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Abstract

HyMU (Hybrid system Monitoring under Uncer-
tainty) is a software developed in Python by the
DISCO team at LAAS-CNRS. It was designed to
simulate, diagnose and prognose hybrid systems
using model-based methods. Its main feature is to
deal with many types of uncertainties (modeling
uncertainty, unreliable observations and unknown
future inputs). A multimode representation of the
hybrid system has to be established by specifying
continuous and discrete evolutions defining its be-
havior and its degradation. From this representa-
tion, HyMU computes a Hybrid Particle Petri Net
(HPPN) model, a diagnoser and a prognoser. The
HPPN model can be simulated with an input sce-
nario to compute the system outputs and health
mode. From the HPPN model and a set of obser-
vations, the diagnoser and the prognoser compute
the current and future mode beliefs, the mode tra-
jectories and the predicted Remaining Useful Life
(RUL). This paper describes HyMU, its function-
ality and gives some examples of results.

1 Introduction
The complexity of systems has evolved to reach a point
where it is often impossible for humans to fully understand
and explain their behaviors, especially with the occurrence
of faults, leading to failures. This is why efficient diagnosis
and prognosis techniques have to be adopted to detect, iso-
late and prevent faults and therefore, failures. As it becomes
harder and harder to execute these techniques, tools have
been developed to ease and speed up their execution, and to
reduce the global costs of unavailability and repair actions.
The goal of this paper is to introduce one of these tools:
HyMU (Hybrid system Monitoring under Uncertainty).

HyMU is a software developed in Python by the DISCO
team at LAAS-CNRS. It is available on github 1 under a
LGPL license. Based upon the Hybrid Particle Petri Nets
(HPPN) formalism, which is an extension of Petri Nets, it
was designed to simulate, diagnose and prognose hybrid
systems using model-based methods. Its two main features
are (1) to deal with many types of uncertainties (model-
ing uncertainty, unreliable observations, unknown future in-
puts), (2) to focus on the degradation, considered not only

1https://github.com/echanthe/HyMU

as a function of the continuous state but also as a function
of the set of events that have occurred on the system.

Basically, the user gives as input a multimode represen-
tation of the hybrid system and provides a scenario of in-
puts for the system to monitor. HyMU is then able to simu-
late the system model by using an implicit HPPN model of
the system and to monitor the health state of the system by
building a diagnoser and a prognoser. The use of the HPPN
formalism is necessary to cope with uncertainties and degra-
dation, which are not taken into account by more classical
formalisms such as hybrid automata. The diagnosis results
take the form of a set of health mode beliefs, while the prog-
nosis results are represented as estimated End Of Life (EOL)
values for the system or Remaining Useful Life (RUL) be-
liefs.
The paper is organized as follows. Section 2 explains
the models used by HyMU, i-e. the multimode represen-
tation and the HPPN formalism. Section 3 presents the
HPPN-based health monitoring methodology which is im-
plemented in HyMU. Section 4 presents the HyMU soft-
ware in details and explains how to model, simulate, diag-
nose and prognose using the HyMU tool. Section 5 shows
the application of HyMU on a three-tank system, and the re-
sults obtained. Finally, section 6 and section 7 present other
existing tools and introduce future work we would like to
implement.

2 System modeling for HyMU
The main goal of HyMU is to follow and evaluate the health
modes of the system. Health modes are defined as follows.
More details are provided in [1].

Definition 1 (Health mode). A health mode of the system is
a combination of one discrete state and associated continu-
ous dynamics and degradation evolution.

HyMU requires as inputs a multimode representation of
the system and a scenario. The multimode representation is
then used to build an implicit HPPN model of the system.
These two kinds of models are recalled in the next subsec-
tions.

2.1 Multimode representation
To our knowledge, the multimode representation concept
has been introduced in [2]. It is based on the concepts of
hybrid automaton [3] and captures the system’s intra mode
behavior through the continuous dynamics and the continu-
ous variables. As said before, the difference between usual
continuous dynamics and degradation is that degradation is



Figure 1: Example of a multimode representation for a sys-
tem.

function of the continuous state and the set of events that
have occurred on the system. We then adapted the concept
of multimode representation and give here our own formal
definition for hybrid system including degradation.

