

trajectories, using Lyapunov-based arguments. The second result studies the

regional asymptotic stability of the equilibrium point and proposes an estimation

of the basin of attraction of the equilibrium point. The main result expands the

two sets of previous conditions in order to ensure that the attractor issued from40

the first result is included in the basin of attraction of the origin computed from

the second result. Moreover, we provide conditions related to the system physics

to characterize the case when the conditions for global asymptotic stability of

the origin are feasible. An illustrative example shows the key strengths and the

drawbacks of the proposed technique.45

The paper is organized as follows. Section 2 is devoted to the description of

the physical setup and the problem statement. In Section 3, the characterization

of the attractor around the origin is presented. In Section 4, an inner-estimate

of the basin of attraction of the origin is derived. The main result dealing with

the global asymptotic stability of the origin is given in Section 5. Section 650

illustrates the effectiveness of the proposed approach. Finally, Section 7 ends

the paper emphasizing possible perspectives.

Notation. Rn×m stands for the set of all n × m real matrices. P ∈ Sn+ or

equivalently P � 0 denotes a symmetric positive-definite matrix of Rn×n. For

any matrices A and B, we define the operation He(A) = A+A>. The notation55

In denotes the n by n identity matrix. We define the operation col(u, v) =[
u> v>

]>
for any column vectors u and v. The Euclidean norm of a column-

vector u ∈ Rn is ‖u‖ =
√
u>u.
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2. Model description and problem formulation

2.1. Physical setup60

The setup consists in studying the position and the velocity of a mobile of

mass m, connected to a spring with an end moving forward at a constant speed

ẋA = vref , parallel to the direction of movement. This is described in Figure 1.

Figure 1: Physical setup: mass with a spring. The forces applied on the mass are in color and

the point A has the speed vref .

The forces applied to the mass are the following ones:

1. the weight ~W = m~g where ~g is the gravitational acceleration;65

2. the normal force ~RN = −m~g;

3. the elastic force ~FR = k (xA − x);

4. and the friction force ~F .

In this work, the simplest friction model is considered. It was introduced

firstly by Karnopp [20] and has shown a good correlation with the experimental70

data. It was then investigated more deeply in [15], and its final mathematical

formulation is as follows:

F (ẋ(t)) = RN

(
µC + (µS − µC)e−|

ẋ(t)
vs
|2
)

Sign(ẋ(t)) + kvẋ(t),

= Fnl(ẋ(t)) + kvẋ(t), (1)

where RN = mg, vs is a positive constant, µS and µC positive constants such

that µS − µC > 0, and the Sign function is defined as:

Sign(θ) =

 sign(θ) = θ
|θ| if θ 6= 0,

[−1, 1] if θ = 0,
(2)
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for θ ∈ R. Note that the Sign is defined as a set-valued function as in [5, 12]75

and can be seen as the convex envelop of the classical sign function.

The previous expression for the friction force can be split into three impor-

tant contributions:

1. the Coulomb force: µC

(
1− e−

ẋ2(t)

v2
s

)
RNSign(ẋ(t));

2. the static friction force: µSe
− ẋ2(t)

v2
s RNSign(ẋ(t));80

3. and the viscous friction: kvẋ(t).

The Coulomb force is the friction force acting at relatively high speed while the

static friction occurs for low velocity. The viscous friction is a linear term which

is related mostly to the friction with the air. A chart of this function is proposed

in Figure 2 to observe the Stribeck curve, that is the non-monotonicity of the85

function F for positive speed.
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Figure 2: Chart of the friction force (in solid blue) and static and Coulomb forces (in dashed

red) in our problem. Note that the friction force is not a monotonous function of the speed,

inducing the famous stick-slip effect.

We study here the evolution of ẋ and more particularly, its asymptotic be-

havior. Assuming xA(0) = 0 and applying the second law of motion leads to

the following dynamical equation for t ≥ 0: ẍ(t) = − 1
mF (ẋ(t))− k

m (x(t)− vref t) ,

x(0) = 0, ẋ(0) = v0,
(3)
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where v0 ∈ R. To ease the reading, the previous system is not written using a90

differential inclusion, which is induced by the set-valued mapping sign function

as defined in (2).

