
HAL Id: hal-02884177
https://laas.hal.science/hal-02884177

Submitted on 29 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust Predictive-Reactive Scheduling : an
Information-Based Decision Tree Model
Tom Portoleau, Christian Artigues, Romain Guillaume

To cite this version:
Tom Portoleau, Christian Artigues, Romain Guillaume. Robust Predictive-Reactive Scheduling : an
Information-Based Decision Tree Model. 18th International Conference on Information Processing
and Management of Uncertainty in Knowledge-Based Systems, 2020, Lisbon, France. pp.479-492,
�10.1007/978-3-030-50153-2_36�. �hal-02884177�

https://laas.hal.science/hal-02884177
https://hal.archives-ouvertes.fr

Robust Predictive-Reactive Scheduling : an
Information-Based Decision Tree Model

Tom Portoleau1,2, Christian Artigues1, Romain Guillaume2

1 LAAS-CNRS, Université de Toulouse, CNRS, France,
{tom.portoleau,christian.artigues}@laas.fr

2 ANITI, IRIT-CNRS, Université de Toulouse, France,
romain.guillaume@irit.fr

Abstract. In this paper we introduce a proactive-reactive approach to
deal with uncertain scheduling problems. The method constructs a robust
decision tree for a decision maker that is reusable as long as the prob-
lem parameters remain in the uncertainty set. At each node of the tree
we assume that the scheduler has access to some knowledge about the
ongoing scenario, reducing the level of uncertainty and allowing the com-
putation of less conservative solutions with robustness guarantees. How-
ever, obtaining information on the uncertain parameters can be costly
and frequent rescheduling can be disturbing. We first formally define the
robust decision tree and the information refining concepts in the context
of uncertainty scenarios. Then we propose algorithms to build such a
tree. Finally, focusing on a simple single machine scheduling problem,
we provide experimental comparisons highlighting the potential of the
decision tree approach compared with reactive algorithms for obtain-
ing more robust solutions with fewer information updates and schedule
changes.

1 Introduction

Dealing with uncertainty in scheduling problems is an issue that has been widely
studied over the last decade. Many approaches emerged in order to cope with un-
certainties. Proactive methods elaborate an initial baseline schedule while taking
into account possible incoming breaks to make it as robust as possible. There
exist several robustness criteria [7] that are widely used in these methods. How-
ever, one major flaw of proactive scheduling methods is their conservatism [9],
the more robust solutions tend to be low-quality objective-wise. It is particu-
larly the case when uncertainties are large and frequent. In these cases, reactive
methods are more appropriate as they do not specially focus on the initial sched-
ule but rather on how to modify it online, that is to say during the execution.
They are usually based on priority rules [10] that allow decision maker to com-
pute quickly new solutions according to the running scenario. However, on the
contrary of proactive approaches, these is no guarantee regarding the objec-
tive value of solutions computed with a reactive method. In order to provide
solutions that are well balanced between robustness and quality, many hybrid

2 Tom Portoleau, Christian Artigues, Romain Guillaume

methods have been suggested. The recoverable robustness framework [1] consid-
ers two stage decisions where robust decisions are taken at the first stage and
where recovery algorithms are used to restore feasibility for a realised scenario
on the second stage. This framework is linked to adjustable robust optimisation
[12] that roughly transposes the concept of two-stage stochastic programming
to robust optimisation: some recourse variables can be adjusted to the realised
scenario.

In the scheduling literature, approaches that mix a proactive phase aiming
at issuing a robust baseline schedule and a reactive phase that adapts the base-
line scheduling in case of major disturbances have been widely studied under
the proactive-reactive scheduling terminology [11]. Recently [3] remarked that
in this series of approaches, the proactive and the reactive phases were rather
treated separately while they should mutually influence each other. So in [3, 4]
the authors propose an integrated proactive reactive approach where they aim
to find the best policy, which is in their case a robust initial schedule and a set of
reactions giving transitions from a schedule to another schedule in response to a
disruption, given a certain reaction cost. In a pioneering work, [6] proposed the
so-called Just In Case approach, in which they compute a multiple contingent
schedule, where transitions from a baseline schedule to alternative schedules were
anticipated at some events having a high probability of break. This approach has
been since then largely developed for AI planning problems, addressing among
others incrementality and memory limits issues [5, 8]