Definition 2 (Multimode representation). A multimode rep-
resentation is a finite multidigraphMR = (Vm, Am) where
Vm is the set of vertices representing the health modes of
the system and Am is the set of arcs representing the transi-
tions between health modes. Each arc in Am is associated
with a set of conditions that can imply discrete events of
E or continuous conditions. The continuous conditions are
named guards and represent constraints on the continuous
state and/or the degradation state.

The set E = Eo ∪ Euo is the set of event labels that is
partitioned into observable event labels Eo and unobserv-
able event labels Euo. For example, an anticipated fault in
the system model is represented by an unobservable event
f ∈ Euo ⊂ E. An event e is a couple e = (v, k) where
v ∈ E is an event label (or type) and k ∈ R the time of
occurrence of e. An event (v, k) is unobservable if for all k,
v does not belong to the set of discrete observations of the
system.

Figure 1 illustrates a multimode representation for a sys-
tem with 7 health modes. Nominal modes are represented
by green circles, degraded modes are represented by orange
circles and failure modes by red circles. Each mode is as-
sociated with continuous dynamics and degradation dynam-
ics. The system has for example 2 nominal modes Nom1

and Nom2 in green, observable events are Eo = {a, b} and
Euo = {f1, f2, f3} are the faults that may occur on the sys-
tem. x is the continuous state, and d the degradation state.
Transitions between Nom2 and Deg2 or between Nom2

and Deg3 are two guards on continuous values. Figure 6
is also an example of multimode representation, obtained
via HyMU, which continuous and degradation dynamics are
given in the model description file on github.

2.2 Hybrid Particle Petri Nets
As argued before, the use of a formalism that copes with un-
certainties and degradation for health monitoring purpose,
which are not taken into account by more classical for-
malisms such as hybrid automata, is necessary. Our solution
is the definition of the Hybrid Particle Petri Nets (HPPN),

which have been presented in detail in [1]. In this section,
we give the main ideas of the formalism, but we recommend
reading the original paper for a better understanding.
Definition 3. An HPPN is defined as a 11-tuple
〈P, T,A,A, E,X,D, C,D,Ω,M0〉 which describes dis-
crete states (with symbolic places), continuous dynamics
(with numerical places) and degradation evolution (with
degradation places) of a system and relations between them:

• P is the set of places, partitioned into numerical places
PN , symbolic places PS and degradation places PD,
P = PS ∪ PN ∪ PD,

• T is the set of transitions,
• A ⊆ P × T ∪ T × P is the set of arcs,
• A is the set of arc annotations,
• E is the set of event labels,
• X ⊆ RnN is the state space of the continuous state

vector, with nN ∈ N+ the number of continuous state
variables,

• D ⊆ RnD is the state space of the degradation state
vector, with nD ∈ N+ the number of degradation state
variables,

• C is the set of continuous dynamics equation sets asso-
ciated with numerical places,

• D is the set of degradation equation sets associated
with degradation places,

• Ω is the set of conditions associated with transitions,
• M0 is the initial marking of the Petri net.

The places of an HPPN are marked by tokens that carry
different types of information.

Symbolic places PS model the discrete states of the sys-
tem and are marked by symbolic tokens called configu-
rations. The set of configurations at time k is denoted
MS
k . Each configuration in an HPPN carries the trace of

events that occurred on the system until time k. A con-
figuration δk ∈ MS

k is a token at time k whose value is a
set of events bk that occurred on the system until time k:
bk = {(v, κ)‖κ ≤ k}.

Numerical places PN represent continuous dynamics of
the system and related uncertainty. Each numerical place
pN ∈ PN is associated with a set of dynamics equations
CpN ∈ C modeling system continuous dynamics and its cor-
responding model noise and measurement noise:

CpN =

{
xk+1 = f(xk, uk) + v(xk, uk)
yk = h(xk, uk) + w(xk, uk)

, (1)

where xk ∈ X is the continuous state vector, uk ∈ Rnu is
the vector of nu continuous input variables, f is the noise-
free continuous evolution function, v is a noise function,
yk ∈ Rny is the vector of ny continuous output variables,
h is the noise-free output function and w is the noise func-
tion associated with observation. Functions f , v, h and w
depend on the considered place pN . Numerical places are
marked by numerical tokens called particles. The set of par-
ticles at time k is denoted MN

k . More precisely, a particle
πk ∈MN

k is a token whose value represents a possible con-
tinuous state xk ∈ X of the system at time k.