2.2. Problem Statement

We introduce the following state variables: v = ẋ and z(t) = x(t) − vref t

such as (3) reads for t > 0 as:95 v̇(t)

ż(t)

 =

− 1
m (Fnl(v(t)) + kvv(t) + kz(t))

v(t)− vref

 , (4)

with v(0) = v0, z(0) = z0.

Remark 1. Using a similar reasoning than in [12, 21, 19], one can conclude

that there exists a unique solution to system (4).

We are now looking for the equilibrium points (v∞, z∞) of (4). Assuming

k · vref 6= 0, there is a unique equilibrium point and we easily get:100  v∞ = vref ,

z∞ = −F (vref )

k
= −Fnl(vref ) + kvvref

k
.

Defining the error variable as follows:

ε =

ε1

ε2

 =

v − vref
z − z∞

 ,
and φvref (ε1) = Fnl(ε1 + vref ) − Fnl(vref ), the error dynamic is described by

the dynamical system:

ε̇(t) = Aε(t) +Bφvref (ε1(t)) (5)

with ε1(0) = v0 − vref , ε2(0) = z0 − z∞,

A =

−kvm − k
m

1 0

 and B =

− 1
m

0

 .
From practical experiments, one can observe that due to the presence of the105

nonlinearity φvref (ε1), it can be impossible to guarantee the global asymptotic

6



convergence of the trajectories to the origin and some limit cycle around the

origin can exist [15, 22]. Then, for the class of systems as described by (5), it

is of interest to characterize a region Avref of the state space, containing the

origin and the possible limit cycle, which is assured to be a global attractor of110

system (5). Then the first problem we intend to address is the following.

Problem 1. Characterize an outer-estimation of the global attractor Avref of

system (5).

For some cases, one can observe that the trajectories of system (5) converge

to the origin. Then, it appears possible to estimate the region of initial condi-115

tions for which the asymptotic stability of the origin will be obtained. In this

sense, the second problem we are interested in, relies on regional asymptotic

stability of the origin. Note that since φvref is continuous around φvref (0) = 0,

there might exist a basin of attraction around the origin. But in order to be

able to estimate it we need to study what happens for the linearized version of120

system (5), and therefore what happens with the derivative of φ with respect

to ε1 denoted ∂φ
∂ε1

[23]. Then the second problem we intend to address is the

following.

Problem 2. Characterize an inner-estimation of the basin of attraction of the

origin, denoted Dvref for system (5).125

Unlike Problem 1, to address this problem, we need to find conditions depending

on vref .

Finally, the main problem we want to solve is to provide conditions in or-

der to ensure that the origin will be a globally asymptotically stable equilib-

rium point. To do this, the approach will consist in combining the solutions130

to Problems 1 and 2. Hence, if we are able to provide conditions such that

Avref ⊆ Dvref , then there does not exist a limit cycle and the origin will be

globally asymptotically stable. Thus the main problem we intend to address is

the following.

Problem 3. Derive conditions for the outer-estimation of the attractor to be135
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included in the inner-estimation of the basin of attraction of the origin, that is,

Avref ⊆ Dvref .

3. Global Attractor Characterization

In order to address Problem 1, one first proposes a way to encapsulate the

nonlinearity φvref . Since Fnl is an odd function and F 2
nl is lower and upper140

bounded almost everywhere by F 2
C = µ2

Cm
2g2 and F 2

S = µ2
Sm

2g2 respectively

as shown in Figure 3, the function Fnl can be encapsulated into two relays.

Figure 3: Encapsulation of Fnl.

Consequently, the following lemma can be proposed.

Lemma 1. For any ε1 ∈ R the following inequalities hold:

Fnl(ε1 + vref )2 ≤ F 2
S ,

−2(ε1 + vref )Fnl(ε1 + vref ) ≤ 0.

In the case ε1 6= −vref , we also have:145

F 2
C ≤ Fnl(ε1 + vref )2.

By using Lemma 1, the following theorem proposes a solution to Problem 1.