In this paper, we are interested in transposing contingency planning con-
cepts to robust scheduling problems. We consider repeated scheduling problems
where some parameters are known and constant at each scheduling iteration
and some of them are known with imprecision, according to scenarios. In order
to take advantage of known and constant parameters, we introduce a proactive
reactive method in which we suppose that the decision maker may have access
to some information about the imprecise parameters to reduce the uncertainty
at predefined time points of the schedule execution, where the schedule can be
changed. However, obtaining information on the uncertain parameters can be
costly and frequent rescheduling can be disturbing. Hence at each decision time
point the scheduler has the choice to use the information or not and to react or
not depending on the impact of the reaction on the schedule robustness. Using
intelligently these information, we build off-line a decision tree that will be used
to schedule the problem at each repetition.

The problem we chose to validate our approach is the simple scheduling
problem 1||Lmax, in which we suppose that the processing time are known and
fixed, and the due dates are uncertain. We detail why we chose this problem in
Section 4.

The outline of the paper is the following. Section 2 formally define the uncer-
tainty and information models as well as the robust decision tree concept and its
related problem. Then, we detail the algorithm we designed to solve these prob-
lems, namely the general algorithm for building the robust decision tree (Section
3) and the algorithm for solving the robust partitioning subproblem (Section 4).

Robust Predictive-Reactive Scheduling 3

We then present some numerical results in Section 5 comparing our approach to
a more standard proactive-reactive scheduling algorithm.

2 Notations and Definitions

2.1 Uncertainty model

In practice, it is often easier for a decision-maker to establish bounds over un-
certain parameters, like processing times or due dates, than to build an accurate
probabilistic model which often requires a large amount of data. In this paper,
we consider interval uncertainty. Given an uncertain parameter x we denote by
X = [xmin, xmax] the interval in which it takes its value. We make no assump-
tion about which probabilistic law is followed by x in this interval. Given a set
of uncertain parameters (xi)i∈I we define the set of possible assignments of pa-
rameters by Ω =

∏
i∈I Xi (i.e. it is assumed that there is no correlation between

them, all realisation xi are independent). We call a scenario an assignment of
each parameter xi,∀i ∈ I such that (xi)i∈I ∈ Ω.
From now on, when ω is a scenario, s a schedule and f the objective , we denote
by f(ω, s) the objective value of s in scenario ω (note that for our application
case, f = Lmax).
In this paper we consider the 1||Lmax problem, that is to say we want to sched-
ule a set of I jobs with deterministic processing times pi, i ≤ I and uncertain
due dates di ∈ Di, i ≤ I on a single machine so that the maximum lateness is
minimum.

Example 1. We consider a small instance of the problem 1||Lmax with three
tasks :

- task 1 : p1 = 10, d1 ∈ D1 = [10, 11]

- task 2 : p2 = 6, d2 ∈ D2 = [11, 17]

- task 3 : p3 = 4, d3 ∈ D3 = [13, 20]

The set of scenarios for this instance is Ω = D1 ×D2 ×D3 and ω = (10, 12, 19)
is a scenario. We will keep this instance all along this paper to exemplify the
notions and algorithms we introduce.

2.2 Information Model

As explained in Section 1 we suppose that at some time during the execution of
the schedule, some information become accessible. In our model, an information
allows the scheduler to tighten the interval of uncertainty of a future realisation.

Definition 1. For a given uncertain parameter x ∈ X and a moment of decision
t during the execution of the schedule, we call an information about x a value
ktx and an operator in {≤,≥}.