Degradation places PD represent degradation dynam-
ics of the system and related uncertainty. Each degrada-
tion place pD ∈ PD is associated with a set of equations



DpD ∈ D modeling system degradation dynamics:

DpD = dk+1 = g(dk, bk, xk, uk) + z(dk, bk, xk, uk), (2)

where dk ∈ D is the degradation state vector, bk is the set
of events that occurred on the system until time k, g is the
noise-free degradation evolution function and z is a noise
function. Functions g and z depend on the considered place
pD.

Degradation places are marked by degradation tokens.
The set of degradation tokens at time k is denoted MD

k .
A degradation token dk ∈ MD

k links a configuration δk to
a particle πk and its value is a possible degradation state
dk ∈ D of the system at time k.

In the HPPN formalism, health modes are represented by
combinations of three places: a symbolic place, a numerical
place representing the continuous dynamics of the mode and
a degradation place, representing the degradation dynamics
of the mode.

The marking Mk of an HPPN at time k is the distribution
of tokens in the different places:

Mk = MS
k ∪MN

k ∪MD
k , (3)

where MS
k ∈ (2M

S
k )s, MN

k ∈ (2M
N
k )n and MD

k ∈ (2M
D
k )h

are respectively symbolic, numerical and degradation mark-
ings at time k.

Initial marking M0 represents the initial conditions of the
system (the initial continuous and degradation states and the
set of events that have occurred until time 0).

Firing rules in an HPPN are different depending on the
utilization: model simulation, diagnosis or prognosis. A
triplet of conditions Ωt =< ωSt , ω

N
t , ω

D
t >∈ Ω is asso-

ciated with a transition t ∈ T . The condition ωSt can test
the occurrence on an event in the value of a configuration
δk. The numerical condition ωNt and the degradation condi-
tion ωDt are guards on the values of the continuous state xk
and on the degradation state dk. If one of these three con-
ditions is not specified, it is set to the TRUE default value.
We will introduce the firing rules based on these conditions
for diagnosis and prognosis processes later in this article.

3 HPPN-based health monitoring
methodology

Diagnosis aims at tracking the system’s current health state
from discrete and continuous observations on the system.
Prognosis aims at predicting the system future states and its
RUL/EOL from diagnosis and future inputs available from
a mission scenario for example. During an arbitrary predic-
tion horizon τ , the goal is then to determine if and when the
system will enter a failure mode and will not be operational
anymore.

Our HPPN-based health monitoring methodology uses
the Hybrid Particle Petri Nets (HPPN) data structure to gen-
erate three different objects: a model, a diagnoser and a
prognoser from a multimode representation of the hybrid
system. These three objects are generated during the first
phases of the health monitoring procedure, given in Algo-
rithm 1.

The first offline step (line 1) is the generation of the HPPN
model HPPNΦ of the system. It can be directly built from
a multimode representation or created from expert knowl-
edge. The second offline step (line 2) is the automatic gener-
ation of an HPPN-based diagnoser HPPN∆ from the sys-

Algorithm 1 HPPN-based health monitoring procedure
1: HPPNΦ ← CreateHPPNModel()
2: HPPN∆ ← GenerateHPPNDiagnoser(HPPNΦ)
3: HPPNΠ ← GenerateHPPNPrognoser(HPPNΦ)
4: for all k do
5: Ok ← (USk , u

N
k , Y

S
k , y

N
k )