Theorem 1. If there exist Pg ∈ S2
+ and τ0, τ1, τ2, τ3, τ4, τ5 ≥ 0 such that the

following matrix inequalities hold:

He
(
D>PgF

)
− τ0Π0 − τ1Π1 − τ2Π2 − τ3Π3 ≺ 0, (6)
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He
(
D>PgF

)
− τ0Π0 − τ5Π1 − τ4Π4 ≺ 0, (7)

where150

D =
[
A B −Fnl(vref )B

]
, F =

[
I2 0 0

]
,

FC = µCmg, FS = µSmg,

π1 =
[
1 0 0 0

]
, π3 =

[
0 0 1 0

]
,

π4 =
[
0 0 0 1

]
,

Π0 = π>4 π4 − F>PgF, Π1 = π>3 π3 − F 2
Sπ
>
4 π4,

Π2 = F 2
Cπ
>
4 π4 − π>3 π3, Π3 = −He

(
(π1 + vrefπ4)>π3

)
,

Π4 = (π1 + vrefπ4)>(π1 + vrefπ4),

then trajectories of system (5) globally converge to the set

Avref (Pg) =
{
ε ∈ R2 | ε>Pgε < 1

}
.

Hence, the set Avref (Pg) is a solution to Problem 1.

Proof : The proof of this theorem is based on the following Lyapunov function:

Vg(ε) = ε>Pgε.

with Pg = P>g � 0. Its time-derivative along the trajectories of (5) leads to:

V̇g(ε) = ξ>g
(
D>PgF + F>PgD

)
ξg,

where ξg = col (ε, Fnl(ε1 + vref ), 1).155

Inspired by [24], one wants to verify that there exists a class K function

α such that V̇g(ε) ≤ −α(Vg(ε)), for all ε such that ε>Pgε ≥ 1 (i.e. for any

x ∈ R2\Avref (Pg)), and for all nonlinearities Fnl satisfying Lemma 1. The

existence of such a function α is discussed in two different cases.

• First case: ε1 6= −vref .160

Using the augmented vector ξg and the definition of the πi’s, the conditions

of Lemma 1 read:

ξ>g (π>3 π3 − F 2
Sπ
>
4 π4)ξg ≤ 0,

ξ>g (F 2
Cπ
>
4 π4 − π>3 π3)ξg ≤ 0,

−ξg He
(
(π1 + vrefπ4)>π3

)
ξg ≤ 0.
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Then, by using the compact notation Πi’s, inspired by the S-variable ap-

proach, define the following function:

L = V̇g(ε)− τ0(1− ε>Pgε)− τ1ξ>g Π1ξg − τ2ξ>g Π2ξg − τ3ξ>g Π3ξg (8)

for positive scalar τi, i ∈ {0, 1, 2, 3}.165

Thus, a sufficient condition to ensure that L in (8) is negative-definite for

ε1 6= −vref is the existence of τ0, τ1, τ2, τ3 ≥ 0 such that (6) is verified.

• Second case: ε1 = −vref .

Using Lemma 1 this time leads to:

ξ>g (π>3 π3 − F 2
Sπ
>
4 π4)ξg ≤ 0,

ξ>g (π1 + vrefπ4)>(π1 + vrefπ4)ξg ≤ 0,

−ξg He
(
(π1 + vrefπ4)>π3

)
ξg ≤ 0.

Let us define L for ε1 = −vref as170

L = V̇g(ε)− τ0(1− ε>Pgε)− τ5ξ>g Π1ξg − τ4ξ>g Π4ξg (9)

for the same τ0 as defined previously and positive scalars τ4, τ5.

L in (9) is negative-definite on the set ε1 = −vref if there exist τ0, τ4, τ5 ≥

0 such that (7) is verified.

Consequently, if (6) and (7) are verified simultaneously then there exists

α > 0 such that L ≤ −αε>ε. By definition one gets V̇g(ε)− τ0(1− ε>Pgε) ≤ L175

and since V̇g(ε) ≤ V̇g(ε)−τ0(1−ε>Pgε) on Avref (Pg), it follows V̇g(ε) ≤ −αε>ε

for any x ∈ R2\Avref (Pg). That ends the proof. �

Remark 2. Relations (6)-(7) are quasi-LMIs since there is a nonlinearity due

to the product between the scalar τ0 and the matrix Pg. Note that a necessary180

condition to get (6)-(7) is that

A>Pg + PgA+ τ0Pg ≺ 0.
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As explored in [22], it means that A must be Hurwitz and the following inequality

must hold:

τ0 ≤ τmax0 = 2 max
µ an eigenvalue of A

(|<(µ)|).