4 Tom Portoleau, Christian Artigues, Romain Guillaume

For instance, an information is x ≤ ktx. So the decision maker, from time t
on, is able to reduce the set of possible assignments by updating the interval
X, x ∈ Xinf

ktx
= [xmin, k

t
x] or x ∈ Xsup

ktx
=]ktx, xmax]. Note that the information

depends on t, so the scheduler may have to ask for an information about the
same data several times during the execution of the planning. Our model aims
to make the best use of available information, and select the more relevant ones.
For the problem considered in this paper we suppose that for a given moment of
decision t and a task i, we have an information ktd if min(t+ pi, 2t) ∈ Di. If so,
ktd = min(t + pi, 2t). Otherwise we consider that we have no information about
the task i . This hypothesis on the availability of information is arbitrary, but
in fact it expresses two natural questions a scheduler may ask about uncertain
due dates : ”If task i started now, can it be completed without being late ? If
so, is the due date di far from now ?” In any case, an answer to these questions
allows the scheduler to bound the uncertainty of a due date di.

Example 2. Let us look again at the instance from Example 1. We suppose that
we are at a moment of decision t = 10 and that task 1 has been scheduled first.
Given the hypothesis we made about information availability, we have:

- task 1 is completed, so there is no relevant information about it.
- min(t+ p2, 2t) = 16 ∈ D2, so ktd2 = 16.
- min(t+ p3, 2t) = 14 ∈ D3, so ktd3 = 14.

Therefore, for any ω ∈ Ω, the scheduler is able to determine, from time t = 10,
if ω2 ≤ 16 or if ω2 > 16, and if ω3 ≤ 14 or if ω3 > 14.

2.3 Robust Decision Tree

Definition 2. A robust decision tree T is a tree where the nodes are labeled with
a subset of Ω, and the arcs are labeled with a partial schedule. If n is a node of
T , Ωn denotes a subset of Ω associated to n. A robust decision tree satisfies the
following properties:

(i) Let us denote by (nj)j≤J the children of node n. Then
⋃
j≤J Ω

nj = Ωn.
(ii) For any path (n0, ..., nm) where n0 is the root of T and nm is a leaf,
the schedule obtained by concatenating all the partial schedules on the arcs
along the path is feasible.
(iii) Let n and n′ be two nodes of T . The partial schedule s′ on the arc
(n, n′) is robust:

s′ = argmin
s∈S

max
ω∈Ωn′

f(ω, s)

where S is the set of admissible partial solutions.

A robust decision tree can be seen as a compact representation of a set of so-
lutions. Given that the decision maker has access to information that allow to
split the set of scenarios, the tree makes it possible to retrieve a solution, with a
robustness guarantee, for certain subsets of scenario. A generic illustration of a

Robust Predictive-Reactive Scheduling 5

Fig. 1. Generic example of a Robust Deci-
sion Tree.

Fig. 2. Example of a robust decision for
Example 3.

robust decision tree is displayed in Figure 1. In this case, if the decision maker
is able to know if an ongoing scenario ω is in Ω1 or in Ω2, he can pick the more
robust solution for each case.

In this paper our goal is, for a given set of scenario, to compute a robust
decision tree that is actually usable by a decision maker during the execution of
the schedule, allowing to adapt the schedule online and to make it as robust as
possible, depending on some knowledge or information the decision maker has
access to. For this purpose, we consider in our model that each level j in the
tree coincide with a fixed moment of time tj during the progress of the schedule.
These moments are the points in time when the decision maker has access to
some knowledge about uncertain parameters. An illustration of this is given in
Example 3.

Example 3. Still using data from Example 1, if we consider one moment of
decision t = 10 we can use the information computed in Example 2. For this
example, we set Ω1 = D1 × [11, 16] × D3 and Ω2 = Ω \ Ω1. Then the robust
decision tree shown in Figure 2 is valid. The first task to be scheduled is task 1,
regardless of the ongoing scenario, then thanks to the information accessible at
time t = 10, the decision maker knows if the ongoing scenario ω is in Ω1 or in
Ω2, and then can switch to the more robust solution (respectively scheduling task
2 before task 3 if ω ∈ Ω1 and task 3 before task 2 otherwise).