6: ∆k ← Update(HPPN∆, k, Ok)
7: Πk ← Prognose(HPPNΠ,∆k,U+

k )
8: end for

tem model HPPNΦ. The last offline step (line 3) is the au-
tomatic generation of an HPPN-based prognoser HPPNΠ

from the system model HPPNΦ.
The online process (line 4-8) uses the system consecu-

tive observations Ok (discrete and continuous inputs and
outputs) to update the diagnoser marking [4]. This mark-
ing contains all diagnosis hypotheses. The diagnosis ∆k

is given by the marking of the HPPN-based diagnoser
HPPN∆ and represents a distribution of beliefs obtained
by particle filtering. To compute the system prognosis Πk

at time k (line 7), the prognoser is initialized with ∆k and
its marking evolves according to a given set of future inputs
U+
k . The set U+

k = {Uκ|κ ∈ {k+1, ..., k+τ}} includes the
system future inputs during the prediction horizon τ ∈ N,
where Uκ = (USκ , u

N
κ ) is the set including the discrete and

continuous input vectors at future time κ. The prognosis Πk

is defined as the marking of the prognoser at the end of this
process.

Figure 2 shows the different processes and what is in-
cluded in HyMU implementation.

4 The HyMU Software
Figure 3 gives an overview of the HyMU architecture. All
functions are coded in Python. On the left are represented
the files created by the user. As said before, the HyMU soft-
ware allows to simulate and to monitor the health state of a
hybrid system from a multimode representation and a sce-
nario. Some intermediate functions are represented in the
middle of the figure to better understand the command lines
given in the following sections to execute the two runner
files simulator.py and monitor.py. The outputs of
HyMU are diagnosis and prognosis results built thanks to
the runner file monitor.py.

4.1 Model for HyMU
As illustrated by Figure 3, the first step for the user is to
define the multimode representation of the hybrid system
given in the file model.py.

The health modes of the system are described by filling
model.py with:
• the set of identified discrete states PS ,
• the set of continuous dynamics C,
• the set of degradation equations D.
The transitions between modes are also described in

model.py by defining the set of conditions Ω. This set
contains triplets associated with transitions in T that may
contain: one or several symbolic conditions and/or one or
several numerical conditions and a degradation condition.

To define symbolic conditions on event occurrences, the
event set E has to be characterized: the fault events to be di-
agnosed, the unobservable events and the observable events



Figure 2: Overview of the health monitoring architecture.

Figure 3: Overview of the HyMU Software.

have to be defined. Numerical and degradation conditions
can be tests on the continuous and degradation states.

The file config_model.py may contain all model pa-
rameters and noise parameters that appear in Equations 1
and 2 and thresholds for fault probabilities if the degradation
equations are given by probability functions. This content
could be added in the model file, the model programming is
actually very open and free to code.

The files model.py and config_model.py are
called by HPPN_generator.py to create an implicit
HPPN model. This HPPN model is used for simulating and
for monitoring the health state of the system.

4.2 Simulate with HyMU
To simulate a hybrid model with HyMU, the second step for
the user is to define a scenario as illustrated in Figure 3. A
scenario has to contain a list of timed discrete events and
timed continuous inputs. These inputs can be listed in a file
or generated from a code specifying the observation number,
sampling time, and the times of event occurrences.

As shown in Figure 4, all those information are written in
a file scenario.py and must be converted into a table in
the csv format by using the file wrapper.py.

A scenario is then simulated with the following command
line:
» ipython run_scenario.py

Sources/simulator.py config_runner.py
model.py config_model.py
scenario_wrapped.csv

Figure 4: Simulating a scenario with HyMU.

The file run_scenario.py manages the execution
of a runner object (simulator or monitor). The file
config_runner.py contains the initial conditions of
the model for the simulation corresponding to the initial
marking M0 and commands of the HPPN model.

During the simulation, the values of tokens evolve ac-
cording to continuous and degradation dynamics associated
with the places and continuous and discrete inputs described
in the scenario file.

The firing rule for the simulation part is defined as fol-
lows.

Rule 1 (Firing rule for simulation). A transition t is fired
if its input symbolic, numerical and degradation places
have tokens that satisfy the triplet of conditions Ωt =<
ωSt , ω

N
t , ω

D
t >. After the transition firing, the tokens that

satisfied Ωt are moved into the output places of t and evolve
according to new dynamics.