The previous remark emphasizes an efficient way to solve (6)-(7). A solution

is to use a line-search for several given fixed values of τ0 ∈ [0, τmax0 ] and, in this185

case, (6)-(7) turn into LMIs.

To get an outer-estimate close to the real attractor, one can solve various

optimization problems. For the minimization of the maximal axis, a solution is:

min −η

subject to (6) and (9) hold with Pg � ηI2.
(10)

Remark 3. Note that the analysis conducted here differs from the one in [22]190

where the sign function was not set-valued and the analysis was then not taking

into account the behavior when ε1 = −vref . Nevertheless, the lemmas derived

in [22] still hold and for instance, one can show that the LMIs (6) and (7) are

feasible as long as k, kv > 0. That means that there always exists an attractor

(eventually very large) for system (5).195

4. Regional Asymptotic Stability Analysis

Contrary to the previous section, this one concentrates on a regional analysis

to solve Problem 2.

4.1. Stability of the linearized system

Similarly to the techniques used in presence of saturation or backlash non-200

linearities (see, for example, [24, 25]), the fact that φvref is continuous with

φvref (0) = 0, is not sufficient to study the regional stability of the origin and we

must consider the stability of its linearization around an equilibrium point to

apply the first Lyapunov principle [23]. To this extend, we consider a rewriting

of system (5) as follows:205

ε̇(t) =
(
A+BΓvrefC

)
ε(t) +B

(
φvref (ε1(t))− ΓvrefCε(t)

)
(11)
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Figure 4: Nonlinear function g.

with A, B defined in (5), C = [ 1 0 ] and

Γvref =
∂φvref
∂ε1

∣∣∣∣
ε1=0

= −2RN (µS − µC)
vref
v2
s

e
−

v2
ref

v2
s .

System (11) reads:

ε̇(t) = A0ε(t) +Bψvref (12)

with A0 = A + BΓvrefC and ψvref = φvref (Cε) − ΓvrefCε. Consequently, the

linearization of system (11) around the origin is:

˙̃ε(t) = A0ε̃(t) (13)

Hence, there exists a basin of attraction Dvref if and only if A0 Hurwitz,210

which depends then on vref . The following lemma characterizes the stability of

(13) as a function of vref .

Lemma 2. Matrix A0 is Hurwitz if and only if

−kv + 2RN (µS − µC)
vref
v2
s

e
−

v2
ref

v2
s < 0,

or equivalently, θ(vref ) = vrefe
−

v2
ref

v2
s <

kvv
2
s

2RN (µS−µC) .

We will now study the function θ defined in the previous lemma. Notice215

firstly that it is a nonlinear even function. Hence, looking at Figure 4, one

12
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(b) λmin = 0.698, rl = 2.4

Figure 5: Sector conditions on the function φvref with vref = 3.

observes four roots such that θ(vref ) =
kvv

2
s

2RN (µS−µC) . By denoting the two

positive roots by vref1 and vref2 > vref1, one can exhibit several zones regarding

the stability of A0:

1. A0 is Hurwitz for vref ∈ (−∞,−vref2)∪(−vref1, 0)∪(0, vref1)∪(vref2,∞)220

and, in virtue of the first Lyapunov principle [23], there exists a basin of

attraction for (12) around the origin;

2. the origin of (13) is exponentially unstable for vref ∈ (−vref2,−vref1) ∪

(vref1, vref2);

3. A0 has poles on the imaginary axis for vref = ±vref1 or vref = ±vref2.225

Consequently, without loss of generality, we assume here that vref > 0 and

we concentrate on an inner-estimation of the basin of attraction around the

origin for vref ∈ (0, vref1) ∪ (vref2,∞).

4.2. Numerical inner-estimate of Dvref

Note that φvref is bounded on (−vref ,∞) and ε1φvref (ε1) ≤ 0 for ε1 ∈230

(−vref ,∞), consequently, φvref is a local sector-bounded nonlinearity as de-

picted in Figure 5. Thus, the nonlinearity ψvref satisfies the following Lemma,

adapted from Lemma 1.6 in [25].