2.4 Partitioning the Scenarios

The core problem of our method is, for any node n, computing a robust partition
of the scenario set, but how do one compare the robustness of two different
partitions ? We propose the following criterion. We define the Robustness Score
(RS) of a partition P as the sorted vector of the worst case objective values
of the optimal robust solution (considering absolute robustness criterion [7]) on

6 Tom Portoleau, Christian Artigues, Romain Guillaume

each element of P :

RS(P) = (min
s∈S

max
ω∈p

f(ω, s))p∈P

where S is the set of feasible solutions. Now, given two partitions P and P ′,
we say that P is a better partition than P ′ if RS(P) <lexi RS(P ′) where <lexi
is the lexicographical order. The intuition behind this criterion is the following:
each value of this vector is the objective value of the solution that minimises
its objective value on the worst case scenario of every subset making up the
partition. Since these vectors are sorted in the increasing order, the first value
is the minimum minmax objective value. In other words, the subset of scenarios
corresponding to this value has the best worst-case objective value. By comparing
this value first we know which partition allows the scheduler to improve the
robustness of the solution the most.

Example 4. Let us consider the partition P of Ω = Ω1 ∪ Ω2 from Example
3. Let us denote by RV (Ω) the minmax objective value on Ω, or more formally
RV (Ω) = mins∈S maxω∈Ω f(ω, s). We have:

RS(P) = (min(RV (Ω1), RV (Ω2)),max(RV (Ω1), RV (Ω2)))
RS(P) = (6, 7)

Let now be P ′ another partition of Ω = Ω′1 ∪Ω′2, with Ω′1 = D1 ×D2 × [13, 14]
and Ω2 = Ω \Ω1. We compute RS(P ′) = (4, 7). Since RS(P ′) <lexi RS(P), P ′

is a better partition considering our criterion.

As we have seen, an information ktx allows us to split in two the set of

scenarios, since it enables us to distinguish scenarios where the data x ∈ Xinf
ktx

from those where x ∈ Xsup
ktx

. More generally, if m information are available, we

can split the set of scenarios in 2m subsets. We denote by Kt the set of all
information available at time t. Our goal is to use these subsets to create a size-
limited partition of the set of scenarios and compute for each subset of scenarios
within the partition a new robust solution. The idea is that diminishing the
size of the set of scenarios necessarily improves the worst-case scenario and thus
leads to better robust solutions. The maximum size of this new partition is a
parameter L, decided by the decision maker. Moreover, the maximum number
of information the partition is allowed to use is another parameter Q.

We express the core problem (our method involves solving it multiple times)
of our approach, the Robust Partitioning Problem (RPP):

Robust Predictive-Reactive Scheduling 7

ROBUST PARTITIONING PROBLEM
INSTANCE: A set of scenarios Ω of dimension I, a set of information Ktand
two integers Q and L ≤ 2Q .
SOLUTION: A partition P of Ω that verifies:

1- |P | ≤ L
2- ∀p ∈ P,∃Jp ∈ N , p =

⋃
j≤Jp

∏
i≤I pi,j with pi,j ∈ {Xinf

ktxi

, Xsup
ktxi

, Xi} if

ktxi
∈ Kt and pi,j = Xi otherwise

3- |{ktxi
∈ Kt|∃p ∈ P,∃j ≤ Jp,∃i ≤ I, pi ∈ {Xinf

ktxi

, Xsup
ktxi

}| ≤ Q

MEASURE: RS(P) minimal for the lexicographical order.

Constraint 1 limits the size of the solution partition so it must be lower than
L. Constraint 2 forces the partition to be composed of subsets formed by the
information from Kt. In other words, a partition such that any of its subset
cuts through the hyperplane defined by ωi = ktxi

is not a feasible solution. And,
finally, constraint 3 forces the maximum number of information to be lower than
Q. Note that in the solution if we have pi,j = Xi for all pj,i and ktxi

∈ Kt,
for a parameter i, this means that despite the availability of a new information
on parameter i at time t, this information has been ignored as the uncertainty
set Xi is not partitioned according to ktxi

. This can be due to the limit on the
number Q of information that can be used (Constraint 3) or to the absence of
positive impact on this partition on the lexmin objective (i.e. the information is
not locally relevant to improve the robustness).

Now that our model is set, the next sections introduce the algorithms we
implemented to produce a robust decision tree and solve the RPP.