After a simulation, a repository with the name of the sce-
nario is created. It contains the simulation results:

• a new file scenario.csv containing the inputs and
generated system outputs,

• the plotted figures of the simulated health modes, the
HPPN model and the multimode representation of the
hybrid system.

4.3 Monitor with HyMU
The health state monitoring is performed with a diagnos-
tic function and a prognostic function. Both functions are



called by the monitor. Their inputs are the files model.py,
config_model.py and the scenario in the csv format
that have already been described in previous sections.

The monitor is then executed with the following com-
mand line:
» ipython run_scenario.py
Sources/monitor.py config_runner.py
model.py config_model.py scenario.csv

The monitoring results for a given scenario are written in
a repository with the name of the scenario.

Uncertainty and computational performance
Uncertainty and computational performance are two sub-
stantial challenges for diagnostics and prognostics that can-
not be ignored by HyMU.

The first one is related to the result accuracy and preci-
sion, whereas the second one is related to calculation time
and computational resource management. In order to cope
with these two challenges, we developed and implemented
the Stochastic Scaling Algorithm (SSA), that has been de-
scribed in [5]. It basically determines the number of tokens
in the HPPN during the system monitoring phase, knowing
six parameters: ρmax∆ (resp. ρmaxΠ ) and ρmin∆ (resp. ρminΠ ),
that are respectively the maximum and the minimum num-
ber of tokens of each type to represent a diagnostic (resp.
prognostic) result and ρtot the total number of tokens of
each type to monitor the system for diagnosis (resp. prog-
nosis).

The user has to write the chosen values of the
six scale parameters of the SSA algorithm in the file
config_runner.py.

Diagnose with HyMU
An HPPN-based diagnoser is built from the generated
HPPN model [6]. Its online process takes as inputs the set
of discrete and continuous observations described in the file
scenario.csv to monitor both the system behavior and
degradation under uncertainty. We recall in this section the
main ideas for the diagnosis online process, focused on the
uncertainty management. The diagnoser generation and its
online process are described in detail in [1].

From the initial marking M0 and the initial commands de-
scribed in the file config_model.py, the HPPN-based
diagnoser marking Mk evolves at time k according to the
observations Ok and dynamics associated with numerical
and degradation places. The marking evolution in the
HPPN-based diagnoser is based on two steps, prediction and
correction, which combine the transition pseudo-firing, par-
ticle filters and the SSA algorithm.

1- Prediction step During the diagnosis prediction step,
the values of the particles and degradation tokens evolve as
functions of the continuous and degradation dynamics asso-
ciated with the numerical and degradation places to which
the particles belong. Numerical uncertainty about impre-
cision on the continuous part of the model and numerical
values is so dealt with particle filters to estimate the contin-
uous state of the HPPN-based diagnoser according to model
noise v and measurement noise w (see Equation 1).

The firing rule associated with the diagnosis part is the
following.

Rule 2 (Firing rule for diagnosis process). A transition t is
fired if the symbolic condition ωSt and the numerical condi-
tion ωNt are satisfied by the configuration δ and the particle

π or if the degradation condition ωDt is satisfied by the
degradation token d. After the transition firing, the values
of tokens are updated as follows: the configuration δ is up-
dated with the label of the event that occurred, the value x
of a particle π and the value d of a degradation token are
updated according to the continuous and the degradation
dynamics associated with the numerical and degradation
places in which π and d belong after the transition firing.

Symbolic uncertainty corresponding to the discrete part
of the model and observations (missing observation or false
observation for example) is managed during the diagno-
sis prediction step by using pseudo-firing of transitions [7].
Transition pseudo-firing duplicates tokens: tokens in the in-
put places of a fired transition are not moved but duplicated,
and their duplicates are moved in the output places of the
transition. Pseudo-firing creates new hypotheses on the sys-
tem health modes.

2- Correction step The diagnosis correction step updates
the predicted marking based on the computation of scores
and on resampling. More details about the score computa-
tion can be found in [1]. The resampling step uses the SSA
algorithm to adapt the number of particles in the HHPN-
based diagnoser. It avoids the combinatory explosion by
limiting the number of tokens at each step of the diagnosis
algorithm.