Lemma 3. Given rl such that vref > rl > 0. For any ε ∈ S(rl) = {ε ∈

R2;−rl ≤ Cε ≤ rl}, the nonlinearity ψvref satisfies the following:235

(ψvref + ΓvrefCε)
>(ψvref + ΓvrefCε+ λCε) ≤ 0. (14)
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for any positive scalar λ satisfying

λ ≥ λmin(rl) > 0 (15)

with

λmin(rl) = max
ε1∈[−rl,0)∪(0,rl]

−
φvref (ε1)

ε1
≥ −Γvref . (16)

Proof : Recall that one gets φvref (ε1) = ψvref + ΓvrefCε. For any ε ∈ S(rl),

by definition it follows:240 
φvref (ε1) > 0,

∂φvref

∂ε1
< 0 if −rl ≤ ε1 < 0

φvref (ε1) = 0,
∂φvref

∂ε1
= Γvref if ε1 = 0

φvref (ε1) < 0,
∂φvref

∂ε1
< 0 if 0 < ε1 ≤ rl

(17)

Hence, by taking the three cases of (17), one gets the following:

• Case 1: −rl ≤ ε1 < 0. In this case the condition (14) holds provided that

φvref (ε1) + λε1 ≤ 0, which is satisfied if λ ≥ maxε1∈[−rl,0)−
φvref

(ε1)

ε1
.

• Case 2: ε1 = 0. In this case the condition (14) holds for any positive λ and

therefore for any λ satisfying (15).245

• Case 3: 0 ≤ ε1 < rl. In this case the condition (14) holds provided that

φvref (ε1) + λε1 ≥ 0, which is satisfied if λ ≥ maxε1∈(0,rl]−
φvref

(ε1)

ε1
.

Then from these three cases, one can guarantee that there exists λ satisfying

(15) such that (14) holds. Let us now focus on the way to calculate λmin as

described in (16). Define the function g(ε1) = −φvref
(ε1)

ε1
. To compute the250

maximal value of g(ε1) one studies its derivative in function of ε1 on the interval

(−rl, 0) ∪ (0, rl). More especially, one wants to find the values for which this

derivative is equal to zero. By recalling that ε1 + vref > 0, in this set, one gets

∂g(ε1)
∂ε1

= −∂φvref
(ε1)

∂ε1
1
ε1

+ 1
ε21
φvref (ε1)

= RN (µS − µC)

(
( 1
ε21

+
2(ε1+vref )

ε1v2s
)e
−

(ε1+vref )2

v2
s − 1

ε21
e
−

v2
ref

v2
s

)

Therefore ∂g(ε1)
∂ε1

= 0 leads to φvref (ε1) =
∂φvref

(ε1)

∂ε1
ε1, or equivalently, one has

to find the solution to the equation:255

e
ε1(ε1+2vref )

v2
s = 1 +

2ε1(ε1 + vref )

v2
s

, (18)
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Note that ε1 = 0 is a trivial solution. To solve equation (18) for ε1 6= 0, one

could use a dichotomy-kind of algorithm, by using the fact that φvref (ε1) is

monotonous for ε1 > −vref . Hence, by denoting by v∗ the solution to equation

(18), one can deduce that

λmin(rl) =

 −
∂φvref

∂ε (v∗), if |v∗ − vref | ≤ rl,

max
(
−φvref

(rl)

rl
,
φvref

(−rl)
rl

)
, otherwise.

(19)

This is illustrated in Figure 5a for the first element
(
−∂φvref

∂ε (v∗)
)

and in Fig-260

ure 5b for the second part
(

max
(
−φvref

(rl)

rl
,
φvref

(−rl)
rl

))
where v∗ is approxi-

mately −2.89.

Furthermore, one gets that

lim
rl→0

λmin(rl) = − lim
rl→0

max

(
φvref (rl)

rl
,
φvref (−rl)
−rl

)
= −Γvref .

Since φvref is monotonous, as rl decreases, λmin(rl) gets closer to −Γvref .

Then the condition (16) is verified. �265

Remark 4. It is important to note that contrarily to the sector-condition for

the dead-zone nonlinearity [25] where the slope of the nonlinearity at 0 is 0, in

the current case the slope of the nonlinearity φvref (ε) at 0 is Γvref 6= 0. This is

the reason for which in Lemma 3 there exists λmin(rl) 6= 0.270

By using Lemma 3, the following theorem proposes a solution to Problem 2.