3 Robust Decision Tree Algorithm

In this section, we detail the general algorithm to build a robust decision tree.

Using the previous definitions we now propose a method to build a robust
decision tree (see Definition 2). In this paper, we consider that the moments
of decision (i.e. moments when the scheduler is able to access new information
and change the schedule), denoted by (tj)j∈J are fixed in advance. This may
correspond in practice to special times, such as the end of a working day, or a shift
change where the planning can be updated. Every decision moment corresponds
to a level in the decision tree, such that t1 corresponds to the first level, t2 to
the second one, etc... In that respect, the depth of the tree is controlled by the
number of decision moments. At each fork at a level j in the tree, a new partial
solution, consistent with the partial schedule that has been accomplished until
tj , is proposed according to the current set of scenarios. The root of the tree, that
we consider being the level 0 corresponds to the time t0 = 0, the beginning of
the schedule. At this point no information is known, so only one robust solution

8 Tom Portoleau, Christian Artigues, Romain Guillaume

is proposed. Thus, a single node is created at level 1. At this node, we retrieve
all the information available at time t1. Using up to Q information, we split the
set of scenarios into -at most 2Q- subsets forming a partition P . We then solve
the Robust Partition Problem (we detail more about this solution procedure
in Section 4), and obtain a robust partition P ′. For each subsets in P ′ a new
solution is proposed and a new branch is set up, leading to a new node at the
next level. The set of scenarios considered in this node is the one from which
it originated in P ′. These steps are repeated until the last decision moment is
reached.

4 Robust partition algorithm

In the general case, one can clearly see that this problem is highly combinato-
rial. Indeed we have to, for each combination of information, compute the best
partition using these information. The complexity of the RPP depends on three
factors. The first two are the number of tasks to schedule (let say n), since it
gives an upper bound of the number of information available at each moment
of decision, and Q the number of information we are allowed to use at each
moment of decision. The number of possible combinations at a moment of deci-
sion is bounded by

∑Q
q=1

(
n
q

)
. The third factor is the complexity of computing

the min-max robust objective value mins∈S maxω∈Ω fω(s) for any Ω. Clearly, if
the deterministic problem is already difficult, so is its robust variant. However,
there are cases where a deterministic scheduling problem is polynomial, while
its uncertain alternative is NP-Hard. We chose the problem 1||Lmax to test our
approach specifically because its robust min-max alternative is still polynomial
[2].

Proposition 1. If f admits a global worst case scenario, that is to say that
there exists a scenario ωwc such that:

∀ω′ ∈ Ω, ∀s ∈ S, f(ωwc, s) ≥ f(ω′, s)

then given a partition P of Ω and an integer L, it is possible to compute in
polynomial time a partition P ′ so that RS(P ′) is minimal and that satisfies:

(i) |P ′| = min(L, |P |)
(ii) for all p ∈ P there exists p′ ∈ P ′ such that p ⊂ p′

Remark : For the 1||Lmax problem, the global worst case scenario is ω =
(dimin)i∈I .

Proof. We prove the proposition by showing that any partition returned by
Algorithm 1 verifies the properties from Proposition 1.
By construction, a partition P ′ returned by Algorithm 1 satisfies (i) and (ii).
Now we must prove that RS(P ′) is minimal. First we can observe that:

min
s∈S

max
ω∈

⋃
j∈J Pj

f(ω, s) = min
s∈S

max
j∈J

max
ω∈Pj

f(ω, s)

Robust Predictive-Reactive Scheduling 9

for any family of disjoint sets (Pj)j∈J . From that observation we can derive
that for any partition P ′′ that satisfies (ii), the values contained in RS(P ′′) are
necessarily in RS(P). Thus for any other partition P ′′ that verifies (ii) we have,
for i ≤ L− 1,

RS(P ′)i ≤ RS(P ′′)i (1)

because, by construction, RS(P ′)i is the i-th smallest possible value and RS
vectors are sorted in the increasing order. In addition, since f admits a global
worst case scenario ωwc, there exists p′ ∈ P such that ωwc ∈ p′. Thus, for any
union of subset of the form

⋃
p∈P p we have:

min
s∈S

max
ω∈

⋃
p∈P p

f(ω, s) = min
s∈S

max
ω∈p′

f(ω, s) = min
s∈S

f(ωwc, s)

Thereby, for any partition P ′′ the last value inRS(P ′′) is necessarily mins∈S f(ωwc, s).
Finally, from this result and (1) we conclude that RS(P ′) is minimal.