Output of the diagnoser process The output of the di-
agnoser process at any time k is an estimation of the system
health state that takes the form of the marking of the HPPN-
based diagnoser ∆k = M̂k = {M̂S

k ; M̂N
k ; M̂D

k }, where M̂k

represents all the possible diagnosis hypotheses on the sys-
tem mode at time k as a distribution of beliefs over the cur-
rent health mode and how this mode has been reached. In
other words, the marking M̂k indicates the belief over the
continuous state, the fault occurrences and the degradation
state.

Prognose with HyMU
An HPPN-based prognoser is built from the generated
HPPN model. The prognosis process predicts the system
future states by simulating the future evolution of the di-
agnosis hypotheses from future inputs specified in the file
scenario.csv. It also predicts events that will occur on
the system. Particularly, from a hypothesis in ∆k, it pre-
dicts the possible sets of events that would lead the system
to failure modes. Mode switches are simulated when some
conditions on the continuous state are satisfied. The time
of occurrence of an event that leads to a failure mode is
a possible EOL of this hypothesis. We recall in this sec-
tion the main ideas for the prognosis online process. The
prognoser generation and its online process are described in
detail in [5].

Initialization The HPPN-based prognoser is initialized
with diagnosis hypotheses in ∆k. Without performance
constraints, a diagnosis hypothesis is completely repro-
duced in the prognoser. To improve computational perfor-
mance of the prognosis process, however, the hypotheses
in ∆k can be partially reproduced. The SSA algorithm is
then used to select which hypotheses to set as initial con-
dition for prognosis based on their belief degrees and the
precision with which they will be simulated. By choos-
ing the three scaling parameters ρminΠ , ρmaxΠ , and ρtotΠ in
config_runner.py, the user is able to control the prog-
noser performance.



Prognoser online process and output The marking of
the HPPN-based prognoser evolves according to future in-
puts by using the same firing rules as in diagnosis process
(see Rule 2).

The output of the prognoser process is the marking of the
HPPN-based prognoser: Πk = M̂kEOP

, where kEOP is the
End Of Prediction. The prognosis Πk is a distribution of
beliefs over the system future modes until time kEOP . It
especially contains the event occurrences that will lead to
failure modes, and particularly the faults and their times of
occurrences. It thus contains all necessary data to compute
a belief distribution over the system RUL/EOL.

5 Application on a Water Tanks example
5.1 Water-tank benchmark
The benchmark used to illustrate the use of HyMU is a
three-tank system described in Figure 5.

Figure 5: Three-tank system description.

The tanks are configured in a series circuit. The water
comes from Pump 1 into tank T1. Flow Q1(t) delivered
by the pump is supposed to be constant. Tank T2 empties
with flow Q20(t). The available measurements at time t are
the water level in tank T1 denoted h1(t) and the total mass
of water in the three-tank system denoted W (t). Valves
v13 and v32 allow the water to flow between tanks. They
are controlled by discrete control inputs openv13 , closev13 ,
openv32 and closev32 . Fault events f1, f2 and f3 model
leaks that may occur in tanks T1, T2 and T3. The leak f1 is
three times bigger than f2 and f3. f4 and f5 are fault events
that may occur on the valves. The valve v13 (resp. v32) may
become stuck closed: it is represented by the occurrence of
fault f4 (resp. f5). The goal of the system is to maintain the
water level in tank T2 greater than a minimum value h2min

.
The leak in tank T1 is considered too large and therefore
leads to the system failure when f1 occurs because the sys-
tem is not able to achieve the goal anymore. Leaks in tanks
T2 and T3 are not large enough to prevent the goal achieve-
ment on their own, but the occurrence of the two leaks leads
to the system failure. Both f4 and f5 prevent the water de-
livered by the pump to reach the tank T2 and then lead to
the system failures. Therefore, it is supposed that the sys-
tem enters a failure mode if either f1, f4 or f5 occurs, or if
f2 and f3 occur.