Theorem 2. Given vref ∈ (0, vref1)∪(vref2,∞), if there exist λ, rl ∈ (0, vref ),

Pl ∈ S2
+ and τ > 0 such that the following matrix inequalities hold:

Φ(vref ) ≺ 0, (20)

 Pl ?

C r2
l

 � 0, (21)

275

λ ≥ λmin(rl) > 0, (22)
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where

Φ(vref ) =

 A>0 Pl + PlA0 − 2τΓvref (Γvref + λ)C>C ?

B>Pl − τ(2Γvref + λ)C −2τ

 ,
then the origin of system (5) is locally asymptotically stable and an estimation

of the basin of attraction is:

Dvref (Pl) =
{
ε ∈ R2 | ε>Plε ≤ 1

}
.

Hence, the set Dvref (Pl) is a solution to Problem 2.

Proof : Note first that the satisfaction of relation (21) is equivalent to Pl �280

C>Cr−2
l . Consequently for any ε ∈ Dvref (Pl), we get (Cε)2 ≤ r2

l which implies

that ε ∈ S(rl) (see Lemma 3). Therefore, for any ε1 ∈ Dvref (Pl), Lemma 3

applies and for any positive λ satisfying (22), condition (14) holds.

Consider the following Lyapunov function:

Vl(ε) = ε>Plε,

with Pl ∈ S2
+. Its time-derivative along system (12) leads to285

V̇l(ε) = ε>(A>0 Pl + PlA0)ε+ 2ε>PlBψvref .

By using Lemma 3 and the S-procedure, one gets for τ > 0 and ε ∈ S(rl):

V̇l(ε) ≤ V̇l(ε)− 2τ(ψvref + ΓvrefCε)
>(ψvref + ΓvrefCε+ λCε).

One wants to satisfy L = V̇l(ε) − 2τ(ψvref + ΓvrefCε)
>(ψvref + ΓvrefCε +

λCε) < 0. L reads L = ξ>Φ(vref )ξ where ξ = col
(
ε, ψvref

)
.

Hence, if relation (20) holds, it follows that L < 0 and therefore V̇l is definite-

negative. If the conditions of the theorem are verified, then for any initial condi-290

tion ε(0) ∈ Dvref (Pl), we get that ε(t) ∈ Dvref (Pl) and therefore the trajectories

of system (5) converge to the origin. One can conclude that the origin of sys-

tem (12) is regionally asymptotically stable in Dvref (Pl), or equivalently, (5) is

regionally asymptotically stable in Dvref (Pl). �

295
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Remark 5. From Lemma 3, one gets λ > −Γvref . Then, one can deduce that a

necessary condition for the feasibility of (20) is that A0 is Hurwitz, which holds

since we consider vref ∈ (0, vref1) ∪ (vref2,∞) (see Lemma 2).

Regarding the feasibility of conditions (20)-(22), the following corollary can

be stated.300

Corollary 1.

1. Given v◦ ≥ vref2, if there exist λ, rl ∈ (0, vref ), Pl ∈ S2
+ and τ > 0 such

that Φ(v◦) ≺ 0 and Φ(∞) ≺ 0 together with (21)-(22), then system (5) is

locally asymptotically stable for any vref ≥ v◦ with an inner-estimation of

the basin of attraction Dv(Pl).305

2. If A is Hurwitz, the matrix inequalities (20)-(22) are feasible.

Proof :

First item: Let first note that the left-hand side in relation (20) can be

rewritten as follows:

Φ(vref ) =

 A>Pl + PlA ?

B>Pl − τλC −2τ

+ Γvref

 He(PlBC)− 2τλC>C ?

−τC 0


+Γ2

vref

 −2τC>C ?

0 0


(23)

That shows that Φ is convex in Γvref . Furthermore, note that Γvref is strictly310

decreasing with respect to vref and consequently, Φ(vref ) is convex in vref for

vref > vref2 and that ends the proof for the first item.