An example of the execution of Algorithm 1 is given in Example 5.

Algorithm 1

Require: P = [P1, P2, ..., Pj] a partition of Ω and an integer L.
for i ≤ j do
RS[i]← mins∈S maxω∈pi f(ω, s)

end for
for i ≤ j do
RSS [i]← RS[φ(i)]
PS [i]← P [φ(i)]
where φ is the permutation that sorts RS in the increasing order.

end for
j′ ← the index such that the global worst case scenario ωwc is in P [j′]
PS [j], PS [j′]← Ps[j′], Ps[j]
if |PS | > L then
PS ← [PS [1], PS [2], ..., PS [L− 1],

⋃j
i=M PS [i]]

end if
return PS

Example 5. Once again, let us consider instance from Example 1. Let us sup-
pose that t = 10 is a moment of decision and we have to develop a node from
the tree. In Example 2, we saw that Kt=10 = {kt=10

d2
, kt=10
d3
} with kt=10

d2
= 16

and kt=10
d3

= 14. We can split the set of scenarios into four subsets (as shown in
Figure 3).
Let us apply Algorithm 1 with P = [A,B,C,D] and L = 3. Keeping the same no-
tation, we have RSV = [7, 6, 4, 4], then RSVs = [4, 4, 6, 7] and Ps = [C,D,B,A].
As |Ps| > L, we modify Ps to Ps = [C,D,A ∪ B] and its robustness score is
[4, 4, 7].

10 Tom Portoleau, Christian Artigues, Romain Guillaume

Remark : Note that by definition of the shape of P any union of rectangles
is feasible. In other words, even a non rectangle shape is acceptable. For instance,
considering notations from Example 5, the partition [A,B ∪C ∪D] is a feasible
solution.

Fig. 3. Set of scenarios for Example 5

We now propose Algorithm 2 to solve the RPP problem. It is an exhaus-
tive algorithm, that calls Algorithm 1 for each combination (smaller than Q) of
information, so it has an exponential complexity.

We are now able to build a robust decision tree with the procedure introduced
in Section 3.

Algorithm 2

Require: A set of scenarios Ω, a set of information Kt and two integers Q and L
P ∗ = [Ω]
for K ⊆ Kt do

if |K| ≤ Q then
P = {p|p =

⋃
j∈Jp

∏
i∈I pi,j with pi,j ∈ {Xinf

kt
xi

, Xsup
kt
xi

, Xi} if ktxi
∈ Kt and

pi,j = Xi otherwise }
P ′ = Algo1(P,L)
if RS(P ′) ≤lexi RS(P ∗) then
P ∗ = P ′

end if
end if

end for
return P ∗

Robust Predictive-Reactive Scheduling 11

5 Experimentations

The objective of the carried out experiments is to evaluate the robustness of our
robust decision tree model, the quality of the selected information used for its
construction and its stability in terms of number of reactions. For the numerical
tests, we generated different types of instances for the 1||Lmax problem with
uncertainty on the due dates according to two parameters. The first parameter
is the class of the instance. We distinguish two classes: the A class with small
uncertainty intervals, and the B class with large uncertainty intervals. The sec-
ond parameter is the number of tasks to schedule. For example, the instance A10

is an instance with 10 tasks, with small uncertainty intervals on the tasks’ due
dates.