In order to ease the understanding and analysis of the
results, we will only consider the events on valve v13 and
faults f1 and f4 in this example. The three-tank system is
then composed of ten different functioning modes. The ini-
tial mode is Nom1, in which both valves are open. The as-

sociated continuous dynamics is C1. In this mode, the tanks
have a weak stress level (degradation dynamics H1).

When the command closev13 occurs, the system enters
mode Nom2 in which v13 is closed (continuous dynamics
C2). In this mode, the stress level of tanks T2 and T3 are
weak, but the one of T1 is important (degradation dynam-
ics H2). The system can go back to Nom1 when openv13
occurs.

From Nom1 (resp. Nom2), the system can switch to de-
graded mode Deg2 (resp. Deg3) if fault f1 occurs. In this
mode, continuous dynamics C3 (resp. C4) models the water
levels in the tanks with T1 leaking while valve v13 is open
(resp. closed). Both Deg2 and Deg3 have the same degra-
dation dynamics H4 in which stress levels in T2 and T3 are
weak, and the degradation state associated with fault f1 is
no longer evaluated, as f1 already occurred.

From Nom1 or Nom2, the valve v13 may become stuck
closed (f4): the system will enter degraded mode Deg1, in
which the continuous dynamics are the same as if the valve
was closed voluntarily (C2). In this mode, stress levels of
tanks T2 and T3 are weak, the one of T1 is important, and
the degradation state associated with fault f4 is no longer es-
timated, as f4 already occurred (degradation dynamics H3).

Through the same fault occurrence, modes Deg2 and
Deg3 can lead to mode Deg4 with continuous dynamics C4

and degradation dynamics H5 in which stress levels for T2

and T3 are weak. The degradation state associated with f1

and f4 is no longer estimated, as they both occurred.
Finally, from each of the degraded modes, the system may

enter a failure mode if the water level in tank T2 becomes
smaller than the minimum value h2min . It is represented by
a fault f0, which is nothing but a failure indicator.

The equations corresponding to continuous and
degradation dynamics can be found in the file
small_three_tanks.py. In this water-tank ex-
ample, degradation dynamics are represented by probability
functions associated with each anticipated faults in the
system. These probability functions depend on several
qualitative stress levels (weak/high stress) identified for
different system configurations (open/closed valves for ex-
ample). The multimode representation of the system plotted
by HyMU from the file small_three_tanks.py is
given in Figure 6. The implicite HPPN model contains
19 places (10 symbolic places, 4 numerical places and
5 degradation places). Table 1 shows the numerical and
degradation places and their dynamics. As explained in
Section 2.2, each mode is represented by a symbolic place,
a numerical place and a degradation place. For example,
mode Nom1 is represented by places p1 (symbolic place),
p2 (numerical place) and p3 (degradation place), associated
with dynamics C1 and H1.

pNi CpNi pDi DpDi
p2 C1 p3 H1

p5 C2 p6 H2

p10 C3 p8 H3

p13 C4 p11 H4

p15 H5

Table 1: Correspondence between places and dynamics for
the three-tank system.



Figure 6: Multimode representation of the three-tank system

5.2 Simulation
As explained in Section 4.2, the simulation process is
started with the following command line:

» ipython run_scenario.py
Sources/simulator.py config_runner.py
water_tanks/small_three_tanks.py
water_tanks/config_model.py
water_tanks/scenario_1_wrapped.csv

In the simulation scenario, the continuous input flow
Q1(t) is constant and equal to 3.5 × 10−5. In this exam-
ple, we took 3400 samples, one every 60 sec. The discrete
inputs closev13 and openv13 are simulated as follows: start-
ing from 310 min, the valve v13 is closed every hour, and
re-opened 20 min after. This scenario is coded in the file
scenario_1.py and converted by the file wrapper.py
into the file scenario_1_wrapped.csv.

The simulation result is illustrated in Figure 7. As ex-
pected from the simulation scenario, regular switches from
the mode Nom1 to the mode Nom2 can be observed start-
ing from around 18000s. After approximately 190 000s, the
tank T1 begins to leak, and finally the water level in T2 be-
comes smaller than the value h2min , resulting in a failure of
the system. After this fault occurred, the system switches to
mode Deg3. The discrete inputs still going on, the system
enters Mode Deg2 when openv13 occurs. Then, the failure
appears, right after the switch from Deg2 to Deg3, so the
system enters the failure mode Fail3, from Deg3.