Second item: The proof of the second item takes advantage of the proof

of the first one. Given λ, rl such that (22) holds, from (23), it follows:

Φ(vref ) = Φ(∞) + Γvref He
([

PlB−τ(Γvref
+λ)C>

−τ

]
[C 0 ]

)
(24)

Denote byN1 andN2 the basis of the Kernel of [C 0 ] and [B>Pl−τ(Γvref
+λ)C −τ ],315

respectively. By using the Elimination Lemma, the satisfaction of Φ(vref ) ≺ 0

is equivalent from (24) to:

N>1 Φ(∞)N1 ≺ 0, N>2 Φ(∞)N2 ≺ 0. (25)

17



Furthermore, note that Φ(∞) can be written as follows:

Φ(∞) =

 A>Pl + PlA 0

0 0

+ He
([

PlB−τλC>
−τ

]
[ 0 I ]

)
(26)

By using the Elimination Lemma, the satisfaction of Φ(∞) ≺ 0 is equivalent

to A>Pl + PlA ≺ 0. Hence, if A is Hurwitz, then there exists Pl such that320

Φ(∞) ≺ 0 and consequently, (25) hold. Since k · Pl for k ≥ 1 is also solution,

there exists k large enough such that (21) holds. Therefore relations (20)-(22)

also hold and the proof is completed. �

Remark 6. The first assertion of Corollary 1 implies that the basins of attrac-325

tion have a minimal axis which is growing with vref .

At this point, the aim is to derive an inner-estimate of the basin around the

origin which is close to the real basin. To this extend, one can decide to solve

the following optimization problem:

min η

subject to (20)− (22) hold with Pl � ηI2.
(27)

If rl is a decision variable, this is not a semi-definite optimization problem since330

λmin is nonlinearly related to rl. Indeed, the relation (20) is an LMI provided

that τ or λ is fixed. Moreover λ must satisfy condition (22), which depends on

rl. A way to have a set of LMI for (20) consists in fixing rl, allowing to compute

λmin(rl), and to consider an additional variable γ = τλ with the constraints

γ > τλmin(rl).335

From this remark, we derive the following algorithm which aims at providing a

sub-optimal solution:

1. Let rl = vref , ηmin =∞ and Pmin = 0;

2. Compute λmin(rl) using (19);

3. Solve (27) using the previous paragraph:340

• if the problem is feasible, then

18



– if η < ηmin, then

(a) ηmin ← η and Pmin ← Pl;

(b) decrease slightly rl;

(c) go back to step 2;345

– otherwise stop.

• if the problem is not feasible, then

(a) decrease slightly rl;

(b) go back to step 2;

Due to the second assertion in Corollary 1, this algorithm will stop for rl small350

enough. The result of this algorithm is a matrix Pmin such that Dvref (Pmin) is

a basin of attraction with a minimal axis which is a local maximum.

Combining the results of the previous parts leads to the main theorem of

this article which is derived in the following section.

5. Global Asymptotic Stability Analysis355

The main idea here is to use at the same time Theorems 2 and 1 to get a

condition on vref in order to guarantee that the origin is globally asymptotically

stable for system (5), and therefore to provide a solution to Problem 3.

Theorem 3. Given vref ∈ (0, vref1)∪(vref2,∞). If there exist λ, rl ∈ (0, vref ),

τ , τ0, τ1, τ2, τ3, τ4, τ5 and Pl, Pg � 0 satisfying relations (6), (7), (20), (21)360

and

Pg − Pl � 0 (28)

then Avref (Pg) ⊆ Dvref (Pl) and the origin of (5) is globally asymptotically

stable.

Proof : The satisfaction of relations (6), (7), (20), (21) means that Theorems

2 and 1 apply. It allows to characterize an attractor Avref (Pg) towards which365

all the trajectories of system (5) converge and an estimation of the basin of at-

traction of the origin Dvref (Pl), in which the trajectories of (5) converges to the
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Figure 6: Numerical simulation of (4) for vref ∈ {1, 1.6} m.s−1, v0 = 6 m.s−1 and z0 = 0 m.

origin. Condition (28) guarantees the inclusion Avref (Pg) ⊆ Dvref (Pl). Then by

definition of both sets, one can conclude that when the trajectories converging

towards Avref (Pg) enter in Dvref (Pl), they finally converge to the origin. That370

concludes the proof on the global asymptotic stability of the origin. �

6. Numerical Simulations

This section is dedicated to numerical results with the parameters defined

as in Table 1.375

Parameter m g vs µC µS k kv

Value 1 9.81 0.8 0.2997 0.5994 2 1

Table 1: Parameters used for the simulations (taken from [26]).