As our approach uses the notion of information to reduce uncertainties to pro-
vide more robust solution, we compare it to a more standard proactive-reactive
algorithms. This algorithm takes two parameters as input (in addition to the
instance), a reaction rate ρr ∈ [0, 1] and an information rate ρi ∈ [0, 1]. The
principle of the algorithm is the following. We start the execution of the plan-
ning with a robust schedule in the sense of the min max criterion. At the end of
each task, the algorithm reacts with a ρr probability. When it reacts, it computes
a new robust solution using at most 100ρi% of the available information. The
definition of an information and the way it is accessible are strictly the same
as the ones used to build a robust decision tree. To build a robust decision tree
with our method, we need a couple of parameters : a list of moments of deci-
sion (tj)j∈J , the maximum number of information we are allowed to use at each
moment of decision Q, and the maximum size of the partition we compute at
each moment of decision L. In order to test different lists of moment of decision,
we split the total schedule duration in T equal intervals. In our experiment we
computed robust decision trees using the following values:

- Number of moment of decision T ∈ [2, .., 10].
- Maximum number of information at each moment Q ∈ [1, .., 10].
- Maximum size of partitions at each moment L ∈ [2, .., 4].

As such, a tree computed with these parameter is denoted by TreeQ,L,T . These
values may seem small, but as we discuss it earlier, these parameters not only
impact the computation time to solve the RPP, but also the size of the tree. In
order to keep the total computation time of a tree reasonable, we had to keep
these values not too high.

As we have seen before, the proactive-reactive algorithm takes two param-
eters, ρi and ρr. Since an execution of this algorithm is fast to simulate, we
enumerate for ρi and ρr every values in [0, 1] with 0.1 steps.

For each instance, we randomly pick 500 scenarios (with an uniform distribu-
tion). Then, for each set of parameters and each instance, we compute a robust
decision tree, and go through the tree following the path corresponding to each
random scenario. The same protocol is used with the robust reactive algorithms,
we simulate them on each random scenarios.

12 Tom Portoleau, Christian Artigues, Romain Guillaume

Fig. 4. Pareto frontier for both criterion
on instance A50

Fig. 5. Pareto frontier for both criterion
on instance B50

5.1 Information/Reaction Efficiency

We assess the relevance of the information used to build the tree, and the stability
of the planning proposed by the tree. To do so we collected, for each instance,
the mean number (over the 500 random scenarios) of information used, the mean
number of reactions (when a global solution changes between two moments of
decisions) and the distance from optimum, which is, for a given scenario ω and
a solution s :

100 · Lmax(ω, s)− Lmax(ω, s∗)

Lmax(ω, s∗)

where s∗ is the optimal solution minimising its Lmax value on scenario ω.
We consider two couples of criterion: (distance from optimum, number of re-
actions) and (distance from optimum, number of information), and for both of
them, we draw two Pareto frontiers, one for the robust reactive algorithm and
one for the robust decision tree. Some of the results are shown in Figure 4 and
5. Due to the fact that most trees could not be computed before the time limit,
there are less point for the decision trees for instance A50.

Robust Predictive-Reactive Scheduling 13

For the instance A10, the best robust decision trees produce worse solutions
than the best reactive robust algorithms when little numbers of reactions and
information are used, but it performs better with more reactions and informa-
tion. On instances B10 A50, the best decision trees perform better than the best
reactive algorithms on both criterion. More generally, we observe that the robust
decision trees provide better solutions (for a given number of tasks) when un-
certainty intervals are larger. Intuitively, this can be explained by the fact that
decision trees are very constrained by the moments of decision while the reactive
algorithms is not. So, larger uncertainties allow robust decision trees to acquire
more new information than it does with robust reactive algorithms.

Reaction Information
extreme 1 extreme 2 extreme 1 extreme 2

A10 Tree10,4,2 Tree3,2,14 Tree10,4,2 Tree3,2,14
B10 Tree10,4,2 Tree10,4,6 Tree10,4,2 Tree2,4,6
A50 Tree10,4,3 Tree3,4,6 Tree2,4,3 Tree2,4,6

Table 1. Robust decision trees corresponding to extreme point in the Pareto frontiers
shown in Figures 4 and 5.