Figure 7: Three-tank system simulated health modes.

5.3 Monitoring
Diagnosis Results
Figure 8 shows the diagnosis results applied to our system.
As the diagnoser takes the uncertainty into account, it as-
sociates each mode to a given probability. This probability
is represented by the line width in Figure 8: the higher the
probability, the wider the line. The highest belief is colored
in blue. We can notice that up to 190 000s, the hypothesis
having the highest belief matches with the simulation of the
system. After that, the fault happened and is successfully
detected even if some ambiguity remains between modes
Fail3 and Fail2 at the end because they have similar dy-
namics. Indeed, the occurrence of a tank leak f1 or a stuck
valve f4 have the same effect on the water level h2.

Modes Deg1, Deg2 and Nom2 all have high belief be-
fore the fault’s occurrence. This can be explained by the
fact that the three-tank system has a slow continuous behav-
ior that does not allow the diagnoser to identify the relevant
continuous dynamics. This belief is also represented in the
prognosis results, as we will see in the upcoming section.

Figure 8: Three-tank system mode belief.

Prognosis Results
Figure 9 illustrates the estimated RUL for the three-tank sys-
tem. The estimated EOL is around 190000 seconds after
the beginning of the estimation. Different lines are plotted
in Figure 9, the line in black represents the prognosis result
with the higher belief. The other lines can be explained with
the fact that there is a possibility that the system starts in a
degraded mode which would lead to a faster failure. As it
was mentioned and seen in the diagnoser results, this possi-
bility is likely, but less than the system starting in nominal
mode. However, we can notice that both lines merge and
lead to the same EOL date.



Figure 9: Three-tank system RUL.

6 Other existing tools
We discuss in this section of other softwares that have been
designed to perform diagnosis and prognosis on hybrid sys-
tems.

HyDiag [8] and its extensions HyDiagPro and ActHy-
Diag, have been developed in Matlab by the DISCO team at
LAAS-CNRS since 2009. It is designed to simulate, diag-
nose and prognose hybrid systems using model-based tech-
niques. The system behavior is described by a hybrid au-
tomaton. The model, the diagnosis and the prognosis do not
take into account any uncertainty.

HyDe (Hybrid Diagnosis Engine) [9] is a software devel-
oped by NASA. It is a general framework for stochastic and
hybrid model-based diagnosis and offers flexibility to the di-
agnosis application designer. However, HyDe does not pro-
vide any information about the degradation of the system
and is not used for prognosis purpose.

QED (Qualitative Event-based Diagnosis) [10] is a soft-
ware that makes detection, isolation, and identification of
faults. It is based on qualitative, event-based reasoning.
An open-source software implementation was in develop-
ment in 2017. As HyDe, it does not provide any informa-
tion about the degradation of the system and is not used for
prognosis purpose. A probabilistic version of QED has been
proposed in [11] for robust fault isolation.

7 Conclusion and Future Work
HyMU is a software in Python distributed under LGPL li-
cense and available on github with a tutorial. The user has
to provide a multimode representation of the hybrid system
and a scenario. HyMU simulates the system behavior and is
able to follow its evolution knowing the available set of ob-
servations (inputs and outputs) and to provide at each time
diagnosis and prognosis results. The main feature of the
software is that it takes into account multiple sources of un-
certainty during the health monitoring process, which makes
the results closer to reality.

In future works, we want to give the possibility to HyMU
to manage heterogeneous systems, as it is focused on hy-
brid systems right now. Heterogeneous systems are sys-
tems that can have discrete parts, continuous parts, or hy-
brid parts. These parts can intertwine, and the tool must
be able to switch from one to another easily. Moreover, as
modifications of the HPPN formalism are currently taking
place, HyMU will also be undergoing some modifications to
match with the newly established formalism. An example of
these modifications is that the three places of an HPPN will

be merged into an unique place containing all the dynamics
equation sets.
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