The solver used for the LMIs is Mosek [27] together with YALMIP [28].

The simulations are conducted using a Newton-backward discretization scheme

adapted for set-valued functions as proposed in [29].

Figure 6 depicts a numerical simulation of (4) with the parameters in Ta-

ble 1 for two different reference speeds. The stick-slip phenomenon is clearly380

visible since after five seconds for vref = 1, a cycle of period 5s and of ampli-

tude 2.4m.s−1 is emerging. For a reference speed higher than 1.45 m.s−1, it

20
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Figure 7: Phase portraits of (4) for four values of vref . The inner-approximation of Avref is

in dash-blue and the outer estimation of Dvref is in dash-dot-red. The equilibrium point is

the red star and the two trajectories initiate from the diamond points.

seems that the stick-slip phenomenon disappears. In [2], the author are using a

describing function analysis on a similar system, in our case, we would get that

for vref ≥ 1.51 m.s−1 there does not exist any limit cycle. This seems a very385

good estimation but it is not a rigorous analysis.

Using the methodology developed in this paper, one can compute the nu-

merical values defining the interval of admissible vref , that is: vref1 = 0.11 and

vref2 = 1.25. Then, for vref ∈ (0, vref1) ∪ (vref2,∞), there exists a basin of

attraction around the origin. Using Theorem 3, we find that for vref ≥ 9.59,390

the equilibrium point is globally asymptotically stable1. As noted before, there

always exists an attractor for the system but the existence or not of a basin of

attraction leads to four scenarios:

1Using the method of [2], one gets a smaller value for global asymptotic stability. Never-

theless, it does not estimate the basin of attraction and the attractor.
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1. vref ∈ (0, 0.11): there exists a basin of attraction around the equilibrium

point;395

2. vref ∈ [0.11, 1.25]: the equilibrium point is not asymptotically stable;

3. vref ∈ (1.25, 9.59): there exists a basin of attraction which does not in-

clude the attractor;

4. vref ≥ 9.59: the basin of attraction contains the attractor and the equi-

librium point is globally asymptotically stable.400

Figure 7 shows the result of simulations in these four cases. The attractor2

is computed with Theorem 1 and the basin of attraction with Theorem 2.

In Figure 7a, one can see that the trajectories are converging even if they start

far away from the basin of attraction. Simulations tends to show that the equi-

librium point is globally exponentially stable but our analysis does not reflect405

that.

In the second case (Figure 7b), there does not exist a basin of attraction. The

attractor contains the oscillations but is very large compared to the real os-

cillations. The conservatism might come from the use of quadratic Lyapunov

functions and a relatively rude encapsulation of the nonlinear friction term (see410

Figure 3).

Figure 7c shows that the inner-approximation of the basin of attraction is good

and for a trajectory initiated close but outside this estimation, the stick-slip

phenomenon occurs. The equilibrium point is not globally asymptotically sta-

ble but it stays locally asymptotically stable.415

Finally, in the last case (Figure 7d), the attractor is included in the inner-

approximation of the basin of attraction and the equilibrium point is globally

asymptotically stable.

2Sometimes, the attractor is not displayed since it is not of the same order of magnitude

as the basin of attraction.
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7. Conclusion

This paper proposes three theorems dealing with the stability of a system420

subject to friction. The three proposed methods give a characterization of the

global attractor of the system, an estimation of the basin of attraction of the ori-

gin when it is possible, and finally a global asymptotic stability condition. The

conditions are given in terms of LMIs or quasi-LMIs3 with efficient algorithms

to solve them.425

As depicted in the numerical simulations section, the reference speed for

which global asymptotic stability exists is overestimated mainly because of the

conservatism introduced in the global stability test. A first direction of research

would be to estimate an attractor which might not be symmetrical and to study

more precisely the friction function Fnl to get a better bounding. Another per-430

spective would be to extend to higher order problems and real-life applications.
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