However, this way of presenting the results does not show which robust deci-
sion trees appear in the Pareto frontier. Table 1 shows which trees (and the set
of parameters they were computed with) are the extreme points of the different
Pareto frontiers. Quite intuitively, the decision trees propose the best solutions
with few information and reactions, when the number of moments of decision
is low and the maximum number of usable information is high. With the same
idea, the decision trees built with a high number of moments of decision (i.e
the deepest ones) but with few information available at each moment yield good
solutions as well. Interestingly, this shows that the depth of the tree is more im-
portant to produce quality solutions than the maximum number of information.
The table also shows that the maximum partition size was used for the best
trees, which implies the results could be improved by increasing this value.

6 Conclusion

In this paper we introduce a proactive-reactive approach to deal with uncertain
scheduling problems. The method constructs a robust decision tree for a decision
maker that is reusable as long as the problem parameters belong to the uncer-
tainty set. At each node of the tree we assume that the scheduler has access to
some knowledge about the ongoing scenario, reducing the level of uncertainty and
allowing the computation of less conservative solutions with robustness guaran-
tees. However, obtaining information on the uncertain parameters can be costly
and frequent rescheduling can be disturbing. We first formally define the robust

14 Tom Portoleau, Christian Artigues, Romain Guillaume

decision tree and the information refining concepts in the context of uncertainty
scenarios. We then introduce the Robust Partition Problem, the core problem
of our approach. Then we propose algorithms to solve this problem and build
such a tree. Finally, focusing on a simple single machine scheduling problem, we
provide experimental comparisons highlighting the potential of the decision tree
approach compared with reactive algorithms for obtaining more robust solutions
with fewer information updates and schedule changes.
In the view of the encouraging results we believe that this method could be
used in industrial cases. For our future works, we plan to apply and extend our
method to hard problems, such as the Resource-Constrained Project Scheduling
Problem.

References

1. Marjan van den Akker, Han Hoogeveen, J.S.: Combining two-stage stochastic pro-
gramming and recoverable robustness to minimize the number of late jobs in the
case of uncertain processing times. J. Scheduling 21(6), 607–617 (2018)

2. Aloulou, M.A., Della Croce, F.: Complexity of single machine scheduling prob-
lems under scenario-based uncertainty. Operations Research Letters 36(3), 338–
342 (2008)

3. Davari, M., Demeulemeester, E.: The proactive and reactive resource-constrained
project scheduling problem. Journal of Scheduling pp. 1–27 (2017)

4. Davari, M., Demeulemeester, E.: Important classes of reactions for the proactive
and reactive resource-constrained project scheduling problem. Annals of Opera-
tions Research 274(1-2), 187–210 (2019)

5. Dearden, R., Meuleau, N., Ramakrishnan, S., Smith, D.E., Washington, R.: Incre-
mental contingency planning. In: ICAPS-03 Workshop on Planning under Uncer-
tainty (2003)

6. Drummond, M., Bresina, J., Swanson, K.: Just-in-case scheduling. In: AAAI.
vol. 94, pp. 1098–1104 (1994)

7. Kouvelis, P., Yu, G.: Robust Discrete Optimization and Its Applications. Kluwer
Academic Publishers (1997)

8. Meuleau, N., Smith, D.E.: Optimal limited contingency planning. In: Proceedings
of the Nineteenth conference on Uncertainty in Artificial Intelligence. pp. 417–426.
Morgan Kaufmann Publishers Inc. (2002)

9. Nikulin, Y.: Robustness in combinatorial optimization and scheduling theory: An
extended annotated bibliography. Tech. rep., Manuskripte aus den Instituten für
Betriebswirtschaftslehre der Universität Kiel (2006)

10. Rajendran, C., Holthaus, O.: A comparative study of dispatching rules in dy-
namic flowshops and jobshops. European Journal of Operational Research 116(1),
156 – 170 (1999). https://doi.org/https://doi.org/10.1016/S0377-2217(98)00023-
X, http://www.sciencedirect.com/science/article/pii/S037722179800023X

11. Van de Vonder, S., Demeulemeester, E., Herroelen, W.: A classification of
predictive-reactive project scheduling procedures. Journal of scheduling 10(3),
195–207 (2007)

12. Yanıkoğlu, İ., Gorissen, B.L., den Hertog, D.: A survey of adjustable robust opti-
mization. European Journal of Operational Research 277(3), 799–813 (2019)

